
Jonathan S. Litt, Jonah J. Sachs-Wetstone, and Halle E. Buescher
Glenn Research Center, Cleveland, Ohio

T. Shane Sowers and A. Karl Owen
HX5, LLC, Brook Park, Ohio

Kristin C. Wu, Fiona Zheng, and Jacklyn K. Tierney 
Glenn Research Center, Cleveland, Ohio

System Health Management for a Series/Parallel 
Partial Hybrid Powertrain With Distributed 
Electric Propulsion

NASA/TM-20240000147

January 2024

AIAA–2024–1521



NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated 
to the advancement of aeronautics and space science. 
The NASA Scientifi c and Technical Information (STI) 
Program plays a key part in helping NASA maintain 
this important role.

The NASA STI Program operates under the auspices 
of the Agency Chief Information Offi  cer. It collects, 
organizes, provides for archiving, and disseminates 
NASA’s STI. The NASA STI Program provides access 
to the NASA Technical Report Server—Registered 
(NTRS Reg) and NASA Technical Report Server—
Public (NTRS)  thus providing one of the largest 
collections of aeronautical and space science STI in 
the world. Results are published in both non-NASA 
channels and by NASA in the NASA STI Report 
Series, which includes the following report types:
 
• TECHNICAL PUBLICATION. Reports of 

completed research or a major signifi cant phase 
of research that present the results of NASA 
programs and include extensive data or theoretical 
analysis. Includes compilations of signifi cant 
scientifi c and technical data and information 
deemed to be of continuing reference value. 
NASA counter-part of peer-reviewed formal 
professional papers, but has less stringent 
limitations on manuscript length and extent of 
graphic presentations.

 
• TECHNICAL MEMORANDUM. Scientifi c 

and technical fi ndings that are preliminary or of 
specialized interest, e.g., “quick-release” reports, 
working papers, and bibliographies that contain 
minimal annotation. Does not contain extensive 
analysis.

 

• CONTRACTOR REPORT. Scientifi c and 
technical fi ndings by NASA-sponsored 
contractors and grantees.

• CONFERENCE PUBLICATION. Collected 
papers from scientifi c and technical 
conferences, symposia, seminars, or other 
meetings sponsored or co-sponsored by NASA.

 
• SPECIAL PUBLICATION. Scientifi c, 

technical, or historical information from 
NASA programs, projects, and missions, often 
concerned with subjects having substantial 
public interest.

 
• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and 
technical material pertinent to NASA’s mission.

For more information about the NASA STI 
program, see the following:

• Access the NASA STI program home page at 
http://www.sti.nasa.gov

 
• E-mail your question to help@sti.nasa.gov
 
• Fax your question to the NASA STI 

Information Desk at 757-864-6500

• Telephone the NASA STI Information Desk at
 757-864-9658
 
• Write to:

NASA STI Program
 Mail Stop 148
 NASA Langley Research Center
 Hampton, VA 23681-2199

 



Jonathan S. Litt, Jonah J. Sachs-Wetstone, and Halle E. Buescher
Glenn Research Center, Cleveland, Ohio

T. Shane Sowers and A. Karl Owen
HX5, LLC, Brook Park, Ohio

Kristin C. Wu, Fiona Zheng, and Jacklyn K. Tierney 
Glenn Research Center, Cleveland, Ohio

System Health Management for a Series/Parallel 
Partial Hybrid Powertrain With Distributed 
Electric Propulsion

NASA/TM-20240000147

January 2024

AIAA–2024–1521

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Prepared for the
AIAA SciTech Forum
sponsored by the American Institute of Aeronautics and Astronautics
Orlando, Florida, January 8–12, 2024



Acknowledgments

The Transformative Aeronautics Concepts Program (TACP)/Convergent Aeronautics Solutions Project sponsors this work with 
the support of the Transformational Tools and Technologies Project, also under the TACP, and the Integrated Aviation Systems 
Program/Electrifi ed Powertrain Flight Demonstration project, all of which are under the NASA Aeronautics Research Mission 
Directorate.

