
Field-programmable gate array implementation of a single photon-
counting receive modem  

William P. Simon*, Jennifer N. Downey, Nicholas C. Lantz, Thomas P. Bizon, Michael A. Marsden, 
Brian E. Vyhnalek, Daniel J. Zeleznikar 

NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH, USA 44135-3127 

ABSTRACT  

We present a field-programmable gate array (FPGA) implementation of a single photon-counting receive modem for a 
pulse position modulated signal. The modem is compliant with the Consultative Committee for Space Data Systems 
(CCSDS) High Photon Efficiency (HPE) Optical Communications Coding and Synchronization standard and is capable 
of a maximum data rate of 267 Mbps. The system is designed on a commercial off-the-shelf FPGA platform and utilizes 
superconducting nanowire single photon counting detectors, analog to digital converters (ADCs) to sample the detectors, 
and two FPGAs. Symbol timing recovery, photon counting, convolutional deinterleaving, and codeword synchronization 
are performed in the first FPGA. The second FPGA performs iterative decoding on each codeword of the serially 
concatenated pulse position modulated (SCPPM) signal. A digital filter is included to compensate for timing jitter of the 
detector, and the decoder throughput can be adjusted through reconfigurable parallelization. The decoder also implements 
a resource-efficient, algorithmic polynomial interleaver and deinterleaver. Both FPGAs can be reconfigured to switch 
between pulse position modulation (PPM)-16 and PPM-32 with code rates 1/3, 1/2, and 2/3. In this paper, we describe the 
receiver architecture and FPGA implementation of the timing recovery loop and SCPPM decoder, FPGA utilization for 
the different modes, and receive modem characterization test results. 
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1. INTRODUCTION 

The National Aeronautics and Space Administration (NASA) is planning to incorporate photon-counting optical 
communication systems for deep space missions including the Optical Artemis-II Orion (O2O)1 demonstration aboard the 
Artemis-II mission and the Psyche2 mission into deep space. Current development for these optical communication 
demonstrations uses the Consultative Committee for Space Data Systems (CCSDS) High Photon Efficiency (HPE) 
Standard.3 The CCSDS HPE standard uses serially concatenated pulse position modulation (SCPPM) with PPM orders 4, 
8, 16, 32, 64, 128, and 256 with code rates 1/3, 1/2, and 2/3. The PPM pulse widths range from 512 ns to 125 ps, so the 
maximum data rate supported is ~2Gbps. 
 
The NASA Glenn Research Center has developed a field-programmable gate array (FPGA) implementation of a photon-
counting receive modem using commercial off the shelf (COTS) components that complies with a subset of modes from 
the CCSDS HPE standard. The FPGA-based receive modem samples pulses from the superconducting nanowire single-
photon detectors. A fiber interconnect couples light from the telescope backend optics to the superconducting nanowire 
single-photon detectors (SNSPDs).  The system currently supports a minimum 500 ps slot width and data rates up to 267 
Mbps but is scalable up to 533 Mbps. 
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Presented in this paper are the receive modem FPGA implementation and integration details, resource utilization statistics, 
and performance results. A receive system overview is presented in Section 2. Symbol timing recovery implementation 
details are described in Section 3, and iterative decoder implementation details are described in Section 4. Performance 
results and resource utilization numbers are presented in Section 5. 

2. RECEIVE SYSTEM OVERVIEW 

The receive system delivers light over a fiber interconnect to a set of SNSPDs that output an electrical pulse when a 
photon is detected. The output of each SNSPD is amplified by a low-noise amplifier (LNA). The detectors have less than 
100 ps full width half maximum (FWHM) of jitter and a 1/e reset time on the order of 15 ns. The output of each LNA is 
sampled with an analog-to-digital converter (ADC) in the FPGA-based receive modem. The modem performs symbol 
timing recovery and iterative decoding of the received codewords on two separate FPGAs as shown in Figure 1. The 
symbol timing recovery FPGA is responsible for sampling the SNSPD pulses using 16 analog-to-digital converters 
(ADCs) and feeding the samples to the programmable logic for photon counting, timing recovery and Doppler offset 
mitigation, convolutional deinterleaving, and SCPPM codeword synchronization. The decoder FPGA is responsible for 
iterative decoding, data frame synchronization, data link deframing, and the Gigabit (Gb) Ethernet interface. The symbol 
timing recovery and iterative decoder FPGAs are connected by an 8.25 Gbps high-speed serial link. The link is used to 
send codeword blocks from the symbol timing recovery FPGA to the decoder FPGA. 
 

 
Figure 1. Receiver system block diagram showing both the fiber/detector subsystem and the FPGA-based receiver subsystem. 

