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• Objectives for Design Under Uncertainty
• What Do We Have in the toolbox?
• Why Do We Care About Analytical Derivatives?
• How Do We Get Partial Derivatives for a Confidence Interval?
• Computational Costs
• Demonstration Problem

Outline

End-to-End Uncertainty Quantification with Analytical 
Derivatives for Design Under Uncertainty
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Recently completed Technical Challenge (TC) in MDAO established 
gradient-based multidisciplinary design optimization (MDO) that 
leverages analytical derivatives as a foundational approach 
throughout NASA's Aeronautics Research Mission Directorate 
(ARMD).

New concepts bring new challenges and uncertainties

• Extend gradient-based MDO with analytical derivatives to design 
under uncertainty

• Address the two primary roadblocks to implementation of design 
under uncertainty

• Computational costs
• Additional complexity of incorporating UQ

• Integrate uncertainty analysis into “native” OpenMDAO analysis 
and optimization

Objectives for Design Under Uncertainty

End-to-End Uncertainty Quantification with Analytical 
Derivatives for Design Under Uncertainty

High-fidelity coupled aero-propulsive optimization
Gray et al. https://doi.org/10.2514/1.C036103

Aeroacoustic UAM rotor optimization
Ingraham et al. https://doi.org/10.2514/6.2019-1219

https://doi.org/10.2514/1.C036103
https://doi.org/10.2514/6.2019-1219
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Example of 𝐶𝐶𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 optimization

𝐽𝐽 = 𝑓𝑓(𝑋𝑋,𝑈𝑈)

𝐽𝐽 = 𝑓𝑓(𝑋𝑋) Optimization objective function 
Solution:

Optimization objective function --
Solution:

• Optimizing     yields higher expected value 
for 𝐶𝐶𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 but a probabilistic chance (95% CI) 
of significantly lower actual 𝐶𝐶𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

• Optimizing -- yields lower expected value for 
𝐶𝐶𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 but higher maximum of lower probabilistic 
𝐶𝐶𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

• No free lunch! Trading lower expected value for 
higher “worst case” value

Objectives for Design Under Uncertainty

End-to-End Uncertainty Quantification with Analytical 
Derivatives for Design Under Uncertainty

𝐶𝐶𝐿𝐿

𝛼𝛼

Deterministic 
Response

Upper Confidence 
Interval of Response

Deterministic 
Optimum

Lower Confidence 
Interval of Response

Uncertain 
Optimum

Lower Confidence 
Interval at Deterministic 
Optimum

How can we give the optimizer 
information from the -- curve?
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OpenMDAO: 
• Open source python software
• Developed and supported by TTT
• Open source platform for systems analysis and MDO
• Enables decomposition of models easing implementation and maintenance
• Focused on gradient-based optimization of tightly coupled MDO problems with analytical 

derivatives
• https://github.com/OpenMDAO/OpenMDAO

What do we have in the toolbox?

End-to-End Uncertainty Quantification with Analytical 
Derivatives for Design Under Uncertainty

UQPCE: Uncertainty Quantification with Polynomial Chaos Expansion
• Open source python software
• Originally developed under Commercial Supersonic Technology (CST), 

supported by TTT
• Tractable, modular non-deterministic analysis & design
• Efficient generalized nonintrusive point-collocation PCE
• External wrapper and “Black Box” ability,  now integrated into OpenMDAO
• https://github.com/nasa/UQPCE/

https://github.com/OpenMDAO/OpenMDAO
https://github.com/nasa/UQPCE/
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Analytical derivatives are “cheat codes” for the optimizer

• In gradient-based optimization, the optimizer needs to estimate what direction to go next
• Usually, methods like finite difference or complex step are used to estimate gradients

Why Do We Care About Analytical Derivatives?

