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Abstract 
Gas turbine engines are designed with sufficient margin to prevent stall under normal operating 

conditions throughout their life. This compromise ensures that during rapid accelerations, compressor 
operation remains stable, but at the cost of efficiency and thrust responsiveness. The design margin 
encompasses multiple sources of uncertainty and systematic deviances from the operating line, the largest 
of which is the transient allowance. This set-aside accounts for the temporary incoordination of the engine 
spools during an acceleration while still enabling it to meet the certification requirement to accelerate 
from low to high power within a specified time, and without experiencing overtemperature, surge, stall, or 
other detrimental factors. Electrification of the powertrain provides the opportunity to address this reserve 
and truly optimize the design. The addition of electric machines inherent in hybrid propulsion concepts 
offers a means to interact with the engine shafts such that the necessary margin can be reduced, which can 
positively impact the engine design. By adjusting the amount of power extracted from or injected to the 
engine spools by the electric machines during transient operation, excursions from the operating line can 
be minimized. Past work using a dynamic engine model has shown that optimization of the fuel flow 
schedule during acceleration can reduce the required margin while still meeting the time requirement, and 
results are further improved when combined with power injection and extraction. The current work uses 
machine learning through a genetic algorithm to address the problem holistically by concurrently 
optimizing the electric machine power command and fuel flow acceleration schedule using an updated, 
higher fidelity version of the original engine model. 

1.0 Introduction 
The FAA requires testing to certify that traditional commercial turbofan engines can accelerate from 

idle to high power within a specified time, and additionally that the engine can accelerate without 
experiencing overtemperature, surge, stall, or other detrimental factors (Ref. 1). This means that the 
engine controller must be designed to achieve a minimum performance in terms of transient response, 
while protecting engine operability by ensuring safe transition during large throttle changes. In addition, 
the controller must be designed such that it will maintain these standards throughout the life of the engine, 
even though the engine is subject to normal wear and tear that makes it more susceptible to stall and 
overtemperature as it ages. This type of robust design essentially guarantees effective engine operation 
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between overhauls under normal use. It is common practice to limit the acceleration of turbofan engines 
to a standard profile in multiengine aircraft, one that even the most deteriorated engine can achieve, in 
order to reduce the impact of mismatched engines and thereby minimize the potential for yaw on take-off 
(Ref. 2). 

The High-Pressure Compressor (HPC) is designed such that the operating line is far enough from the 
stall line to ensure that it will never stall under normal operation; this distance, called the stall margin 
(SM), is defined in Figure 1. The required stall margin consists of a stack-up of several components, the 
largest of which is the transient allowance, i.e., the amount set aside for the temporary stall margin 
decrease due to transient operation. Reference 2 lists the contributors to the HPC stall margin worst case 
stack-up, i.e., the various factors that must be accounted for to ensure that the engine does not stall on 
acceleration; they are shown in Table I. The total of 24.4 percent indicates the distance the designed 
steady state working line must be from the stall line in order to ensure safe operation of a typical civil 
aero-engine HPC throughout the life of the engine under normal use. Some of the components of the 
stack-up are random, the remaining are systematic deviances related to deterioration or type of operation. 
Potentially, some of the latter group can be estimated. Algorithms such as weighted least squares and 
Kalman filters are used for these tasks (Refs. 3 and 4). This type of information enables the required stall 
margin reserve to be reduced because the portion required for each component of the stack-up that is 
estimated will usually be less than its corresponding worst case (three sigma) stall margin set-aside. This 
means that it is known with some confidence that the whole reserve is not required. 
 

 
Figure 1.—Pressure Ratio (PR) of HPC vs. Mass Flow 

Rate, showing how Stall Margin (SM) is defined. 
 

TABLE I.—EXAMPLE OF STALL MARGIN STACK-UP FOR THE HPC 
Cause Systematic 

deviances, 
percent 

Random 
variances, 

percent 
New production engine-to-engine working line variation  0 ±1.5 
New production engine-to-engine stall line variation 0 ±4.0 
In service working line deterioration –2.0 ----- 
In service stall line deterioration –4.0 ----- 
Control system fuel metering, and other actuators 0 ±1.0 
Reynolds number effects –1.0 ----- 
Inlet distortion –1.0 ----- 
Transient allowance –12 ----- 
Total –20 ±4.4 



NASA/TM-20240000148 3 

 
Figure 2.—Examples of electrified powertrain architectures. 