2.1 Receive Modem Configuration and Control 

The receive modem FPGA cards are housed in a Micro Telecommunications Computing Architecture (MicroTCA) 
chassis. The timing recovery FPGA card uses a Xilinx Radio Frequency System on a Chip (RFSoC), and the 
decoderFPGA card uses a Virtex Ultrascale FPGA. The receive modem architecture is scalable and can be expanded to 
support higher data rates by adding additional FPGA cards to the chassis. Command, control, and status of the timing 
recovery FPGA card is handled by the embedded SoC central processing unit (CPU) over the Advanced eXtensible 
Interface (AXI). Command and status of the decoder FPGA is handled by a physically separate CPU, which has access 
to the FPGA fabric over AXI as well. The Space Telecommunications Radio System (STRS)4 is used to query telemetry 
from both FPGA cards as well as provide the command interface to the modem shown in Figure 1. The telemetry 
adheres to a client-server networked architecture through the hypertext transfer protocol (HTTP) and utilizes standard 
data formats, such as plaintext or JavaScript Object Notation. The control software interacts with the underlying 
processor to send commands to and receive telemetry from the FPGA through memory-mapped registers. 
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3. SYMBOL TIMING RECOVERY 

The symbol timing recovery, codeword alignment, and deinterleaving is implemented on a RFSoC FPGA. The FPGA has 
16 ADCs which sample the output of the SNSPDs. The symbol timing recovery loop tracks differences in transmitter and 
receiver local oscillators as well as spacecraft Doppler. This receiver is designed to track and compensate for slot clock 
differences of up to 66 parts per million. Channel statistics are calculated and sent to the decoder FPGA along with the 
codeword slot counts. A block diagram of the timing recovery FPGA is shown in Figure 2. 

 

 
Figure 2. Timing recovery FPGA architecture with 16 ADC channels processed across a 250 MHz to a 125 MHz clock domain. 

3.1 Analog to Digital Conversion 

Each detector output is sampled by an ADC at a sample rate of 2 GSps. The programmable logic has 4 tiles of 4 ADCs 
each. The ADCs within a tile are time aligned to an external 2 GHz sample clock. The Xilinx Multi-Tile Synchronization 
application programmer interface is used to time align the tiles. Time alignment has been previously demonstrated to an 
accuracy of +/- 5 ps.5 10-bit samples are sent out of the ADCs in parallel groups of 8 at 250 MHz. 

3.2 Sample Interpolation 

The detector ADC samples are linearly interpolated at the slot boundary. The interpolation point is calculated by the timing 
recovery loop. Each adjustment is applied to a group of 8 samples in parallel by first finding the slope of each subgroup 
of 2 contiguous samples and then resampling along the slope according to the adjustment. If the slot adjustment to the 
samples is greater than +0.5 or less than -0.5 of a sample, a sample will be removed or added to track the received signal. 
After the interpolator, a shift register is used to convert the data stream to 10 samples in parallel. 

3.3 Photon Counting 

At count rates up to approximately 10-20 Mcps the detectors introduce less than 100 ps FWHM of jitter between the 
incident photon arrival time and detection time. However, as the input photon flux increases, the width of the timing 
distribution increases which leads to receiver implementation loss. The amount of loss depends on the PPM order, slot 
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width, and the flux rate of the signal. In addition to SNSPD geometrical effects and other intrinsic effects, a portion of this 
jitter is caused by differences in electrical pulse amplitudes at the output of the detectors. Following a previous detection, 
if a new detection occurs before the full reset of the detector, the detector bias current will not have returned to its full 
operating level, and so the resulting pulse amplitude will vary. For a fixed threshold, this amplitude variation causes the 
SNSPD output pulses to be detected at different relative times along the rising edge of the pulse. The amplitude-induced 
detection time delay, referred to as pulse walk, introduces some timing uncertainty, and the photon may be counted in an 
incorrect slot. Figure 3 (a) shows the measured SNSPD instrument response functions (IRF) for a fixed detection threshold. 
The measured IRFs are the detection time distributions relative to an input 50 MHz repetition rate, 70 fs mode-locked fiber 
laser, attenuated from ~ 0.01 photon per pulse at the lowest rate to more than 1 photon per pulse at the highest input rate. 
In this test, the output of the SNSPD was sampled at a rate of 20 GSps and the samples were interpolated to find the time 
the pulse crossed the detection threshold. The figure shows the detection delay increases by ~250 ps at the highest count 
rate (37.785 Mcps). This is a significant drift for a 500 ps slot width. 

A constant fraction discriminator6 can be used to compensate for the timing uncertainty of pulse walk. This can be 
implemented with a detection threshold that is varied based on the amplitude of each pulse. The variable detection 
threshold for pulse detection is calculated as a percentage of the maximum and minimum peak of each pulse and is used 
to detect the rising edge of the pulse in the same relative position between pulses. Figure 3 (b) shows the SNSPD IRFs 
when using a variable detection threshold. This figure shows that the IRF for the high photon flux rate (37.785 Mcps) is 
pulled back to align with the IRF for the low photon flux rate (1.162 Mcps). 

  

    (a)                                                                                           (b) 

Figure 3. Measured SNSPD instrument response functions (IRF) using (a) fixed detection thresholds and (b) variable detection 
thresholds for different average count rates.       

The FPGA uses a fixed threshold to find the approximate location of the maximum peak in the pulse, and 3 samples are 
used before and after the fixed threshold to locate the absolute maximum and local minimum of each peak. The pulse 
amplitude is calculated from the minimum and maximum peaks, and the variable detection threshold for photon counting 
is set to 50% of the pulse amplitude. A reset threshold is also used to prevent misdetections of pulses during the detector 
reset period. 

