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Objectives for Design Under Uncertainty

Recently completed Technical Challenge (TC) in MDAO established
gradient-based multidisciplinary design optimization (MDO) that
leverages analytical derivatives as a foundational approach
throughout NASA's Aeronautics Research Mission Directorate
(ARMD).
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New concepts bring new challenges and uncertainties u
High- fldellty coupled aero-propulsive optimization

Gray et al. https://doi.org/10.2514/1.C036103

« Extend gradient-based MDO with analytical derivatives to design
under uncertainty

» Address the two primary roadblocks to implementation of design
under uncertainty
« Computational costs
» Additional complexity of incorporating UQ

« Integrate uncertainty analysis into “native” OpenMDAO analysis Aeroacoustic UAM rotor optimization
Ingraham et al. https://doi.org/10.2514/6.2019-1219

and optimization 3
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Objectives for Design Under Uncertainty

Example of ¢} optimization

] = f(X) Optimization objective function —
Solution: @

J = f(X,U) Optimization objective function --
Solution: @

» Optimizing=— yields higher expected value
for C, . ® but a probabilistic chance (95% Cl)
of significantly lower actual CL,,,,,, B

» Optimizing -- yields lower expected value for
C., . but higher maximum of lower probabilistic

CLmax ®

* No free lunch! Trading lower expected value for
higher “worst case” value

o**
A o *e

How can we give the optimizer
information from the -- curve?

L
.
-

= Deterministic @ Deterministic

Response Optimum
..... Upper Confidence [ :_ower Confidence
Interval of Response nte_rval at Deterministic
Optimum
----- Lower Confidence @ Uncertain
Interval of Response ~ QOptimum
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What do we have in the toolbox?

OpenMDAO: &@m MDNAO

» Open source python software

* Developed and supported by TTT

* Open source platform for systems analysis and MDO

« Enables decomposition of models easing implementation and maintenance

» Focused on gradient-based optimization of tightly coupled MDO problems with analytical
derivatives

* https://github.com/OpenMDAO/OpenMDAO

UQPCE: Uncertainty Quantification with Polynomial Chaos Expansion

» Open source python software

» Originally developed under Commercial Supersonic Technology (CST),
suppo rted by TTT [Uncertainty Quantification with Polynomial Chaos Expansion]

» Tractable, modular non-deterministic analysis & design

» Efficient generalized nonintrusive point-collocation PCE

» External wrapper and “Black Box” ability, now integrated into OpenMDAO

* https://github.com/nasa/UQPCE/ 5 5
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Why Do We Care About Analytical Derivatives?

Analytical derivatives are “cheat codes” for the optimizer

* In gradient-based optimization, the optimizer needs to estimate what direction to go next
« Usually, methods like finite difference or complex step are used to estimate gradients

CL((X) — CLa=0 + CLaa

Analytical partial derivative 0C, _
Computationally Cheap® 104 La

Finite Difference Approach 9C¢L _ (L (a +Aa) = Cp(a)

Computationally very expensive and ~ Ao
inaccurate

*Requires underlying analysis code to produce analytical derivatives which is not trivial and can require significant upfront development costs 6
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Why Do We Care About Analytical Derivatives?

OpenMDAQ’s (OM) “Secret Sauce”: MAUD (Modular Analysis and Unified Derivatives)
e If the designer can supply partial derivatives from their subsystem, OM can do the heavy lifting

All other subsystem R = f(X)
Forces partial derivatives R is function of design
x variables only
dWeight OR; dR
Landing J L) | OM T

"| Gear Design | 6F0{ces - aX; /

Landing Gear
Weights Landing gear subsystem Total Derivatives

contribution to system
level analysis
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How Do We Get Partial Derivatives for Confidence Intervals?

We need partial derivatives with uncertainty included for OM to estimate total derivatives
* Confidence intervals (Cl) require a binning procedure to estimate
* Binning is non-differentiable
* Cl’'s enable analysis/design with epistemic uncertainties R = f(X, U)

Uncertainty

UQPCE

Confidence
Intervals

R is now a function of design variables
and uncertain variables

aCl  9R, dR

— :> OM :> i
X X, dx

Partial derivative of
confidence interval with

respect to inputs Total Derivatives
(Oversimplification)
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How Do We Get Partial Derivatives for Confidence Intervals?

