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Motivation

• NASA’s Mars Architecture Team (MAT) is assessing the capabilities and 
constraints presented by architectures incorporating large-scale Mars In-Situ 
Resource Utilization (ISRU) propellant production

—A collection of transportation vehicle, ISRU, and surface systems concepts 
were developed to support this assessment

• The work presented here details the efforts developing a dual role lander/ascent 
vehicle and an in-space transporter

—Two companion papers detail the ISRU and surface systems concepts
o Kiloton Class ISRU Systems for LO2/LCH4 Propellant Production on the Mars Surface
o Assessment of a Surface Water Transportation System Concept for ISRU Operations on Mars

• The primary objective of the concept design was to estimate a reasonable bound for 
propellant production such that ISRU and supporting surface systems could be designed

— Resulted in a feasible end-to-end all-chemical-based Mars transportation 
architecture for assessment with other transportation architectures alternatives
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Transportation System Overview
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MALV
Mars Ascent/Lander Vehicle

MIST
Mars In-Space Transport

MACHETE
Mars Chemical Transportation Elements



AIAA SciTech Forum, 8-12 January 2024, Orlando, FL

Campaign Concept

*Earth launch and pre-Earth departure propellant resupply is future work
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Configuration - MALV
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Configuration - MALV
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Configuration - MALV
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Configuration - MIST
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Configuration - MIST
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Structures

• Performed preliminary FEA using NX Patran, NX Nastran, and 
HyperSizer

—All metallic aluminum primary structure with a 1.4 ultimate 
strength factor of safety

—Additional analyses may have led to alternative material 
selections
o aerothermal structures
o manufacturability
o life cycle cost

• A total of 19 load cases across three vehicle configurations were 
evaluated covering a broad range of flight environments including 
Earth ascent, Mars descent, Mars ascent, and in-space propulsion

• Preliminary analysis of a payload lift system with a 15,000 kg lift 
capacity
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Propulsion

• Three Integrated Propulsion Systems
— Main Propulsion System

o 5 x 165,000 lbf O2/CH4 pump-fed GG RDRE
— Landing Propulsion System

o 4 x 48,000 lbf O2/CH4 pump-fed GG RDRE
(4-chamber)

— Attitude Control System
o 24 x 28 lbf pressure-fed CH4 cold gas thrusters

• Two sets of tanks
— Main tanks provide bulk propellant storage for large 

in-space burns and ascent from Mars
— Header tanks provide more controlled propellant 

storage environment for EDL

• Ullage Gas Recouperation
— Electric compressor captures ullage gas during transit
— Provides stored gas for ACS and power generation
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[1]

• RDRE = Rotating Detonation Rocket Engine
— No moving/rotating parts; the detonation wave is what is rotating

• Detonation process results in increased theoretical combustion
pressures and temperatures compared to traditional constant
pressure deflagration

— increased work extraction, ultimately leading to increasing engine performance

• Increased temperature and pressure drive increased reaction rates, resulting in shorter combustors

• Combustor exit conditions are already supersonic, so no need for converging flow section

• Annular combustion chamber results in much reduced nozzle length for the same
aspect ratio constant pressure combustors 

• Benefits
— Improved performance, Isp (10-15%) <- due to higher combustion temperatures and pressures
— Reduced Length (~40%) <- due to detonation cycle and subsequent combustor geometry
— Reduced Weight (~30%) <- due to combustor/nozzle length reduction

• Challenges/Drawbacks
— Detonation stability

o Rotating Detonation Bifurcation Wave Collapse
— Increased Cooling due to higher heat rates

Enabling Technology - RDRE

[1]

[1] Teasley, T., Fedotowsky, T., Gradl, P., Austin, B., Heister, S., “Current State of NASA Continuously Rotating 
Detonation Cycle Engine Development”, AIAA SciTech Forum, National Harbor, MD, January 2023 12
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Power

• MALV consists of an Oxygen/Methane fuel cell 
power system

—6 parallel fuel cells to provide 12,644 Watts 
peak power output

—22,000 kg of reactants for outbound transit
—700 kg of reactants for Mars ascent

• MIST consists of a solar/battery power system
—2 x 11-meter diameter MegaFlex Arrays
—Supports additional 12,000 Watts of power 

for crew habitat at Mars distance
• Both systems provide 120-volt and 28-volt 

outputs for vehicle systems operation
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MALV
Surface
Systems

DSN, NEN

Mars Relay,
Deep Space Transport, 

etc.