𝐶𝐶𝐿𝐿 𝛼𝛼 = 𝐶𝐶𝐿𝐿𝛼𝛼=0 + 𝐶𝐶𝐿𝐿𝛼𝛼𝛼𝛼

𝜕𝜕𝐶𝐶𝐿𝐿
𝜕𝜕𝛼𝛼

= 𝐶𝐶𝐿𝐿𝛼𝛼

𝜕𝜕𝐶𝐶𝐿𝐿
𝜕𝜕𝛼𝛼

≈
𝐶𝐶𝐿𝐿 𝛼𝛼 + Δ𝛼𝛼 − 𝐶𝐶𝐿𝐿(𝛼𝛼)

Δ𝛼𝛼
Finite Difference Approach
Computationally very expensive and 
inaccurate

Analytical partial derivative 
Computationally Cheap*

*Requires underlying analysis code to produce analytical derivatives which is not trivial and can require significant upfront development costs

End-to-End Uncertainty Quantification with Analytical 
Derivatives for Design Under Uncertainty
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OpenMDAO’s (OM) “Secret Sauce”: MAUD (Modular Analysis and Unified Derivatives)
• If the designer can supply partial derivatives from their subsystem, OM can do the heavy lifting

Why Do We Care About Analytical Derivatives?

Landing 
Gear Design

Forces

Landing Gear 
Weights

𝜕𝜕𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
𝜕𝜕𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

…
𝜕𝜕𝑅𝑅𝑖𝑖
𝜕𝜕𝑋𝑋𝑖𝑖

Landing gear subsystem 
contribution to system 

level analysis

All other subsystem 
partial derivatives

OM
𝑑𝑑𝑅𝑅
𝑑𝑑𝑋𝑋

Total Derivatives

End-to-End Uncertainty Quantification with Analytical 
Derivatives for Design Under Uncertainty

𝑅𝑅 = 𝑓𝑓(𝑋𝑋)
𝑅𝑅 is function of design 

variables only
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We need partial derivatives with uncertainty included for OM to estimate total derivatives
• Confidence intervals (CI) require a binning procedure to estimate
• Binning is non-differentiable
• CI’s enable analysis/design with epistemic uncertainties 

How Do We Get Partial Derivatives for Confidence Intervals? 

UQPCE

Uncertainty 

Confidence 
Intervals

𝝏𝝏𝑪𝑪𝑪𝑪
𝝏𝝏𝑿𝑿

…
𝜕𝜕𝑅𝑅𝑖𝑖
𝜕𝜕𝑋𝑋𝑖𝑖

Partial derivative of 
confidence interval with 

respect to inputs
(Oversimplification)

OM
𝑑𝑑𝑅𝑅
𝑑𝑑𝑋𝑋

Total Derivatives

𝑅𝑅 = 𝑓𝑓(𝑋𝑋,𝑈𝑈)
𝑅𝑅 is now a function of design variables 

and uncertain variables

End-to-End Uncertainty Quantification with Analytical 
Derivatives for Design Under Uncertainty
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How can we make a confidence interval differentiable? Take some inspiration from the machine 
learning world, hyperbolic tangent activation function:

Continuous counting function that provides an approximate count of the number of elements in 
𝑥⃗𝑥 that are less than or equal to 𝑧𝑧. 𝜔𝜔 controls how sharp the transition from 1 – 0 occurs.

We can now form an expression for a residual based on a specific significance level

𝑓𝑓 𝑥⃗𝑥, 𝑧𝑧,𝜔𝜔 = �
𝑖𝑖=1

𝑛𝑛

1 −
1 + tanh 𝑥⃗𝑥 − 𝑧𝑧

𝜔𝜔
2

ℛ𝑧𝑧 𝑥⃗𝑥, 𝑧𝑧,𝜔𝜔 = �
𝑖𝑖=1

𝑛𝑛

𝑓𝑓𝑖𝑖 𝑥⃗𝑥, 𝑧𝑧,𝜔𝜔 − 1 −
𝑎𝑎
2
𝑛𝑛 = �

𝑖𝑖=1

𝑛𝑛

𝑓𝑓𝑖𝑖 𝑥⃗𝑥, 𝑧𝑧,𝜔𝜔 − 0.975𝑛𝑛

(𝑎𝑎 = 0.05)

How Do We Get Partial Derivatives for Confidence Intervals? 