 
Electrification of the aircraft powertrain provides fuel burn and emissions benefits when compared to 

the state-of-the-art, so there is a strong push in the industry to integrate electric machines (EMs) and 
thrust-producing fans with gas turbine engines (Figure 2). Of particular interest are the parallel hybrid and 
series/parallel partial hybrid architectures, which incorporate both a thrust-producing gas turbine engine 
and electrical energy storage. Nominally, EMs are connected to the engine shafts to generate power that is 
used to drive fans for producing thrust. However, the existence of the EMs enables dynamic interaction 
beyond that of a load. Taking advantage of the energy storage device to source or sink power, the fans can 
essentially be decoupled from the engine. By using the Turbine Electrified Energy Management (TEEM) 
Control algorithm to coordinate the loads on the shafts during an engine transient, the excursion toward 
stall can be greatly decreased (Refs. 5 and 6). This means that the potential exists to reduce the transient 
portion of the design stall margin. 

The rest of this paper is organized as follows. Section 2.0 covers previous work using genetic 
algorithms to minimize transient excursions from the operating line. Section 3.0 describes how the engine 
model was updated for the present effort. Section 4.0 details the optimization approach used here while 
Section 5.0 presents results. These are followed by conclusions in Section 6.0. 

2.0 Past Work 
Previous work utilized genetic algorithms to develop fuel flow and power schedules that minimized 

the transient excursion from the operating line in an electrified gas turbine engine model. This section 
describes the engine model used in that previous work, which was subsequently updated as explained 
later, and the results of the prior work. 

2.1 Engine Model 

The testbed for the previous work was the NASA concept Advanced Geared Turbofan 30,000 
(AGTF30) (Ref. 7). The AGTF30 is a model of a conceptual two-spool geared turbofan capable of 
producing ~30,000 lbf of thrust at sea level static (SLS) conditions. The AGTF30 is meant to represent 
technology that will be available in 2035; it includes features such as a compact gas turbine core and a 
variable area fan nozzle. The engine model is coded in the MATLAB/Simulink® environment using the 
NASA-developed Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS) (Ref. 8). 
The model includes a realistic full-flight envelope controller (Ref. 9) that contains schedules for the   
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variable area fan nozzle and variable bleed valve. It also has closed-loop gain-scheduled Proportional-
Integral (PI) controllers for the fuel flow rate that include a nominal corrected fan speed controller and 
various limit controllers. Among the limit controllers are limiters for over-speed and over-temperature 
conditions. The model also includes acceleration and deceleration limit logic, implemented as a maximum 
Ratio Unit (RU) limit schedule for acceleration and a minimum RU limit schedule for deceleration. The 
RU schedules are defined as fuel flow divided by static pressure at the high-pressure compressor exit 
(wf/Ps3). The various fuel flow rate commands go through a max-min decision tree to determine which 
command to use. Health parameters in the engine model set the health state of the turbomachinery 
components. Health parameters are modifiers that shift the flow capacity and efficiency of the 
compressors and turbines based on degradation. The engine model was subsequently updated to include 
an electrical power system to implement TEEM (Ref. 6). 

2.2 Review of Prior Study 

Previous work used genetic algorithms to optimize the fuel flow input profile during transients, from 
which an acceleration schedule was derived (Ref. 10). Subsequently, this optimized fuel flow input 
profile was leveraged in the optimization of TEEM control using electric machines interfaced with each 
engine shaft (Ref. 11). This work demonstrated how, using the electrified AGTF30 model, it is possible to 
collapse the transient response onto the operating line while still achieving an acceptable thrust response. 
It also demonstrated the tradeoffs between electric machine size, thrust responsiveness, and transient 
operability. It should be noted that originally TEEM was implemented as a closed-loop controller that 
attempted to maintain steady-state shaft speed versus fuel flow conditions during a transient (Refs. 5 and 
6). While this approach demonstrated the utility of TEEM, it is not inherently optimal, and it requires the 
addition of logic for activation of the control. In References 10 and 11, an optimal solution was explicitly 
sought, subject to constraints placed on the fuel flow and power profiles, and the transient operability was 
shown to improve. The constraints on the input profiles were guided by understanding developed through 
observations from studies such as in References 5 and 6; furthermore, the constraints were justified to 
make the optimization problem more practicable. 

The current work builds on these past efforts. Machine Learning (ML) is used to alter the fuel 
schedule and allows similar torque shape adjustments into the TEEM control as a way to further modify 
the response. Some key differences in the current study are the addition of physical effects and the 
simultaneous optimization of both fuel flow rate and electric machine power inputs. 