Trade names and trademarks are used in this report for identifi cation 
only. Their usage does not constitute an offi  cial endorsement, 
either expressed or implied, by the National Aeronautics and 

Space Administration.

Level of Review: This material has been technically reviewed by technical management. 

This work was sponsored by the 
Transformative Aeronautics Concepts Program.

This report is available in electronic form at https://www.sti.nasa.gov/ and https://ntrs.nasa.gov/



NASA/TM-20240000147 1 

System Health Management for a Series/Parallel Partial Hybrid 
Powertrain With Distributed Electric Propulsion 

 
Jonathan S. Litt, Jonah J. Sachs-Wetstone, and Halle E. Buescher 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

 

T. Shane Sowers and A. Karl Owen 
HX5, LLC 

Brook Park, Ohio 44142 
 

Kristin C. Wu,* Fiona Zheng,† and Jacklyn K. Tierney‡ 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
Electrified aircraft powertrains contain multiple interacting subsystems, making them much more 

complex than traditional aircraft propulsion systems in terms of integration and control. Electrification 
enables aircraft to have distributed thrust-producing fans that the flight control system can leverage for 
enhanced maneuverability, further increasing the control complexity. A NASA concept aircraft, the 
SUbsonic Single Aft eNgine (SUSAN) Electrofan, is such a vehicle. SUSAN is a series/parallel partial 
hybrid-electric single-aisle transport aircraft that takes advantage of its electrified powertrain to provide 
fuel burn and emissions benefits when compared to the state-of-the-art. Achieving these benefits requires 
an appropriately designed control architecture that coordinates the various powertrain and flight control 
subsystems. As such, the SUSAN aircraft is designed with a high level of automation, allowing it to 
properly manage coupled subsystems and react rapidly to failures and anomalies. To do this effectively, 
algorithms that perform component health management, fault detection, isolation, and accommodation, 
and continuous optimization, must be developed and implemented. This paper describes the development 
of some of these algorithms for system health management applied to the powertrain of the SUSAN 
concept aircraft. 

1.0 Introduction 
The SUbsonic Single Aft eNgine (SUSAN) Electrofan (Figure 1) is a subsonic regional jet transport 

aircraft concept with a 2040 entry-into-service date. It utilizes electrified aircraft propulsion (EAP) to 
enable propulsive and aerodynamic benefits to reduce fuel usage, emissions, and cost. The target market 
is the regional low-cost carrier airline with mission specification: 180 passengers, design range of 
2500 miles, economic range of 750 miles, cruise speed of Mach 0.785 (Ref. 1). The details of the concept 
are evolving, but the consistent features include a single boundary layer-ingesting (BLI) turbofan gas 
turbine engine (GTE) with generators driving a series/parallel partial hybrid EAP system (Figure 2). The  
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Figure 1.—Rendering of the current version of the SUSAN concept aircraft. 

 

 
Figure 2.—Series/parallel partial hybrid EAP architecture. 

 
current iteration of SUSAN has 16 underwing contrarotating BLI fans (also called wingfans or Electric 
Engines (EEs)), eight on each side. Note that for this paper, Electric Engine is used to mean the entire 
contrarotating BLI fan, including the electric motor, controller, etc., used as the source of propulsion. 
Generally, a single GTE would present a certification problem as an engine failure could prove 
catastrophic. The SUSAN concept attempts to overcome this obstacle with single-use (primary) batteries 
that provide emergency power to the EEs in case of GTE or generator failure. Relatively small reusable 
(secondary) batteries are also present to enable various EAP benefits. A diagram of the powertrain is 
shown in Figure 3 (Ref. 1). To fully achieve the potential benefits of the design, a control system needs to 
coordinate the operation of the subsystems (Ref. 2). A system that fulfills the potential of electrification 
must meet integration and operational requirements that depend on all parts working properly together. In 
some cases, faults in one subsystem can severely impact other subsystems, much more so than in aircraft 
with traditional powertrains (Ref. 3). This requires special algorithms to monitor, detect, and mitigate 
faults. This paper discusses some potential System Health Management (SHM) algorithms applied to the 
SUSAN powertrain that demonstrate component health management including response to faults. 



