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Abstract
The application of lensless imaging to particle image velocimetry (PIV)
is demonstrated. Lensless PIV eliminates the need for imaging lenses
to measure flow fields near a surface. Only the camera sensor, a thin
mask, and computations are required to image particles in a flow field
and to compute the velocity field. The small form factor could enable
embedded sensors for near-wall measurements. Flow field measure-
ments are obtained simultaneously for a lensless system and lens-based
2D PIV system, and several different reconstruction techniques are
demonstrated. The reconstructed particle images and computed velocity
fields compare well for both a uniform and shear flow. The poten-
tial for stereo and 3D volumetric PIV with a single camera sensor
is demonstrated through different image reconstruction approaches.

1 Introduction

Particle Image Velocimetry is a well-known and widely used technique (Adrian,
2005) that, in its simplest form, requires the use of a camera, laser (or other
focused light source), laser optics, particles, and imaging lens. The lens is
used to focus the camera field of view onto the measurement plane of interest,
where the thin (=1 mm) laser sheet defines the measurement location. Seeding
particles are injected into the flow, and doubly exposed images are acquired
at a short time interval. Typically, a cross-correlation algorithm is performed
to extract the quantitative velocity field from the particle displacements. In
many cases, when used in a wind tunnel, large magnification is required, either
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due to long distances from the windows to the model, or due to the required
spatial resolution. Thus, the imaging lens is often the largest component of the
imaging system. However, with the emergence of lensless imaging, a lens is no
longer required, and the miniaturization of camera sensors can be exploited
to allow placement of sensors in locations that would previously have been
impossible due to the size of the lens. For instance, sensors could be embedded
in the surface of wind tunnel models to allow for near-wall measurements.

Lensless imaging is an optical configuration that replaces the lens of the
camera with a thin light-modulating mask and image reconstruction from
appropriate computational reconstruction algorithms (Antipa et al, 2018;
Boominathan et al, 2022). This allows one to take advantage of the minia-
turization of the camera sensor, because the lens is typically the largest
component of a camera module. Current applications for lensless imaging
include microscopy, wearables and implantables, photography, and in vivo
imaging. In addition to the obvious advantage of the small size of the sensor,
lensless imagers encode more information than a traditional camera-lens sys-
tem. This is because the lensless system does not focus the light from a point
in the scene to a point on the sensor, but rather it embeds angular informa-
tion of particle locations. Thus, it is possible to reconstruct a 3D image from
a single sensor. Various other methods for single-sensor 3D reconstruction and
also lensless concepts for flow field measurements have been used in somewhat
limited cases, such as astigmatism PIV, microlens arrays/light-field cameras,
and holographic PIV (Cierpka and Kahler, 2012; Hinsch, 2002; Perwass and
Wietzke, 2012).

In lensless imaging, the mask, which acts as the encoding element, can be
optimized for various applications (Lee et al, 2023). Different types of masks
have been demonstrated, including amplitude masks, diffractive masks, dif-
fusers, random reflective surfaces, and modified microlens arrays (Antipa et al,
2018; Kuo et al, 2020). The general idea of lensless imaging is that a point
source will create a certain pattern on the camera sensor after passing through
the mask, called the point spread function (PSF). If the point source shifts
by a given amount, the pattern also shifts a number of pixels that depends
on the magnification. If multiple point sources (or particles) are present, the
image is basically a sum of all of the PSFs created by the single particles
or point sources. Along with an adequate calibration (consisting of one or
more measured PSFs), the encoded information on the camera sensor can be
used to reconstruct the image. Typically, a forward model is used to represent
the relationship between the raw camera image and the scene that is being
imaged (Boominathan et al, 2022). Under certain assumptions, such as shift-
invariance of the PSF and intensity linearity, a convolutional model can be
used, which only requires the acquisition of a single PSF, rather than a PSF
for every point in space. This makes the problem much more feasible, how-
ever, some of the required assumptions may not hold for the application of
lensless imaging to PIV. For example, the linearity assumption may not hold
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for a coherent light source, such as a laser. Additionally, the PSF is only shift-
invariant locally for small mask-to-sensor distances. In addition to forward
models, there is also a growing body of work on using deep learning for lensless
image reconstruction (Sinha et al, 2017).

The purpose of this letter is to demonstrate the feasibility and poten-
tial advantages of the lensless PIV approach. A simple lensless PIV setup,
constructed with readily available and off-the-shelf components, is described.
Simultaneous measurements are made with a lens-based 2D PIV setup
for verification purposes. Several different image reconstruction techniques
are demonstrated, some of which illustrate the potential for stereo or 3D
measurements.