Avionics

• Leverages heritage design derived from Orion flight systems
• Does not support direct-to-Earth communication during

Mars descent/ascent
• Complex communication system covering many bands

—X-band: high data rate telemetry and video, DSN
—S-band: surface-to-orbit, telemetry, intervehicle, AR&D
—C-band: range safety, AR&D
—UHF: surface systems

• Terrain relative navigation similar to that
flown on Mars 2020 to support precision landing

—Lidar altimeter
—Lander vision system
—Hazard avoidance
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Thermal Protection and Management

• Multi-functional thermal subsystem
—Boiloff mitigation
—EDL aerothermal protection
—Propellant liquefaction support

• Minimal cryocoolers provided to 
mitigate boiloff in-space

—Broad area cooling on tanks 
are fed by external cryocooler 
systems for surface propellant 
liquefaction

• MEMLI supports outer TUFROC 
aerothermal protection layer
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Crew Support

• Integrated crew cabin capable of supporting up to six 
crew with minimal impact to vehicle design

• Pressurized access to integrated payload through an 
inflatable transfer tunnel

—Helps mitigate transfer of uncontained Martian 
material

• Forward docking port in the nose for docking and crew 
ingress/egress with other architectural elements

• Short duration cabin (84 hours nominal)
—No exercise equipment
—Basic waste management system
—Open loop ECLSS
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• Set of high thrust, 850-day total duration, trajectories were 
calculated over an Earth-Mars synodic cycle

—2037 & 2039 were selected as the reference 
trajectories, as they represent a compromise between 
minimum and maximum total delta-V over the Earth-
Mars synodic cycle

• Trajectories assume roughly 51 days in Mars vicinity, with 
10 days of orbital operation after arrival and before 
departure, resulting in roughly a 30-day crew surface 
mission

• Cargo must arrive prior to crew and is delivered to Mars 
one opportunity before the crew

—Time required to deliver ISRU equipment and 
manufacture Mars ascent propellant

In-Space Trajectories
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Earth Departure 09/01/2037 10/20/2039
Deep Space Maneuver 11/20/2037 03/11/2040
Mars Arrival 04/05/2038 07/06/2040
Mars Departure 05/26/2038 08/27/2040
Deep Space Maneuver 03/06/2039 05/22/2041
Earth Arrival 11/23/2039 02/16/2042
Outbound 216.0 260.5
Stay 51.0 51.7
Inbound 546.0 538.4
Total 813.0 850.6
Crew Launch Window 90 90
Pre-Departure 10 10
Post-Arrival 10 10
Total Off Earth 923.0 960.6
Trans-Mars Injection 928.20 1,230.45
Deep Space Maneuver 0.00 0.00
Mars Orbit Insertion 916.10 857.63
Trans-Earth Injection 733.30 844.18
Deep Space Maneuver 2,309.30 2,841.20
Earth Orbit Insertion 801.50 626.35
Total DV 5.6884 6.3998 km/s
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Entry, Descent, Landing, & Ascent

• EDL
— Preliminary 2 DoF model developed to 

provide initial estimate of descent ∆V
— Higher fidelity model currently being 

developed to better understand critical 
EDL phases such as reorientation and 
precision landing

• Ascent
— 84-hour nominal trajectory to 5-sol 

derived from historical Apollo, Shuttle, 
and Orion flight operations

— Target initial ascent thrust-to-weight of 
0.75 minimizes ascent ∆V and sets the 
thrust required for the vehicle design

— Future work to update and optimize 
ascent and rendezvous trajectory based 
on lessons learned from HLS operations
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Campaign Performance

• Preliminary campaign performance focused on estimating a 
required propellant for Mars ascent which must subsequently be 
manufactured by the ISRU systems

• Two analysis cycles were performed to date
— First cycle resulted in the initial concept design of the MALV
— Seconds cycle resulted in the initial concept design of the 

MIST configuration, as well as refining key subsystems to 
close the architectural concept

• Initial observations
— MIST could not close with fuel cell power systems due to 

high reactant mass over long transient periods, driving the 
design to a solar-based power system

— MALV saw increased ascent propellant loads because of 
increased inert mass for a combined fuel-cell and solar 
power system, driving the design to a fuel-cell only power 
system to reduce ISRU demand

• Future analysis will consider architecture performance over a 
variety of trajectories, Earth launch and refueling operations
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Mass Summary - MALV
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MACHETE MALV Basic Mass (kg) MGA (%) Predicted Mass (kg)

Mass Breakdown Structure 
1.0 Structures & Mechanisms 36,672 20.6% 44,245
2.0 Propulsion 11,262 19.6% 13,466
3.0 Power 554 35.1% 748
4.0 Avionics 993 14.5% 1,138
5.0 Thermal 7,337 30.7% 9,587
6.0 ECLSS 568 20.8% 686
7.0 Crew Cabin & Access 961 20.0% 1,153

Dry Mass 58,347 21.7% 71,022
10.0 Cargo 75,000
11.0 Inert Fluids 4,923
12.0 Mass Margin 8,752

Inert Mass 159,697
20.0 Useable Propellant 320,445

Total Stage Gross Mass 480,142
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Mass Summary - MIST
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MACHETE MIST Basic Mass (kg) MGA (%) Predicted Mass (kg)

Mass Breakdown Structure 
1.0 Structures & Mechanisms 15,232 19.9% 18,256
2.0 Propulsion 8,597 19.4% 10,265
3.0 Power 1,994 26.9% 2,530
4.0 Avionics 763 15.8% 884
5.0 Thermal 1,789 31.9% 2,361

Dry Mass 28,374 20.9% 34,295
10.0 Cargo 55,000
11.0 Inert Fluids 7,838
12.0 Mass Margin 4,256

Inert Mass 101,390
20.0 Useable Propellant 629,224

Total Stage Gross Mass 730,614
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