3.0 Model Updates 
The new engine model incorporates two major updates that impact the results: heat soak and tip 

clearance. 

3.1 Heat Soak 

Heat soak refers to heat transferring between the gas path and the engine’s metal parts. This 
phenomenon can have a noticeable effect on engine performance. During an idle-to-full-power transient, 
for instance, the engine components will heat up, absorbing typically 30 percent of the excess fuel energy. 
Heat soak is especially significant on hot restart and cold soaked starts, where, respectively, the heat 
transfer has the effect of adding fuel or reducing fuel flow (Ref. 2).  
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3.2 Tip Clearance 

The second major addition is turbine tip clearance modeling. The performance of a gas turbine engine 
is sensitive to the distance between the tips of its high-pressure turbine (HPT) blades and the turbine 
shroud that seals the gas path. This gap is known as the tip clearance. Although the low-pressure turbine 
and the compressors are also susceptible to the inefficiencies brought on by excessive tip clearance, HPT 
tip clearance typically has the greatest impact on engine performance. Poor sealing of the turbine blade 
tips can lead to flow leakages that reduce work extraction. Blade tip vortices can result as well, leading to 
flow interactions that could reduce turbine efficiency and flow capacity, as well as increase noise. In 
general, reducing the HPT tip clearance will improve turbine efficiency thus reducing fuel burn, and 
because the turbine is able to extract more work from the flow, the turbine inlet temperature and exhaust 
gas temperature (EGT) are reduced. For a large commercial turbofan engine, a change of 10 mils of HPT 
tip clearance correlates to approximately a 1 percent difference in specific fuel consumption at cruise and 
a 10 °C (18 °R) difference in exhaust gas temperature at takeoff (Ref. 12). Increased turbine efficiency 
equates to lower fuel consumption, and turbine temperature reduction leads to slower degradation of the 
gas path parts and longer time on wing for the engine. The model incorporates a fairly standard 
implementation of an active thermal tip clearance control that uses bleed air to heat or cool the turbine 
case, causing it to expand or contract (Ref. 13). 

Both heat soak and tip clearance modifications utilize a heat transfer extension to the original 
AGTF30 model (Ref. 14). This model extension allows the relevant physical parts of the engine to be 
modeled in a way that represents the relevant geometry of the engine and can interact with the appropriate 
gas path variables. This enables the modeling of not only the heat transfer, but also the resulting changes 
in clearance due to thermal expansion and contraction. Additionally, turbine blade growth due to 
centrifugal forces at high rotational speed, which further impacts tip clearance, is incorporated in the 
model (Figure 3) (Ref. 15). 

To accommodate the modified dynamics of the engine model, the PI control gains were updated. 
 

 
Figure 3.—Simplified schematic of the tip clearance 

model showing the structural pieces (rotor disk, 
blade, shroud/case) and the gas path temperature. 
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3.3 Accommodations for Updated Model 

The new features added to the model clearly increase its sensitivity to temperature, including ambient 
temperature. This means that there is the potential for great performance variation between hot and cold 
day starts, which is certainly a realistic situation. For that reason, it is common practice at startup to hold 
the engine at idle to allow thermal soakage (Ref. 2). This brings the internal components to thermal 
equilibrium at a temperature higher than ambient, and therefore somewhat mitigates the effects of 
variation in ambient temperature. In the simulation, the metal temperatures are initialized to the values 
they would reach assuming sustained operation (at idle in this case) until thermal steady state is reached. 

Furthermore, to simplify and keep the analysis more in line with certification practice, the testing here 
is performed on a new, undeteriorated engine at sea level static (SLS) standard day (59 °F) conditions 
(Ref. 16). The reference also mentions under 14 CFR § 33.89 - Operation Test, which incorporates the 
engine response requirements (14 CFR § 33.73 - Power or thrust response), that the certification test suite 
should include low temperature and high temperature tests (fluids and carcass) for starting and operating 
the engine. These tests are apparently meant to mimic ambient temperature variation, although as 
mentioned above, the prolonged idling at startup heats the internal components anyway before transient 
operation is attempted. 

4.0 Optimization Approach 
In addition to the model updates mentioned above, the other major difference from the previous work 

is that the fuel flow schedule and the torque input were optimized simultaneously rather than sequentially. 
As in the previous work, this effort utilized a genetic algorithm for optimization. This section describes 
the current approach, borrowing heavily from Reference 10 but updated to reflect the simultaneous 
optimization of the two inputs. 