Photon counting is performed at a rate of up to 200 Mcps per ADC channel, or at a total rate of 3.2 Gcps for all 16 ADCs 
on the RFSoC FPGA. The photons are counted and accumulated in slots.  Each slot is saturated at 7 photon counts. The 
FPGA processing clock is shifted to 125 MHz for the rest of the design. 

3.4 Slot Offset Calculation 

The slot offset calculation accumulates the photon counts in respective slots over 512 symbols nominally. This vector is 
used to calculate the slot offset error.7 This error is driven to values close to zero (-0.5 to +0.5 slots) when the loop is 
tracking. However, the calculation outputs a number in the range [0 , 1.25𝑀), where 𝑀 ∈ {16, 32} is the PPM order. 
Results close to 1.25𝑀 are unwrapped back to negative numbers close to zero. 



 
 

 

 

3.5 Loop Filter 

The loop filter consists of a proportional integral (PI) controller.8 This filter is designed to track a slot clock frequency 
offset of up to +/- 66 parts per million and is sufficient to track the expected levels of Doppler rate of change (+/- 1,034 
Hz/s for the 0.5 ns slot clock). The loop filter takes in the slot offset error signal of the slot offset calculation and outputs 
a filtered slot offset error signal to the distribute module. 

3.6 Slot to Sample Distribution 

The slot offset error calculation requires the use of many symbols and during the calculation time the error can accumulate 
into large step corrections. In cases with high Doppler, this slot offset error can be greater than a full slot. Correcting the 
slot offset directly with these large values will cause discontinuities in the data stream. The approach taken in this receiver 
is to break down the single large slot adjustment into multiple smaller adjustments and apply them to the ADC sample 
stream while the subsequent slot offset is being calculated. This is accomplished by dividing the total slot offset by powers 
of 2 until the smaller offsets are below an acceptable level of 3% of the sampling period. These smaller offsets are then 
applied to the stream in linearly spaced time increments over the slot offset calculation period. This module also converts 
from slots back to ADC samples for oversampled modes (>500 ps slot widths). 

3.7 Sample Offset Integration and Wrapping 

The small sample offset steps output from the distribute module are integrated to track the sample offset over time. The 
result of this integration is the sample offset at which to interpolate. As the timing recovery loop tracks the received signal, 
the timing offset is always changing, and this integration register will go to positive or negative infinity without wrapping.  
Wrapping takes place when the integration register is greater than +0.5 samples or less than -0.5 samples. If the sample 
offset is outside of this range, a sample will be added or subtracted from the integration register and the interpolator will 
output either one additional or one less sample as discussed in Section 3.2.  

A separate sample offset integration register is used for each ADC. Each integration register is initialized to a different 
offset between +/- 1 sample (+/- 500 ps) to digitally compensate for differences in physical path lengths of the RF cables 
and optical fibers outside of the FPGA. This digital phase shifter eliminates the need for external RF phase shifters to align 
the detector channels prior to input into the FPGA. 

3.8 Codeword Synchronization 

The codeword synchronization module uses an approximation to a maximum likelihood correlator9. The hardware searches 
the entire codeword symbol-by-symbol to locate the most likely position of the codeword sync marker. Once located, the 
module continues to search subsequent codewords for the most likely position of the codeword sync marker. Lock is 
declared when 6 codeword sync markers in a row are detected in the same position. Once locked, the module removes the 
codeword sync marker and passes the codeword-aligned symbols to subsequent modules. The module also continues to 
search all codewords to locate the most likely position of the codeword sync marker. Unlock is declared if the module 
misses 6 codeword sync markers in a row.   

3.9 Convolutional Deinterleaving 

The convolutional deinterleaver10 utilizes external double data rate 4th generation (DDR4) random access memory (RAM) 
to store the data.  With a marginal increase in design complexity, the use of DDR4 results in significant savings of FPGA 
resources due to the large amount of data that needs to be buffered and reordered. Data is pre- and post-processed in the 
FPGA to both parallelize and serialize the data to efficiently use the full width of the DDR4 memory bus (512 bits). A 
parallelization factor of 9 was chosen for this implementation.  For jitter compensation, the guard band slots adjacent to 
the symbol slots are retained. 

4. ITERATIVE DECODING 

The iterative decoder is implemented on a Virtex Ultrascale FPGA and performs SCPPM decoding11 for the receive 
modem. Currently, the PPM-16, code rate 1/3, and PPM-32, code rates 1/3, 1/2, and 2/3 CCSDS HPE modes have been 
implemented. In the decoder front-end, a buffer stores the received channel statistics and a log-likelihood ratio (LLR) 
coefficient calculated from the mean signal photons per signal slot, Ks, and the mean background photons per slot, Kb. The 
LLRs for each symbol slot are calculated and queued into a decoder slice. Iterative Bahl, Cocke, Jelinek, and Raviv (BCJR) 
decoding12 is performed with multiple decoder slices and the output codewords are reordered, derandomized, and desliced, 



 
 

 

 

Transfer frame synchronization and data link deframing is performed and the decoded and decapsulated data is transmitted 
out of the receiver over Gb Ethernet, shown in Figure 4. 