How can we make a confidence interval differentiable? Take some inspiration from the machine
learning world, hyperbolic tangent activation function:

n 1 + tanh (x;z)

f(R2,0) = 21— :
=1

Continuous counting function that provides an approximate count of the number of elements in
X that are less than or equal to z. w controls how sharp the transition from 1 — 0 occurs.

We can now form an expression for a residual based on a specific significance level

R,(x,z,w) = Efi(a?,z, W) — (1 — %)n = zfi(a?,z, w) — 0.975n
i=1 =1
(a = 0.05) 9
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How Do We Get Partial Derivatives for Confidence Intervals?
With an expression for the residual, a Newton solver can be used for convergence

n
R, (%2, w) = z (% 2, 0) — 0.975n
=1
Given an initial guess of the 95% confidence interval based on a normal distribution:

Zguess = M+ 20

The implicit function theorem can be applied to this process to get the sensitivity of z wrt x..
Combined with other derivatives in the computational chain, OpenMDAO can obtain the total
derivative of uncertainty metrics with respect to the design variables of the problem.

This process decouples the computational cost from the number of design variables

10
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How Do We Get Partial Derivatives for Confidence Intervals?
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Computational Costs

Computational savings scale with number of design variables, n;,, and number of function calls to
build the PCE model, n, .. Per-iteration function call computational costs:

Function calls using . ( + 1)
finite difference, nsq Nfa = MpceNav

Function calls using

. L Ngn = Npce
analytical derivatives , ng,

Com.putat'lonal savings, C on C = NpceNav
per-iteration basis

12



End-to-End Uncertainty Quantification with Analytical
Derivatives for Design Under Uncertainty

TACP - Transformational Tools & Technologies Project

C [0.01, 0.043] Optimizer
1 [0.1, 1] (SNOPT)
Yor. [0., 25(?'(;] Wiotal Total Weight

Demonstration Problem
Input Range H m n u ct uf
t/c [0.1, 0.15]
Pminx [035 05]
[ 3 et 5 =, /3
A [0, 40] (deg)
b [20, 50] (m)
.5 1w £ £y
design parameters ’
Input Interval
| Wos /
(TCDD [4, 6]
ko  [0.85.0.95]
Sesw  [0.05,0.2]

uncertain parameters (epistemic)

Input Distribution Mean Std. Dev. E

ocy Gaussian 2x1073 3x107°

Vv Gaussian 072 0.02 wing planform optlmlzatloq for maximum range V\{Ith ]
c, Gaussian 045  0.045 (1/hr) textbook aerodynamics, weights, and range equations
uncertain parameters (aleatory) ﬂ 13
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Variable range (Uncertain) range (Deterministic)

tfc 0.1 0.118
Pinx 0.312 0.3
C 0.043 0.043
A 0.196 0.185
A 30.59 (deg) 24.32 (deg)
Cy S (m) 5 (m)
b 45.62 (m) 46.00 (m)
Wieight 9291.4 (mean, kg) 8338.0(kg)
Comparison of optimal wing planform designs (deterministic in blue, uncertain in red) Variable rangecy (Uncertain) range (Deterministic)
Mean 3679.6 (nmi) 3723.1 (nmi)
Function calls for finite difference optimization: 30,952 Confidence Interval ms414 1] (nmi) [ 47 445653.9] (nmi)

Function calls for analytical derivative optimization: 3,816
Computational costs reduced by 87.7%

10.2% increase in lower confidence interval
for range with 1.2% decrease in mean value

14
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Conclusions and Future Work

Developed a framework for design under uncertainty with analytical derivatives
* Native OpenMDADO integration
* Physics/Application agnostic
* Any combination of uncertain and/or deterministic constraints and objectives
* Surrogate model outputs available for custom objective functions
 Demonstrated significant computational savings over finite difference and complex step

Future Work
* Open source release code to public repository
* Integrate with Model Based Systems Analysis and Engineering (MBSAE)
* Integrate with the conceptual aircraft design tool Aviary
* Apply codes and methods to higher fidelity analysis
* Incorporate other methods (multifidelity, adaptive sampling etc.)

e Collaborate with other researchers "
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