A genetic algorithm is a type of machine learning-based optimization scheme built upon the 
biological principles of natural selection and fitness (Ref. 17). Genetic algorithms tend to be less likely to 
converge to local minima or maxima than gradient based methods and are substantially more efficient 
than brute force methods. A population comprises numerous solution realizations, each with different 
parameters. Each individual solution is evaluated based upon a fitness function. The members of the 
population compete for survival into the next generation and for participation in reproduction. The genetic 
algorithm utilized in this study has the primary components of elitism, carry-over (replication), 
reproduction (crossover), and immigration. The primary sub-components of the genetic algorithm are 
selection, mutation, and duplicate removal. Each of these components and sub-components will be 
described in the following paragraphs. The sub-components are described first to set the foundation for 
describing the components. 

The two selection methods used in this application were random and rank-based selection. In random 
selection, all members have the same probability of being chosen. In contrast, rank-based selection 
utilizes the pareto distribution (Ref. 18) and allows the user to specify parameters that define the exact 
shape. For instance, the 80 to 20 rule (Ref. 18) can be applied by specifying that the probability of 
selecting a member from the top 20 percent will be 80 percent. 

Mutation creates a modified version of a member of the population. It will select the number of 
parameters to mutate based on specified probabilities and then will randomly select parameters to mutate. 
Finally, those parameters are mutated within specified bounds using a random distribution. 

Duplicate removal applies whenever a duplicate shows up in the population. This feature will remove 
the duplicate and replace it with a new member that is generated within the specified parameter bounds 
using a random number generator. 
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Elitism involves advancing a set number of the most fit individuals to the next generation. Elitism 
seeks to preserve the best solutions and enables them to take part in finding better solutions through the 
functions of reproduction and mutation. In addition to advancing the elite, mutated variants of the elite 
may also be added to the next generation. This action promotes diversity but also exploits the high fitness 
of the elite. Inputs include the number of top members of the population to include in the elite, the 
number of the elite to mutate, the bounds for mutation, and the probability of mutating any number of 
parameters up to the full number of parameters. 

The carry-over component of the algorithm selects members of the population, outside of the elite, to 
advance to the next generation. Mutation can apply as these members are carried to the next generation. 
The inputs include the number of members to carry over, the method of selection, inputs associated with 
the method of selection, and inputs associated with mutation including the bounds of mutation, the 
probability of a mutation occurring, and the probability of any number of parameters being mutated. 

Reproduction consists of the combining of two members of the population to produce one or more 
new members of the population in the next generation. The offspring will derive its parameters from its 
parents. There are three methods for assigning parameters. The first is to inherit the parameter from one 
of the parents. The second is to average the parameters of the parents. The final is to randomly select a 
value for the parameter between the values of the parameter for the two parents. The probability of each 
method being used can be specified. In this application, each method had an equal chance of use. The 
parents are chosen based on the specified selection method, as is the number of offspring that a pair of 
members will produce. The combined fitness of the parents can be utilized to determine the number of 
offspring. Limits can be set for the number of times a single member of the population can participate in 
reproduction. In this application the number of offspring is specified. After the reproduction function is 
carried out, the offspring can be mutated given inputs about the probability of mutation, the bounds of 
mutation, and the probability of mutating any number of parameters. 

Immigration refers to the introduction of new members to the population that will appear in the next 
generation. The new members are generated within the specified parameter bounds using a random 
number generator. This feature helps to explore the solution space more thoroughly. 

In this application, the members of the population in the genetic algorithm define two parameters 
simultaneously: a RU limit schedule that defines the maximum ratio unit limit as a function of the 
corrected fan speed, and a power schedule profile for the transient. This is in contrast to previous works 
that separately optimized for populations of fuel flow commands and power schedules. The RU schedule 
was optimized rather than the fuel flow rate profile due to the incorporation of heat soak effects, which 
require additional fuel flow during the acceleration to make up for energy lost to the engine structure. The 
fuel flow rate profile continues to change beyond the fan speed transient, decreasing gradually as thermal 
equilibrium is achieved. The altered variation in the fuel flow rate response made it a bad candidate for 
optimization and thus the closed-loop fan speed set-point controller was leveraged, and the RU schedule 
was optimized directly. The RU limit schedule input profile is defined by nine points and correlates to the 
corrected fan speed. The end points of the schedule are fixed, and the interior points can be modified by 
the optimizer. The power schedule is defined by nine points between the maximum and minimum power 
level. The time at each data point in the profiles is fixed. 