 

 

Figure 4. Decoder FPGA architecture with 𝑃 iterative decoder slices in parallel.     

The remainder of the PPM orders in the HPE standard can be implemented with modifications to the decoder logic for the 
needed resource optimizations. 

4.1 Multiple Decoder Slices 

Each decoder slice is comprised of an inner PPM soft-input soft-output (SISO) decoder, a block deinterleaver, an outer 
convolutional SISO decoder, and a feedback path through a block interleaver to provide a-priori LLR information to each 
subsequent iteration of the decoding process.13 A cyclic redundancy check (CRC) is calculated for each decoded codeword 
at the output of the outer decoder to determine if the decoding was successful. If not, the codeword is fed back to the inner 
decoder with a-priori LLR information from the previous iteration. 

A codeword may take up to 32 iterations to decode, so multiple decoder slices are used to match the data throughput of 
the received codewords. The number of decoder slices per HPE mode is determined by ensuring a simulation of the front 
end codeword buffer does not overflow for a 10-4 CWER. The front-end of the decoder assigns an 11-bit cumulative 
sequence number to each codeword. Once a codeword successfully decodes or the maximum iterations are reached, the 
front-end assigns a new codeword to that decoder slice. Codewords are assigned to decoders in an ascending sequence, 
with the first decoder given the highest priority for accepting new codewords.  

If the CRC is invalid and 32 iterations are reached, the codeword is dropped and a codeword error counter is incremented. 
If the CRC is valid, the decoded codeword is stored in a specific RAM in the FPGA determined by the sequence number 
of the codeword. Once decoded codewords have been stored in RAMs, the RAMs are read in ascending order. If a 
codeword decodes out of order, the RAM will hold that codeword until the iteration cycles of the previous codeword are 
completed, and the previous codeword is stored in a RAM. If all the RAMs are full and the CRC for a codeword in the 
decoder is valid, the decoder will hold the codeword until the RAM is available. Backpressure from higher data rates and 
high iteration counts will cause codewords to overflow the decoder front-end buffer, and those dropped codewords are 
counted as codeword errors. 

4.2 Decoder Reconfigurability 

The decoder FPGA can be reconfigured to support each of the HPE modes; however, the decoder must be resynthesized 
for different PPM orders and code rates. The code rate and PPM order are set in a hardware description language (HDL) 
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package file along with additional reconfigurable parameters such as the number of RAMs used for codeword reordering 
and the number of decoder slices used for each HPE mode.  

4.3 Pulse Timing Uncertainty Compensation 

The pulse walk compensation in the timing recovery FPGA eliminates some of the pulse timing uncertainty; however, the 
detectors still introduce additional timing uncertainty due to the variance of the delay between the incident photons and 
the output voltage pulse as shown in Figure 3 (b). This pulse timing uncertainty, referred to as detector jitter, is represented 
as an offset in the arrival time of the photons. Detector jitter causes the arrival of signal photon counts in adjacent slots to 
the signal slot. 

To reduce this effect of jitter, Srinivasan, Rogalin, Lay, Shaw, and Tkacenko demonstrate that the LLR of a signal slot 𝑘 
can be found and maximized from the channel statistics by calculating 

 𝐿𝐿𝑅(𝑘) =  ෍ 𝑢௜ ln ቆ1 + 𝑓(𝑖, 𝑘, ∆௞ , 𝜎௜)
𝐾෡௦

𝐾෡௕

ቇ + Bଵ

௞ା஽

௜ୀ௞ି஽

 (1) 

where 𝐵ଵ is a constant cancelled out in decoder bit estimates, 𝐷 is the number of adjacent slots on either side of slot 
index 𝑘 to incorporate in the filter, 𝑢௜ is the slot counts for symbol slot 𝑖, and 𝑓(𝑖, 𝑘, ∆௞, 𝜎௜) is a scaling constant that 
depends on the distribution of detector jitter, slot offset, and the signal slot.14 The FPGA applies this detector jitter filter 
to the LLR calculation to maximize the LLR for each signal slot and reduce the performance degradation due to detector 
jitter.  

4.4 Inner Decoder 

The inner PPM decoder takes 4 inputs, the channel statistics as PPM symbols with 3-bit slot counts for each slot in the 

symbol and 3 log-likelihood factor terms defined as ln ቂ1 + 𝑓(𝑖, 𝑘, ∆௞, 𝜎௜)
௄ೞ

௄್
ቃ from (1). The inner decoder calculates the 

LLR using (1) from the channel statistics. The resulting LLRs are combined with a-priori LLR symbol estimates calculated 
from the a-posteriori bit estimates of the outer decoder and fed to the BCJR code trellis in forward and backward order.15 
The inner decoder processes the forward and backward paths in parallel. At the intersection of the forward and backward 
paths along the trellis, a new set of a-posteriori LLR symbol estimates are found and fed to the deinterleaver in parallel 
forward and backward order starting from the middle of the codeword. 

