National Aeronautics and Space Administration

heley Research

Design of a Propeller with Global Minimum Torque

Matt Gray, Electronics Engineer, NASA Langley Research Center Caleb Robb, Aerospace Engineer, Oklahoma State University Todd Ferrante, Mechanical Engineer, Analytical Mechanics Associates Al Bowers, Chief Scientist (Retired), NASA Armstrong Flight Research Center

> AIAA SciTech 2024 January 12, 2024

Problem/Need

Problem/Need

- Advanced Air Mobility (AAM)
 - Improved transportation method for public
- Urban Air Mobility (UAM) vehicles
 - Technological viability
 - Public acceptance

≻Goal/Gap

- Improve Noise Pollution
- Improve Vehicle Efficiency

Fig. 1: AAM Futuristic City-scape [1]

Background/Motivation

- Prandtl Wing "Bell" Span-load Theory
 - Developed by Al Bowers
 - Non-elliptical span-loading of wings
 - References:
 - NASA/TP-2016219072
 - NASA/TM-20210014683
 - NASA Patent: 9,382,000
 - NASA Patent: 10,414,485

160069

Fig. 3: Comparison of forces between traditional elliptical spanload (a) and Bell "Prandtl" span-load (b) [3]

Background/Motivation

Adapted to propeller design

- Power In / Thrust Out
 - Total Thrust Kept Constant → Minimize Total Torque
 - Calculus of Variations Optimization
- Global 3D solution of minimum torque
 - Max lift coefficient inboard along blade-span then taper at ~72% span to ~20% lift
 - Reduced blade tip loading → reduces large shear layer intensity [4] → reduces noise

Trade Robustness for Efficiency

Fig. 4: Lift coefficient (a) and blade twist (b) characterization of 3D optimized propeller lift circulation

Design Methodology

Baseline Comparison Design:

Minimum Induced Loss (MIL)

Constants (MIL vs Novel "Prandtl"):

- Diameter
- "Pitch"
- Advance Ratio Design Point
- Chord Distribution
- Camber Distribution of Airfoil
- Material and Manufacturing
- Drive System (Motors, ESCs, mounts, etc.)
- Instrumentation

>Differences (MIL vs Novel "Prandtl"):

Twist Distribution (C_L / AOA)

Design Methodology

Novel "Prandtl" Blade Design (Incremental Approach)

- Phase I
 - Bowers' C_L Optimization \rightarrow Blade Twist
 - Constant Chord
 - Constant Airfoil Distributions
- Phase II
 - Bowers' C_L Optimization \rightarrow Blade Twist
 - Constant Chord
 - Non-Constant Airfoil Distributions
- Phase III
 - Bowers' C_L Optimization \rightarrow Blade Twist
 - Non-Constant Chord
 - Non-Constant Airfoil Distributions

Phase I Design

Airfoil Choice

- Optimized for Inboard Section
 - Near Max C_L Operating Condition

Two Standard Options

- NACA 6412
 - $_{\odot}$ Slightly higher max C_L
- MH 115
 - Good Stall Characteristics
 - $_{\odot}$ Higher max C_L/C_D

Fig. 5: $C_L vs \alpha$ (a) and $C_L/C_D vs \alpha$ (b) characterization of NACA 6412 vs MH 115 Airfoils

Phase I Design

- **Parameters**
 - 2-Bladed
 - 18-inch Diameter
 - Advance Ratio Design Point
 - *0.4*
 - RPM Design Point
 - **3000**

Freestream Velocity Design Point

- 9.144 m/s
- Blade Twist Based on Bowers' C_L Optimization
- Constant Chord
- Constant Airfoil

Fig. 6: XROTOR Representation of Phase I Propeller

Airfoil Choice

- Decreasing Camber for Tip Airfoil
- Non-linear Transition from Root Airfoil to Tip Airfoil
- Less Twist Necessary at Tip
 - Less Cambered Airfoil Reduced Tip Loading Instead of Angle of Attack (Twist)

Fig. 7: Airfoil Distribution of Phase II Design: Inboard, Non-linear Transition, and Outboard Airfoils

Phase II Design

Parameters

- 18in (Same) Diameter
- Nonlinear Airfoil Distribution
- Exchanging Max C_L for Twist

Fig. 8: C_L (a) and blade twist – β (b) of Phase II Design

Phase III (Final) Design

Parameters

- 18in (Same) Diameter
- Same Airfoil Distribution
- Chord Distribution Changes

Conclusions

1/12/2024

Efficiency Increase: ~2%

Fig. 9: Chord Distribution of Phase III Design

Table 1: 3000 RPM XROTOR Results for MIL (Baseline) and Prandtl (Novel) Propellers

	MIL	Prandtl
Thrust (N)	19.8	19.4
Torque (Nm)	1.02	0.98
C _T	0.14802	0.14468
C _P	0.10447	0.10056
Efficiency	0.5667	0.5754

Phase III (Final) Design Summary

Fig. 10: Final (Phase III) Design of Prandtl and MIL propeller (a) Coefficient of Lift (C_I) distribution, (b) blade twist (β) distribution, (c) airfoil distribution, and (d) chord distribution A VA

Combination Designs

Back off "100%" solution

- Design in more robustness
- Percentage between MIL and Prandtl blade twist along blade span

≻7 Designs:

- 100% MIL (baseline)
- 100% Prandtl
- Combo 1: 50% Prandtl / 50% MIL ("5050")
- Combo 2: 60% Prandtl / 40% MIL ("6040")
- Combo 3: 70% Prandtl / 30% MIL ("7030")
- Combo 4: 80% Prandtl / 20% MIL ("8020")
- Combo 5: 90% Prandtl / 10% MIL ("9010")

Fig. 11: Tip blade twists of MIL (purple) to Prandtl (blue) propeller blades with combo blades in-between.

Results (Final Design)

Advance Ratio Sweep – Prandtl, MIL, and Combo Blades 3000 RPM for All Runs

Fig. 12: Efficiency, C_P, and C_T vs Advance Ratio of MIL, Prandtl, and all Combo Propeller Designs

Results (Final Design)

Advance Ratio Sweep – Prandtl Only 2000, 3000, 4000, 6000, 8000 RPM

Fig. 13: Efficiency, C_P, and C_T vs Advance Ratio of Prandtl Design and Various RPMs

Future Work

- Airfoil Choice for Full-Scale → Not as Concerned with Reynold's Number Properties
- Optimize Chord Distribution for Efficiency/Acoustics

CFD Analysis of Propeller Blades to Determine Flow Field

Acoustic Wind Tunnel Testing

- Low Speed Acoustic Wind Tunnel (LSAWT) at NASA Langley
- Real-world Testing and Applicability of Propeller
 - Robustness vs Efficiency Tradeoff

[1] NASA RVLT Project (<u>https://www.nasa.gov/directorates/armd/aavp/rvlt/</u>)

[2] North, David, D., Busan, Ronald, C., Howland, Greg, "Design and Fabrication of the Langley Aerodrome No. 8 Distributed Electric Propulsion VTOL Testbed", NASA TM-20205011023, January 2021.

[3] Bowers, Albion, H., Murillo, Oscar, J., et al., "On Wings of the Minimum Induced Drag: Spanload Implications for Aircraft and Birds", NASA TP-2016219072, March 2016.

[4] Marte, Jack E., and Donald W. Kurtz, *A Review of Aerodynamic Noise From Propellers, Rotors, and Lift Fans,* NASA-CR-107568, January 1970.