End-to-End Uncertainty Quantification with Analytical 
Derivatives for Design Under Uncertainty
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With an expression for the residual, a Newton solver can be used for convergence

Given an initial guess of the 95% confidence interval based on a normal distribution:

The implicit function theorem can be applied to this process to get the sensitivity of 𝑧𝑧 𝑤𝑤𝑤𝑤𝑤𝑤 𝑥𝑥 .
Combined with other derivatives in the computational chain, OpenMDAO can obtain the total 
derivative of uncertainty metrics with respect to the design variables of the problem.

This process decouples the computational cost from the number of design variables

ℛ𝑧𝑧 𝑥⃗𝑥, 𝑧𝑧,𝜔𝜔 = �
𝑖𝑖=1

𝑛𝑛

𝑓𝑓𝑖𝑖 𝑥⃗𝑥, 𝑧𝑧,𝜔𝜔 − 0.975𝑛𝑛

How Do We Get Partial Derivatives for Confidence Intervals? 

End-to-End Uncertainty Quantification with Analytical 
Derivatives for Design Under Uncertainty
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𝑓𝑓(
𝑥𝑥,
𝑧𝑧,
𝜔𝜔

)

How Do We Get Partial Derivatives for Confidence Intervals? 

End-to-End Uncertainty Quantification with Analytical 
Derivatives for Design Under Uncertainty

Probability Density 
Function (PDF)

Cumulative Distribution 
Function (CDF)

Activation Function
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Computational savings scale with number of design variables, 𝑛𝑛𝑑𝑑𝑑𝑑 and number of function calls to 
build the PCE model, 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝.  Per-iteration function call computational costs:

𝑛𝑛𝑓𝑓𝑓𝑓 = 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛𝑑𝑑𝑑𝑑 + 1

𝑛𝑛𝑎𝑎𝑎𝑎 = 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝

𝐶𝐶 = 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑑𝑑𝑑𝑑Computational savings, 𝐶𝐶 on 
per-iteration basis

Function calls using  
finite difference, 𝑛𝑛𝑓𝑓𝑓𝑓

Function calls using 
analytical derivatives , 𝑛𝑛𝑎𝑎𝑎𝑎

Computational Costs

End-to-End Uncertainty Quantification with Analytical 
Derivatives for Design Under Uncertainty
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Demonstration Problem

wing planform optimization for maximum range with 
textbook aerodynamics, weights, and range equations

uncertain parameters (aleatory)

uncertain parameters (epistemic)

design parameters

End-to-End Uncertainty Quantification with Analytical 
Derivatives for Design Under Uncertainty
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Comparison of optimal wing planform designs (deterministic in blue, uncertain in red)

Demonstration Problem

Function calls for finite difference optimization: 30,952
Function calls for analytical derivative optimization: 3,816
Computational costs reduced by 87.7%

End-to-End Uncertainty Quantification with Analytical 
Derivatives for Design Under Uncertainty

𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 (𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫)

10.2% increase in lower confidence interval 
for range with 1.2% decrease in mean value
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Conclusions and Future Work

End-to-End Uncertainty Quantification with Analytical 
Derivatives for Design Under Uncertainty

Developed a framework for design under uncertainty with analytical derivatives 
• Native OpenMDAO integration
• Physics/Application agnostic
• Any combination of uncertain and/or deterministic constraints and objectives
• Surrogate model outputs available for custom objective functions
• Demonstrated significant computational savings over finite difference and complex step

Future Work
• Open source release code to public repository
• Integrate with Model Based Systems Analysis and Engineering (MBSAE)
• Integrate with the conceptual aircraft design tool Aviary
• Apply codes and methods to higher fidelity analysis
• Incorporate other methods (multifidelity, adaptive sampling etc.)
• Collaborate with other researchers
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