NASA/TM-20240000147 3 

 
Figure 3.—Diagram of the SUSAN powertrain. 

 
The rest of this paper is organized as follows. In Section 2.0, the powertrain is described. Section 3.0 

defines SHM in the context of this paper. This is followed by a description of several preliminary 
algorithms in Section 4.0. Section 5.0 contains a discussion of SHM as it relates to the SUSAN 
powertrain, and Section 6.0 presents conclusions. 

2.0 Powertrain Design 
The fully integrated nature of the SUSAN vehicle makes the powertrain functionality central to the 

control design effort. As shown in Figure 3, the powertrain in its current configuration includes a single 
BLI GTE in the tail. Power is extracted from it through four 5 MW motor/generators (electric machines or 
EMs) connected to the Low-Pressure Spool (LPS) and a single 1 MW EM on the High-Pressure Spool 
(HPS). These generators are connected to buses that distribute power to operate the 16 EEs under the 
wings. The engines are numbered 1 to 17 from left to right from the pilot’s point of view, with the 
centrally located GTE identified as number 9. Four three-phase power buses from each of the 5 MW main 
generators connect to four EEs symmetrically across the wings (1, 8, 10, 17), (2, 7, 11,16), (3, 6, 12,15), 
and (4, 5, 13, 14), as shown in Figure 4. This ensures that a generator failure will not result in thrust 
asymmetry. The 1 MW generator also has four three-phase power buses, one each attached to a single EE 
tied to each of the main generators (5, 8, 11, 12) (not shown in Figure 4). Although four buses share each 
generator, the power for each bus is demanded independently up to its current limit or the total power  
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Figure 4.—SUSAN powertrain showing engine numbering and four symmetric buses 

connecting the LPS generators to the EEs. 
 
limit of the generator. The components are designed such that throughout the flight envelope, 1/3 of the 
aircraft’s thrust is supplied by the GTE and the EEs supply the remaining 2/3, which requires a large 
amount of power extraction. A small rechargeable battery is attached to each bus through a DC-DC 
converter. This battery has multiple functions related to control and operation of the aircraft, including 
providing a boost capability during climb, enabling rapid acceleration of the EEs, facilitating GTE 
operability improvements, and helping to maintain bus voltage. 

Unlike a traditional multiengine aircraft in which pilots have individual throttle levers they can 
manipulate independently, the SUSAN powertrain operation is complex, and no pilot intervention is 
permitted beyond the movement of a single throttle lever (Ref. 4).1 Furthermore, distributed propulsion 
provides enhanced maneuverability that the flight control system can leverage. These interactions require 
the control system to coordinate multiple subsystems simultaneously while respecting the constraints of 
each. This coordination optimizes overall operation, which subsequently enables potential weight 
reduction benefits. 

3.0 System Health Management 
An Integrated Vehicle Health Management (IVHM) system requires a multidisciplinary approach that 

enables automatic detection, diagnosis, prognosis, and mitigation of adverse events arising from 
component failures (Ref. 5). SAE International calls this a Self-Adaptive Health Management System, 
which they define as self-adaptive control and optimization to extend vehicle operation and enhance 
safety in the presence of potential or actual failures (Ref. 6). This is the highest of SAE’s six IVHM 
capability levels. Many other definitions of IVHM exist, including for applications to a specific 
component rather than to the vehicle as a whole and, paradoxically, those that do not require integration 
(Ref. 7). For this paper, because the scope is limited to the powertrain, the term SHM will be used to 
correspond to the SAE definition above. In the context of the SUSAN powertrain, the SHM system 

 
1Based on the current nominal concept of operations. However, this remains an area of on-going research. 
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monitors the GTE, the power system, and the EEs. While the airframe might employ structural health 
monitoring, sensor and actuator health monitoring, etc., these topics will not be discussed in this paper. 
The SHM system detects, isolates, and can help accommodate faults. It provides prognostic information 
that supports mission modification, if necessary. The SHM system supports redistribution of power to 
EEs in case of specific motor failures, and control reconfiguration in general. With SUSAN it is 
anticipated that a vast array of potential powertrain faults will be handled automatically up to the limits of 
the system. The built-in redundancy allows EE failure and potentially even a generator failure to be 
accommodated without a significant performance impact, and a GTE failure is mitigated using the 
primary batteries, although this is an emergency situation.  