The variables in the optimizer associated with the RU schedule include seven values that define the 
maximum RU value at seven static corrected fan speeds between the minimum and maximum corrected 
fan speed values. Bounds are placed on the RU values to constrain the search space to reasonable 
solutions. 
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For the electric machines, the power input profile is defined by nine points between zero and the 
maximum power. To simplify the input profile and make the derivation of a practical schedule possible, 
the profile was constrained to start at full power at the beginning of the transient, remain there for some 
duration of the desired thrust response time, and then decrease monotonically until the power input 
returned to zero at the prescribed thrust response time. The variables in the optimizer include the fraction 
of the transient time spent at maximum power and the nine values between 0 and 1, Y, that are used to 
define the change in power between each of the nine data points that define the power profile as its 
magnitude decreases from its maximum value to zero. The time of each data point in this portion of the 
profile is spaced evenly. The EM power is a function of Y.  

 1 9
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−

=

= −
∑
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In Equation (1), p is the EM power, i is the index of the time interval that the EM power change 
occurs over, and the subscript “max” refers to maximum power capability of the EM, 750 hp in this case. 
For i = 1, the pi-1 term is equal to pmax. Note that this results in a time sequence, but it could be converted 
to a schedule that is a function of corrected fan speed error, as was done in Reference 11. 

The optimizations consisted of simulations of the nonlinear AGTF30 model with different control 
inputs. The population was initialized using a random number generator to create 15 RU schedules and 
15 power input profiles. The genetic algorithm was run for 10 generations. For each generation, the 
fitness of each combination of RU schedule and power input profile was evaluated (225 combinations in 
total in each generation). This entailed running a transient simulation and calculating the fitness for each 
member. The fitness, f, is defined in Equation (2) where TSU is the transient stack usage, i.e., the 
excursion from the operating line. 

 1f
TSU

=   (2) 

The thrust response time for an acceleration is the time to go from idle thrust to 95 percent thrust, 
which must not exceed 5 s. The TSU is a metric developed to quantify operability margin. The metric is a 
single value that quantifies the operability margin for a given transient. The metric is defined in 
Equation (3): 

 100%SS

stall SS

PR PRTSU max
PR PR

− = × − 
  (3) 

PR is the pressure ratio, PRSS is the pressure ratio at the same corrected flow rate along the steady-
state operating line, and PRstall is the pressure ratio at the same corrected flow rate along the stall line 
(see Figure 1). Each of these variables represents a time sequence throughout the transient, so TSU equals 
the maximum value achieved by Equation (3) when evaluated at every time step. The TSU metric 
quantifies what portion of the compressor operability stack is used during the transient. By quantifying 
the operability margin with a single value for the entire transient using map data that considers the stall 
line and steady-state operating line, this metric summarizes the compressor operability without some of 
the nuances of stall margin. It is noteworthy that the fitness function could be modified to utilize other 
operability metrics, such as minimum stall margin, or combinations of various operability metrics. 
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The population was initialized using the optimal RU limit schedule profile and optimal power 
schedule profile from Reference 11 as one of the solutions. The “overall fitness” for each RU limit 
schedule member in the population was calculated to be the average fitness of that member across all 
power schedules. This means that the “overall fitness” for any given RU limit schedule member would be 
the sum of all fitness values of pairs that contain that RU limit schedule member, divided by the number 
of pairs that contain that RU limit schedule member. Similarly, the “overall fitness” for each power 
schedule member in the population was calculated to be the average fitness of that power schedule across 
all RU limit schedules. Then, the genetic algorithm used these “overall fitness” values as the fitness value 
for that member of the population to do any transformations, as it normally would. 

5.0 Results 
The optimization was carried out as described in the previous section. The genetic algorithm (GA) 

simultaneously identified an optimal RU schedule for accelerations and a power input profile for the high-
pressure shaft (HPS) EM at SLS. The algorithm returned the same results for the final three generations, 
so it was considered to have converged. These results obtained with the updated model that includes heat 
soak and turbine tip clearance (TC) features are compared to the previous results (Ref. 11). 