4.5 Generalized Algorithmic Polynomial Interleaver 

The CCSDS HPE standard uses a polynomial block interleaver to interleave the symbols of a 15120-bit codeword 
according to 

 𝐼௝ = ℎగ(௝) (2) 

where 𝑗 is the index of the symbol in the codeword, ℎ is the codeword, 𝐼 is the codeword with symbol bit LLRs interleaved, 
and 𝜋(𝑗) = (11𝑗 +  210𝑗ଶ) modulo 15120.3 The inner PPM decoder outputs symbol estimates starting from the middle 
of the codeword in the forward and backward interleaved order defined by (2). Deinterleaving is performed by writing the 
bytes of 𝐼 to a deinterleaver RAM sequentially followed by reading the bytes of ℎ into the outer convolutional decoder by 
calculating the RAM addresses using the inverse polynomial 𝜋ିଵ(𝑗) = (7331𝑗 +  7770𝑗ଶ) modulo 15120. 

To simplify the implementation at the output of the outer decoder, the bit estimates are re-interleaved by writing the bytes 
of ℎ into RAM with each position defined by 𝜋ିଵ(𝑗) and reading the bytes of I out of the RAM sequentially. 

The decoder calculates the inverse interleaved order in real time using the generalized polynomial 𝑓(𝑗)  =  𝑎𝑗 +  𝑏𝑗ଶ 
where 𝑎 = 7331 and 𝑏 = 7770. Cheng, Moision, Hamkins, and Nakashima show that the next position in the sequence 
can be calculated by expanding to the 𝑓(𝑗 + 1) case and recursively computing the next subsequent permutation from the 
previous with only addition.16 

Each LLR in a symbol is processed in parallel throughout the decoder to take advantage of parallel trellis edges, so multiple 
addresses for the deinterleaver must be simultaneously generated. The 𝑓(𝑗 + 1) case is only sufficient to generate one 
address at each clock cycle, so a more general form 𝑓(𝑗 +  𝑛) is found, where the value of 𝑛 ∈ ℤ determines both the 
number of addresses and direction of the polynomial. For the backwards direction, the reverse order of the permutations 
can be found with 𝑛 <  0. Recalling from the general form 𝑓(𝑗) =  𝑎𝑗 + 𝑏𝑗ଶ, we find that 



 
 

 

 

 
𝑓(𝑗 + 𝑛) = (𝑎𝑗 + 𝑏𝑗ଶ + 𝑎𝑛 + 2𝑏𝑗𝑛 + 𝑏𝑛ଶ) mod 𝑁 

= ൫𝑓(𝑗) + 𝑔௡(𝑗)൯ mod 𝑁 

 

(3) 

where 𝑁 is the number of codeword bits and 

 𝑔௡(𝑗) = (𝑎𝑛 +  𝑏𝑛ଶ + 2𝑏𝑗𝑛) mod 𝑁. (4) 

The 𝑔௡(𝑗) term repeats after a set number of iterations on 𝑗 for some values of 𝑛. An example of this behavior is shown in 
Table 1 for 𝑛 = {1,2,3,4,5,6} along with the corresponding address permutations 𝑓(𝑗).  

Table 1. Address permutations 𝑓(𝑗) with 𝑔௡(𝑗) term for 𝑛 = {1,2,3,4,5,6} over 15120 iterations 

𝒋 𝒇(𝒋) 𝒈𝟏(𝒋) 𝒈𝟐(𝒋) 𝒈𝟑(𝒋) 𝒈𝟒(𝒋) 𝒈𝟓(𝒋) 𝒈𝟔(𝒋) 
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For example, when 𝑛 = 6, 𝑔௡(𝑗) repeats every 6 iterations of 𝑗. This is convenient for an FPGA implementation because 
the values can be precomputed and stored in memory. 

A more general form for generating 𝑛 𝑔௡(𝑗) values in parallel is found by expanding (4) to the 𝑔௡(𝑗 + 𝑛) case, where 

 
    𝑔௡(𝑗 + 𝑛) = (𝑎𝑛 + 𝑏𝑛ଶ + 2𝑏𝑗𝑛 +  2𝑏𝑛ଶ) mod 𝑁 

= (𝑔௡(𝑗) + 2𝑏𝑛ଶ) mod 𝑁. 
 

(5) 

Per clock cycle, 3 addresses are needed in parallel for a 1/3 and 2/3 code rate and 2 addresses are needed in parallel for a 
1/2 code rate. Ideally, 𝑛 would be set to the number of addresses used for each code bit estimate; however, these code rates 
share a common denominator of 6, so this implementation selects a value of n = 6 and generates 6 addresses in parallel. In 
addition, when n = 6, 2𝑏𝑛ଶ mod 𝑁 = 0 which simplifies the arithmetic. 

Parallel BRAMs are used for interleaver and deinterleaver memory. Both a forward and backward symbol estimate 
consisting of 𝑚 = logଶ 𝑀 LLRs each arrive simultaneously to the deinterleaver from the inner decoder. There are 𝑚 

parallel dual port BRAMs with 
ே

௠
 entries each, with each entry consisting of a single LLR. Index pairs are mapped to the 

address permutations and are used to read the deinterleaver RAM in sequential order, as shown in Figure 5, and write to 
the interleaver RAM in interleaved order. 