The SUSAN design attempts to reduce aircraft emissions by 50 percent per passenger mile while 
retaining the size, speed, and range of a large regional jet (Ref. 1). This is achieved through a variety of 
optimizations including control approaches that enable size and weight reductions. For example, the use 
of Distributed Electric Propulsion (DEP) for maneuvering allows the rudder size to be reduced. This 
reduces not only the weight of the rudder, but that of the related tail structure and its actuators. However, 
rudder sizing and travel are typically defined by requirements for minimum-controllable airspeeds 
following an engine failure and crosswind limits for takeoff and landing (Ref. 8). Thus, any resizing must 
be accompanied by the assurance that the enabling design change, DEP in this case, will be sufficiently 
reliable that acceptable safety margins are not compromised. In this way, SUSAN trades redundancy of 
one type for that of another. Instead of having oversized parts, for example two engines each individually 
capable of safely powering the aircraft (as is the case in current aircraft), SUSAN relies on multiple 
smaller components, a complex control system to coordinate it all, and a comprehensive, robust SHM 
system to ensure highly reliable, optimized operation. 

4.0 System Capability Development 
Although the SUSAN design is still maturing, the architecture of the powertrain is essentially fixed. 

Details such as the number and placement of the EEs could change, but the generic types of SHM and 
optimization approaches being developed at this stage of the effort remain valid given any foreseeable 
structural updates. Thus, successful algorithms could be incorporated into a larger system. Several 
preliminary estimation and control optimization algorithms that address specific objectives have been 
developed and evaluated; they are described below. It is anticipated that some version of these could be 
used to support higher level functions within a comprehensive SHM and optimization system. 

A dynamic model of the SUSAN aircraft, including a detailed model of the powertrain (Ref. 9) and 
the complex control system that coordinates its operation (Ref. 2), provides the testbed for the algorithms. 
It also provides data for machine learning approaches. 

4.1 Coordinated Turn Optimization 

In the baseline SUSAN model, the integrated flight and propulsion control system commands the 
flight control surfaces, the EEs, and the GTE’s throttle to maneuver (Ref. 10). In this case, reinforcement 
learning, which works by determining the best output for a given input by observing the response of the 
environment to that output, was used to train a flight controller to perform a coordinated turn while 
minimizing control surface deflection, a proxy for minimizing drag (Ref. 11). Here the reinforcement 
approach learned how to control the rudder, EEs (as eight opposing pairs controlled differentially), and 
ailerons, while leaving the baseline flight control in place to command the elevators and throttle. The 
controller successfully learned to match relevant aircraft variables throughout the turn while minimizing 
control surface deflection without increasing thrust (power consumption). Figure 5 shows the roll, roll  
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Figure 5.—Relevant aircraft variables during a coordinated turn, comparing the baseline flight control system and the 

reinforcement learning algorithm. 
 

 
Figure 6.—Altitude and speed variation during a during a coordinated turn, comparing the baseline flight control 

system and the reinforcement learning algorithm. 
 