Figure 4 compares the maximum RU schedule that resulted from the GA optimization with and 
without heat soak and HPT TC effects. As can be seen, the two schedules are very similar. The schedule 
derived with heat soak and HPT TC effects is slightly more aggressive, particularly at low to moderate 
fan speeds. This could be due to the heat soak effects, which during the acceleration removes energy from 
the flow and demands additional fuel to accelerate the engine shaft to the desired setpoint in the same 
amount of time. Figure 5 shows the fuel flow rate and HPS EM power inputs. The new fuel flow rate is 
more aggressive on the acceleration and overshoots the final steady-state value. The overshoot is the 
result of heat soak as the engine must compensate for lost energy from the fluid into the engine structure 
through the combustion of additional fuel. The HPS EM power profiles are very similar. The primary 
reason for this is that the EM is saturated in both cases. If the EMs were unconstrained, more deviations 
could have been present.  
 

  
Figure 4.—RU acceleration schedule: original 

(solid blue), new (dashed red). 
Figure 5.—Fuel flow rate and HPS EM power 

during a rapid acceleration. 
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Figure 6 shows the corrected fan speed, engine pressure ratio, and thrust responses. The new results 
have a more aggressive response with the same thrust response time as the results from Reference 11. It is 
hypothesized that the more aggressive response is related to the incorporation of heat soak and the need to 
increase fuel injection to accelerate the engine. 

Figure 7 and Figure 8 show the temperatures and pressures at various locations in the engine. Here, 
the heat soak and TC effects are more directly observable. The heat soak impact is most evident in the 
temperature responses at the exit of the low-pressure compressor (LPC) (station 25), exit of the HPC 
(station 3) and most notably the exit of the low-pressure turbine (LPT) (station 5). Steady-state 
temperature discrepancies are also noted for stations 4 (HPT entrance), 45 (HPT exit), and 5 which are 
attributed to the HPT TC effects. This is primarily due to changes in HPT efficiency as a result of changes 
in HPT tip clearance. Similar results are reflected in Figure 8 with the pressures.  

Figure 9 shows the HPC map with running lines for accelerations with and without the heat soak and 
TC effects. Also shown is the steady-state operating line in black, mostly covered by the transient running 
line without heat soak and TC effects. The deviation from the steady-state operating line with heat soak 
and HPT TC effects is more pronounced, but the results are still good. The additional movement toward 
the stall line is attributable to the more aggressive fuel flow input. 
 

  
Figure 6.—Corrected fan speed, engine pressure 

ratio, and thrust responses. 
Figure 7.—Temperature responses at various stations 

within the engine. 
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Figure 8.—Pressure responses at various stations 

within the engine. 
Figure 9.—HPC map showing original (solid blue), new 

(dashed red). The black dashed line is the steady 
state operating line. 

6.0 Conclusions 
The current work differed from past work in two ways: first, it used an updated model with heat soak 

and tip clearance effects, and second, it optimized the fuel flow and torque schedules simultaneously 
rather than sequentially. By making these two changes together, it makes it difficult to say which had the 
greater impact on the resulting schedules. However, when comparing the transient results for the two 
cases, it appears that the heat soak and tip clearance effects were significant, while the simultaneous 
optimization had less effect. The RU schedule generally demanded more fuel for a given pressure, which 
is expected when heat soak is taken into account because in the simulated scenario it removes energy 
from the flow. The power schedule was only slightly changed, and only at the end of the transient. The 
updated model’s transient response is quite different from those of the original model, although the rise 
time requirement is still met. While the new RU schedule is similar to the previous one, it appears to be 
slightly more aggressive, likely due to heat soak effects. Overall, the genetic algorithm performed 
successfully. The solution to which it converged was able to suppress the HPC transient excursion away 
from the operating line, although the deviation was larger than that for the original model, which did not 
incorporate heat soak. This is explained by the presence of the thermal transients and is probably more 
realistic, but that is not to say that a better solution does not exist. It is possible that the genetic algorithm 
would have found a better solution given more generations and a larger population size. Furthermore, the 
way the TEEM control optimization was constrained severely limited its ability to search for other 
solutions, although the power extraction limit was by far the most restrictive constraint on TEEM; having 
a larger EM would allow true torque shaping and thus could produce drastically different results, but a 
larger EM is also heavier. The ultimate goal of reducing the required transient component of the stall 
margin is that it could enable new, lighter engine designs without as much built-in margin. This highlights 
a major advantage of a data-driven solution that was not addressed here: estimation of other components 
of the stall margin stack. Machine learning’s ability to extract patterns from data could allow an algorithm   
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to estimate an engine’s actual stall margin, accounting for the uncertainties that comprise the stall margin 
stack. This could be used not only to develop highly robust acceleration schedules, but also for stall 
avoidance as part of an advanced control scheme. 
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