 
 

 

 

 

 Figure 5. PPM-16 with a 1/3 Code Rate deinterleaver RAM. The symbols comprised of 4 LLR bytes each arrive to the 
deinterleaver in forward and backward order from the outer decoder. The symbols are written starting at the middle of the 
codeword to the dual port RAMs. The address permutations are used to read the bytes into the inner decoder 3 at a time, with 
each address determined by the inverse interleaver polynomial index pair. 

Cheng, Moision, Hamkins, and Nakashima show that each interleaved position 𝑓(𝑗) is mapped to an index pair 

(𝑟௙(𝑗), 𝑞௙(𝑗)), where 𝑟௙(𝑗) ≜ 𝑓(𝑗) mod 𝑚 selects the BRAM partition and 𝑞௙(𝑗) ≜ ⌊
௙(௝) 

௠
⌋ selects the address entry into the 

BRAM partition.16 To find 𝑛 BRAM partitions in parallel, initialize the first 𝑛 values of 𝑟௚,௡(𝑗) = 𝑔௡(𝑗) mod m and 
𝑟௙(𝑗) = 𝑓(𝑗) mod 𝑚 and calculate 

 𝑟௙(𝑗 + 𝑛) = [𝑟௙(𝑗)  +  𝑟௚,௡(𝑗)] mod 𝑚. (6) 

To find the next 𝑛 values of 𝑟௚, calculate 

 𝑟௚,௡(𝑗 + 𝑛) = [𝑟௚,௡(𝑗)  +  𝑟ଶ௕௡మ] mod 𝑚 (7) 

where 𝑟ଶ௕௡మ is a pre-defined constant. To find 𝑛 BRAM addresses in parallel, initialize the first 𝑛 values of 𝑞௚,௡(𝑗) =

ቔ
௚೙(௝) 

௠
ቕ and 𝑞௙(𝑗) = ቔ

௙(௝) 

௠
ቕ and let 𝑔௡(𝑗) ≜ 𝑞௚,௡(𝑗)𝑚 + 𝑟௚,௡(𝑗) and 𝑓(𝑗) ≜ 𝑞௙(𝑗)𝑚 + 𝑟௙(𝑗). Calculate 

 

𝑞௙(𝑗 + 𝑛) = ቞
𝑓(𝑗 + 𝑛)

𝑚
቟ 

 = 𝑞௙(𝑗) + 𝑞௚,௡(𝑗) + ቞
𝑟௝(𝑗) + 𝑟௚,௡(𝑗)

𝑚
቟ − 𝐼𝑛𝑑 ∗

𝑁

𝑚
 

 
 

(8) 

where 𝐼𝑛𝑑 = 1 when 𝑞௙(𝑗) + 𝑞௚,௡(𝑗) + ቔ
௥ೕ(௝)ା௥೒,೙(௝)

௠
ቕ ≥

ே

௠
, otherwise 𝐼𝑛𝑑 = 0. To find the next 𝑛 values of 𝑞௚,௡, calculate 

 𝑞௚,௡(𝑗 + 𝑛) = 𝑞௚,௡ + 𝑞ଶ௕௡మ + ඌ
𝑟௚,௡ + 𝑟ଶ௕௡మ

𝑚
ඐ − 𝐼𝑛𝑑 ∗

𝑁

𝑚
 (9) 

LLR 0         : addr 0

LLR 3404   : addr 1

LLR 13528 : addr 2

...

LLR 3316   : addr 3779

LLR 221     : addr 0

LLR 5305   : addr 1

LLR 1989   : addr 2

...

LLR 1857   : addr 3779

LLR 862     : addr 0

LLR 7626   : addr 1

LLR 5990   : addr 2

...

LLR 818     : addr 3779

LLR 1923   : addr 0

LLR 10367 : addr 1

LLR 10411 : addr 2

...

LLR 199     : addr 3779

Inner Decoder Outer Decoder

Byte 7560 to addr 1890 

Byte 7556 to addr 1889

Forward LLR

Backward LLR

Deinterleaver Dual Port RAMs

Address Permutation Generator

Byte 7561 to addr 1890 

Byte 7562 to addr 1890 

Byte 7563 to addr 1890 

Byte 7557 to addr 1889

Byte 7558 to addr 1889

Byte 7559 to addr 1889

Byte 0 from addr 0 

Byte 1 from addr 3775 

Byte 2 from addr 95 

Byte 15117 from addr 644 

Byte 15118 from addr 324

Byte 15119 from addr 109

Forward LLR

Backward LLR



 
 

 

 

where 2𝑏𝑛ଶ mod 𝑁 = 𝑞ଶ௕௡మ𝑚 + 𝑟ଶ௕௡మ and 𝐼𝑛𝑑 = 1 when 𝑞௚,௡ + 𝑞ଶ௕௡మ + ቔ
௥೒,೙ା௥

మ್೙మ

௠
ቕ ≥

ே

௠
, otherwise 𝐼𝑛𝑑 = 0. For the 

𝑛 =  6 case, 2𝑏𝑛ଶ mod 𝑁 = 0. A breakdown of the partition and address selections for each PPM-16 symbol is shown in 
Table 2. 