rate, heading, and yaw rate from the original flight control, and that obtained through machine learning. 
Roll, roll rate, and heading are very similar, although the initial excursion in the “learned” roll rate is 
noticeably less. The “learned” yaw rate is significantly more oscillatory than the baseline, though the 
magnitude of the oscillation is quite small. Figure 6 shows the variation in altitude and speed during the 
coordinated turn. The baseline control and the reinforcement learning control match quite closely, with 
little variation in either variable. However, the variation exhibited with the reinforcement learning control 
is slightly less. Figure 7 shows the rudder and aileron movement as well as the thrust from the individual 
EEs and the GTE. The “learned” rudder and aileron deviations are significantly less than those produced 
by the baseline flight control system, with the rudder remaining very near its nominal position throughout 
the coordinated turn. The fact that the “learned” rudder response was nearly zero is not surprising, the 
original flight control law has an option to vary the allocation of control authority between the rudder and 
the EEs, allowing some or all of the rudder function to be assigned to the EEs (Ref. 10). However, when 
taken in combination with the thrusts, the result is quite surprising. There are several things to notice 
about the thrusts. First, the GTE thrust in both cases is very similar, which is because it is commanded by 
the baseline flight control. Second, in both cases the average EE thrust curve tracks the GTE thrust curve, 
which is expected because the power extraction for the EEs (which is related to their thrust produced) is 
set by the power level and thus thrust of the GTE. What is quite remarkable is that the spread of the 
differential pairs is much less in the “learned” case than with the baseline control. This means that the 
reinforcement approach achieves a very similar coordinated turn to the baseline control but with both less 
rudder movement and less thrust differential, although the total thrust is essentially the same. One thing to  
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Figure 7.—Rudder, aileron, wingfan (electric engine) and GTE thrusts during a coordinated turn, comparing the 

baseline flight control system and the reinforcement learning algorithm. 
 

 
Figure 8.—Wingfan (electric engine) thrusts during a coordinated turn, comparing the baseline flight control system 

and the reinforcement learning algorithm. 
 
note in Figure 8, which is an expanded view of the lower left plot in Figure 7, is that while the baseline 
flight control provides evenly distributed EE commands, the reinforcement learning control commands to 
the differential pairs are more jumbled and actually crisscross throughout the turn. The apparent 
advantage of this specific learned result for a coordinated turn may warrant further investigation. 

4.2 Compensation of Failed EE With DEP 

The appropriate response to failures is a fundamental aspect of a health management system. 
SUSAN’s architecture provides sufficient redundancy to overcome one and potentially multiple EE 
failures. The 16 EEs are aligned, so the thrust lost due to any individual failure can be made up by 
adjusting the thrust from other EEs. This is subject to the constraint that any thrust imbalance created by 
the failure must be compensated by ensuring that the torque on the aircraft is maintained. Furthermore, it 
must be accomplished within the bounds of powertrain operation, specifically that the EEs stay within 
their operating range and that the power draw stays within its acceptable range. 
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Figure 9.—Reinforcement learning control and baseline control with an EE failure. The baseline control without 

reallocation of thrusts to the remaining wingfans (EEs) must compensate with the other effectors. 
 

 
Figure 10.—Reinforcement learning control and baseline control with an EE failure. The baseline control without 

reallocation of thrusts to the remaining EEs allows much larger excursions in aircraft variables than the 
reinforcement learning control. 

 
Here again reinforcement learning was used to develop a flight controller that accommodates an EE 

failure, which is assumed to have been detected and isolated. Figure 9 compares the reinforcement 
learning control (with reallocation of the thrust from the failed EE (#1 in Figure 4) to the working EEs) to 
the baseline control (no reallocation). Note that the baseline control must use the flight control surfaces 
and engine thrust to compensate for the lost thrust and resulting thrust imbalance. Figure 10 shows how 
the reinforcement learning control greatly reduces the excursions of certain aircraft variables from steady 
state compared to the baseline control. 

There are two interesting observations to be made here. First, the specific reinforcement learning 
implementation, in which the remaining EEs are each assigned a portion of the lost thrust according to a 
“learned” redistribution (Ref. 11), resulted in evenly spaced thrust curves, much more reminiscent of the 
baseline control than of the “learned” differential pair commands in Figure 8. Second, while data-driven  
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Figure 11.—Example using DEP for turning. Here EEs 

#15 and #16 (Figure 4) fail at 18 s, resulting in thrust 
reallocation to the remaining EEs. 

 
approaches offer advantages for control applications, for example, capturing unmodeled dynamics, using 
the simplest approach is often best (Ref. 12). The control reallocation problem in particular lends itself 
well to a model-based approach known as a control mixer, which has a history of use in the area of flight 
control reconfiguration in response to actuator failures (Ref. 13). Not surprisingly, the results of the two 
approaches are similar. Figure 11 shows the notional EE commands for a coordinated turn after a double 
EE failure (#15 and #16 in Figure 4), which are assumed to have been detected and isolated. The lower 
plots show how, using those thrust commands, thrust would be maintained and the imbalance eliminated. 
Because the results in Figure 11 are based on commands, they do not account for the aircraft dynamics 
nor the resulting control surface compensation. However, it is clear from the matching that any 
disturbance would be minimal. 