 
Table 2. PPM-16, 1/3 Code Rate RAM partitions and addresses for forward interleaved order with 𝑛 = 6 

Cycle 𝒋 𝒇(𝒋) 𝒈𝟔(𝒋) 𝒓𝒇(𝒋)   𝒒𝒇(𝒋)   𝒓𝒈,𝟔 (𝒋) 𝒒𝒈,𝟔(𝒋) 

0 

0 

0 

0 

0 

0 

2 

2 

… 

5038 

5038 

5038 

0 

1 

2 

3 

4 

5 

6 

7 

… 

15117 

15118 

15119 

0 

15101 

382 

1203 

2444 

4105 

6186 

8687 

… 

2577 

1298 

439 

6186 

8706 

11226 

13746 

1146 

3666 

6186 

8706 

… 

13746 

1146 

3666 

0 

1 

2 

3 

0 

1 

2 

3 

… 

1 

2 

3 

0 

3775 

95 

300 

611 

1026 

1546 

2171 

… 

644 

324 

109 

2 

2 

2 

2 

2 

2 

2 

2 

… 

2 

2 

2 

1546 

2176 

2806 

3436 

286 

916 

1546 

2176 

… 

3436 

286 

916 

 
With 𝑛 = 6 in the FPGA implementation, the interleaver and deinterleaver positions are found with only addition elements 
and the BRAMs needed to store the codewords. 

4.6 Outer Decoder 

The outer decoder works in a similar manner to the inner decoder in that it accepts a-priori LLRs and traverses a 
convolutional code trellis in forward and backward order according to the BCJR algorithm to produce a-posteriori LLR 
bit estimates. The LLRs are converted back to uncoded a-priori symbol estimates by calculating symbols from the 
interleaved order of the bit estimates.15 The bit estimates are used to generate the decoded bit stream on the output of the 
outer decoder. 

4.7 Derandomizer and Deslicer 

The decoded bits are derandomized according to the pseudo-randomizer sequence defined in the CCSDS HPE standard. 
The codeword padding is removed from the derandomized sequence and then desliced according to the CCSDS HPE 
standard. 

4.8 Transfer Frame Synchronization 

The transfer frame synchronization marker (TFSM) 0x1ACFFC1D is used to identify the boundaries of the transfer frames 
as defined in the CCSDS HPE standard. The length of each transfer frame is fixed with a TFSM in between each frame. 
The number of required correct TFSMs in a row before transfer frame synchronization is achieved is reconfigurable in the 
FPGA. The lock detector may similarly miss a reconfigurable amount of TFSMs before losing transfer frame 
synchronization. 

5. IMPLEMENTATION RESULTS 

5.1 Timing Recovery FPGA Utilization 

The resource utilization for all supported timing recovery FPGA modes is given in Table 3. 



 
 

 

 

 

Table 3. Zynq Ultrascale+ XCZU29DR timing recovery resource utilization 

Resource Utilization Available Utilization % 

BRAM 

CLB LUT 

CLB Register 

DSP 

584 

158848 

169892 

288 

1080 

425280 

850560 

4272 

54.07 

37.35 

19.97 

6.74 

 

5.2 Iterative Decoder FPGA Utilization 

The resource utilization for all supported decoder FPGA modes with a 500 ps slot width is given in Table 4. In general, 
the higher the data rate, the more resources are required to implement all the decoder slices in parallel. However, since the 
decoder processes codewords a symbol-at-a-time, the logic required for processing increases with larger symbols. 

 

Table 4. Virtex Ultrascale XCVU440 decoder resource utilization per HPE mode 

Mode 
Decoder 

Slices 
Resource Utilization Available Utilization % 

 

PPM-32, Code 1/3 

 

13 

BRAM 

CLB LUT 

CLB Register 

679 

694848 

668198 

2520 

2532960 

5065920 

26.94 

27.43 

13.19 

 

PPM-16, Code 1/3 

 

16 

BRAM 

CLB LUT 

CLB Register 

664.5 

470546 

464449 

2520 

2532960 

5065920 

26.37 

18.58 

9.17 

 

PPM-16, Code 1/2 

 

18 

BRAM 

CLB LUT 

CLB Register 

765.5 

528374 

516666 

2520 

2532960 

5065920 

30.38 

20.86 

10.20 

 

PPM-16, Code 2/3 

 

20 

BRAM 

CLB LUT 

CLB Register 

914.5 

603938 

580165 

2520 

2532960 

5065920 

36.29 

23.84 

11.45 

 

5.3 Jitter Compensation Performance 

The relative performance improvements of both a variable detection threshold and detector jitter filtering for PPM-16 with 
a 1/3 code rate are shown in Figure 6. The tests were performed with a test optical transmitter17 to emulate the received 
signal and compared against a software simulated baseline curve. The curve for no jitter compensation and a fixed detection 
threshold approaches a 10-4 CWER just below -15 dB photons per slot. Using a fixed threshold with the detector jitter filter 
improves the signal by ~0.75 dB photons per slot. A variable detection threshold without the detector jitter filter improves 
the signal by ~1.0 dB signal photons per slot. Together, a variable detection threshold and a detector jitter filter 
compensation improve the performance by ~1.25 dB photons per slot for this mode. 