4.3 EE String Efficiency Estimation 

So far, the example algorithms have demonstrated control optimization (not strictly SHM) and control 
reconfiguration in response to a failure. This example investigates estimation of the efficiency of an 
electrical string associated with an individual EE. A string comprises all components from the main 
generator attached to the GTE to the EE motor (Figure 3). For this effort, a string was modeled using the 
Electrical Modeling and Thermal Analysis Toolbox (EMTAT) (Ref. 14). The EMTAT blocks were 
parameterized to represent the type of electrical power system components anticipated to be available at 
the time SUSAN would be entering into service. For feasibility, these components are each projected to 
require percent efficiencies in the high 90s (Ref. 15). Thus, the parameterization resulted in an efficiency  
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Figure 12.—Example using DEP for turning accounting 

for the efficiency of each string. Here EEs #15 and #16 
(Figure 4) fail at 18 s, resulting in thrust reallocation to 
the remaining EEs. 

 
of the entire string generally above 90 percent, with variation assumed due to manufacturing differences 
and other factors. A deep learning artificial neural network was trained to estimate the string’s efficiency 
from sensed variables using data generated from the model. The estimation accuracy was found to be 
within 1 percent. 

This information can be used to support the previously discussed algorithms. With knowledge of the 
efficiency of each EE string, the healthier strings, i.e., the ones that require less overall power and will 
therefore cause less wear and tear on the GTE, can be utilized more heavily. Figure 12 shows the same 
scenario as Figure 11, but accounts for the efficiency of each string. One can immediately see that 
initially, before the failures, the EE thrust commands are separate, rather than being all the same. Also, 
they are not evenly spaced, implying that the least efficient strings are penalized in favor of the more 
efficient strings. Even with this skewed EE utilization, the total thrust and net torque on the aircraft match 
that for an ideal coordinated turn. 

5.0 Discussion 
The SUSAN powertrain presents new problems in SHM. Health management has been applied to 

GTEs for decades and is a relatively mature field (Ref. 16), but the new electrified architectures introduce 
more failure modes due to the added complexity and number of components. The elements of the 
powertrain tend to be highly coupled so that the failure of one component could have a cascading effect 
throughout the rest of the system (Ref. 17). New SHM algorithms that address these issues are necessary 
to achieve the level of safety required for certification. 
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The example algorithms presented above are all related to DEP in some way. They directly address or 
support mitigation of an EE failure. Because of the redundancy in the SUSAN powertrain design, an EE 
failure will be considered minor by the FAA as long as continued safe operation, including in-flight 
handling/controllability and maneuvering, is not impacted (Ref. 18). Figure 9 and Figure 10 show the 
difficulty the baseline flight control has with just a single EE failure, while Figure 11 and Figure 12 
demonstrate the ease with which multiple EE failures are accommodated, up to the limits of the 
powertrain. These examples highlight the need for and utility of a health management system, especially 
as it relates to certification requirements. 

6.0 Conclusion 
This paper described some preliminary SHM algorithms developed for the SUSAN concept aircraft 

and demonstrated their use. The examples leveraged the redundancy within the powertrain to achieve 
continued safe flight when a failure occurred. The complexity of the SUSAN powertrain and the 
interdependence of the parts means that the pilot will likely have no control over individual subsystems, 
so powertrain SHM is critical to the safe operation of the vehicle. Rather than relying on oversized parts 
to compensate for a failure, as is done for turbofan engines in today’s aircraft, component size is 
minimized where possible to achieve the weight savings necessary to meet the fuel consumption goals. 
The function of these undersized parts is supported by other features; for instance, the rudder is aided by 
DEP, and the engine is augmented by battery power to the EEs. This redundancy, reinforced by a robust 
health management system, should make the overall powertrain operation sufficiently reliable to ensure 
the SUSAN concept’s feasibility. 
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