 
 

 

 

           

Figure 6. Receiver performance with detector jitter compensation for PPM-16 at a 1/3 code rate. 

The largest improvements in performance are found using both a variable detection threshold in the timing recovery FPGA 
and the detector jitter filter in the decoder FPGA; however, each method independently shows a large improvement in 
jitter mitigation and should be considered separately. The detector jitter filter is a more complex implementation due to its 
dependency on channel statistics and detector characteristics. The variable detection threshold only affects the photon 
counting, so in the presence of pulse-walk this is easier to implement for similar performance improvements. Smaller PPM 
orders (16 and below) and narrower slot widths should see more improvements due to the detector jitter filter and using a 
variable detection threshold because of the ratio of the slot width to the detector jitter and the ratio of the PPM order to the 
detector reset time. 

6. CONCLUSION 

A single photon-counting receive modem compatible with PPM orders 16 and 32 and code rates 1/3, 1/2, and 2/3 from 
the CCSDS HPE standard was designed and built with COTS FPGA components. The modem is separated into two 
primary FPGAs, namely the timing recovery FPGA and the iterative decoder FPGA, which are connected via a high-
speed serial interconnection. The modem includes detector jitter filtering, parallel processing, and resource optimizations 
to meet the maximum data rate of 267 Mbps while remaining below a 10-4 CWER. The modularity of the design 
combined with the robust performance on a COTS platform allows for rapid infusion for both non-commercial and 
commercial optical ground receivers. In the future, NASA GRC plans to implement additional HPE modes. 
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APPENDIX A: POLYNOMIAL INTERLEAVER DERIVATIONS 

This appendix includes a series of derivations for the modulus and quotient calculations of 𝑓(𝑗). The recursive relation for 
the remainder of 𝑓(𝑗) with a step size 𝑛 for 𝑚 = logଶ(𝑀) is given as 

 

𝑟௙(𝑗 + 𝑛) = 𝑓(𝑗 + 𝑛) mod 𝑚    

= ൣ൫𝑓(𝑗) + 𝑔(𝑗)൯ mod 𝑁൧ mod 𝑚 

= [𝑓(𝑗) +  𝑔(𝑗, 𝑛)]mod 𝑚  

= 𝑓(𝑗) mod 𝑚 +  𝑔(𝑗, 𝑛) mod 𝑚 

= [𝑟௙(𝑗)  +  𝑟௚(𝑗, 𝑛)] mod 𝑚 

 

 

 

(10) 

where 𝑟௚,௡(𝑗) = 𝑔௡(𝑗) mod m and 𝑟௙(𝑗) = 𝑓(𝑗) mod 𝑚. The derivation of the recursive relation for the remainder of 
𝑔௡(𝑗) is given as 

 

 𝑟௚,௡(𝑗 + 𝑛) = 𝑔௡(𝑗 + 𝑛) mod 𝑚              

= [𝑔௡(𝑗) +  2𝑏𝑛ଶ]mod 𝑚 
= [𝑔௡(𝑗) mod 𝑚 + 2𝑏𝑛ଶ mod 𝑚] mod 𝑚 

= [𝑟௚,௡(𝑗)  +  𝑟ଶ௕௡మ] mod 𝑚 

 
 
 

(11) 

 
where 𝑟ଶ௕௡మ is a pre-defined constant. Let 𝑔௡(𝑗) ≜ 𝑞௚,௡(𝑗)𝑚 + 𝑟௚,௡(𝑗). The derivation of the recursive relation for the 
quotient of 𝑔௡(𝑗) is given as 

 

 
𝑞௚,௡(𝑗 + 𝑛) = ቞

𝑔௡(𝑗 + 𝑛)

𝑚
቟ 

= ቞
(𝑔௡(𝑗) + 2𝑏𝑛ଶ) mod 𝑁

𝑚
቟ 

= ቞
𝑔௡(𝑗) mod 𝑁 + 2bnଶ  mod 𝑁

m
቟ 

= ቨ
ቀ൫𝑞௚,௡(𝑗) + 𝑞ଶ௕௡మ൯𝑚 + ൫𝑟௚,௡ + 𝑟ଶ௕௡మ൯ቁ  mod 𝑁

𝑚
ቩ 

= 𝑞௚,௡ + 𝑞ଶ௕௡మ + ඌ
𝑟௚,௡ + 𝑟ଶ௕௡మ

𝑚
ඐ − 𝐼𝑛𝑑 ∗ 𝑛 

 
 
 
 
 
 
 
 
 
 
 
 

(12) 

 

where 2𝑏𝑛ଶ mod 𝑁 = 𝑞ଶ௕௡మ𝑚 + 𝑟ଶ௕௡మ and 𝐼𝑛𝑑 = 1 when 𝑞௚,௡ + 𝑞ଶ௕௡మ + ቔ
௥೒,೙ା௥

మ್೙మ

௠
ቕ ≥

ே

௠
, otherwise 𝐼𝑛𝑑 = 0. 