2 Methods

2.1 Experiment Setup

The lensless PIV (LLPIV) system consists of a high-speed PIV camera and
a thin light-modulating mask (Fig. 1), similar to the setup of Antipa et al
(2018). Note that the choice of camera was driven primarily by the ability
to place the mask somewhat close to the sensor, and the availability of the
equipment. The mask is a thin piece of patterned plastic that acts as a diffuser
and creates a focused caustic pattern when placed approximately 9.5 mm from
the sensor. The sensor is approximately 25 mm x 16 mm, with 10um sized
pixels, and 2560 x 1600 resolution. A thin (= 1 mm) laser sheet, from a 532 nm
double-pulsed Nd:YLF laser, is focused approximately 19 mm from the mask.
The relative locations of the sensor to the mask, and the mask to the laser
plane, determine the magnification of the system. For our current setup, this
results in a 1:2 magnification. The lens-based PIV setup, for particle image
verification, consists of a time-resolved camera and a 50-mm lens, resulting
in a 1:1 magnification of the laser plane. The laser, optics, and camera used
for the demonstration are all off-the-shelf components, and the particles are
produced using a mini fog machine. The flow field is created using a small
open jet wind tunnel. For the acquisition of the PSFs, a broadband LED light
source is placed behind a 25 pm pinhole, mounted on a three-axis traverse, and
located at the measurement plane. The pinhole and light source are traversed
in-plane at 0.5 mm increments across the entire 2D field of view to acquire
PSFs at multiple in-plane locations. An example PSF is shown in Fig. 2(a).
Several different materials were attempted before choosing the current mask.
The performance of the mask was evaluated by the focus and scales of the
PSF. The mask is a critical component of the system, since it directly affects
the quality and resolution of the reconstruction. There is likely much room
for improvement, but for the current demonstration, we choose a functioning
mask that is readily available. Scales were applied to the final lensless PIV
results by computing the PSF shift that occurred for a translation of 0.5 mm.
This shift was found to be 26 pixels and was uniform across the whole field of
view. A standard 2D calibration was performed for the lens-based PIV system.
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Fig. 1 Schematic of LLPIV verification test setup.
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Fig. 2 Example a-b PSF and c-d raw particle image.

2.2 Data Processing Methods

There are potentially numerous acceptable ways to approach the post-
processing for lensless PIV. We describe and demonstrate a few potential
approaches in the present work, with the goals of demonstrating the feasibility
and highlighting the potential advantages of lensless PIV.

2.2.1 Image Pre-processing and Calibration

Since any background reflections of the laser light can affect the quality of the
image reconstruction, we found it necessary to perform some pre-processing of
the raw lensless particle image. A POD-based noise removal technique, similar
to that introduced by Mendez et al (2017), was successful at removing the
background noise and allowed an adequate recovery of the particle image.
For the cases shown here, the POD was performed over 300 images, and the
image was reconstructed with the first 2-3 POD modes removed, representing
backgrounds.

The first step in the reconstruction is to obtain an appropriate calibration.
The calibration essentially consists of one, several, or many PSFs, depending
on the reconstruction method. The simplest convolutional model only requires
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a single PSF at each depth (z) of interest (Antipa et al, 2018), but there
are several assumptions required that may not be acceptable in our current
application. In particular, we have found that a particle located near the center
of the point source that created the PSF used for the deconvolution appears
much stronger in the reconstruction than one that is located farther away.
This angular sensitivity is observed by (Antipa et al, 2018) as well. Thus,
the use of a single PSF may not be adequate to accurately reconstruct the
particle image over the entire field of view. The alternative, doing an exhaustive
calibration for each camera pixel, is completely infeasible due to the number of
PSFs required and the computational resources required to complete the image
reconstruction. In addition, our PSF does not cover the entire camera sensor,
therefore, multiple PSFs would be required to cover the entire available field
of view. Since many deconvolutions are required for the reconstructions noted
below, the time required for reconstruction could be a disadvantage for these
approaches. The processing time for each deconvolution with 200 iterations
was approximately 0.85 seconds on a typical workstation.

2.2.2 Local Vector Approach

To account for these issues, we developed a local vector approach that involves
acquiring PSFs with a relatively fine spacing (0.5 mm) across the entire field of
view of the camera. We then deconvolve small subsections of the raw lensless
image (typically 300x300 pixels) with the local PSF using the Lucy-Richardson
deconvolution algorithm. This reconstructs each small subset of the image and
allows us to do a local cross-correlation between doubly-exposed image 1 and 2
to build up the vector field for the entire image. Empirically, we found 300x300
pixels to be an optimal size for the reconstruction. Smaller windows resulted
in noisier reconstructions, and larger ones required more time to complete
the computations but did not significantly enhance the result. An iterative
approach with smaller subwindows can then be utilized for the cross-correlation
step to improve the spatial resolution, similar to the iterative approach in PIV
processing. The main disadvantage of this approach is that the vector-field
resolution is limited to the PSF spacing. This means that the calibration can be
time-consuming if better resolution is desired, particularly if a 3D calibration is
performed. However, the calibration only needs to be performed once. For the
current test, we only covered a subsection of the entire sensor: approximately
20 mm x 7 mm, which required 546 PSF images for a single plane.

2.2.3 Overlapping Reconstruction

A variation of the local vector approach is to build up the full particle image
by adding up all of the smaller reconstructed windows. Since our window size
is 300 x 300 pixels, and a 0.5 mm shift in space corresponds to a PSF shift of
26 pixels, there is significant overlap between adjacent windows. We account
for the overlap by performing an average over each reconstructed pixel. This
approach allows the noise to be somewhat filtered out because if a particle is
present, it will appear in multiple adjacent reconstructed images. Then, the
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typical PIV cross-correlation algorithm can be applied to compute the vector
field over the full reconstructed particle image. Note that, for 2D PIV, the
reconstructed particle image mosaic can be affected by the stereo effect if there
is substantial out-of-plane motion of the particles or if the laser plane is not
very thin.

2.2.4 Stereo Local Vector Approach

An alternative or variation of the local vector approach, which will allow mea-
surements of out-of-plane motion, is to perform the deconvolution over multiple
windows for each PSF, rather than just a window located at the center of the
PSF. That is, within each PSF, several interrogation subzones are selected. If
the particles are not in the same plane at which the PSF was acquired, there
will be a difference between the particle locations when they are processed
based on different subzones of the PSF. Similarly, any out-of-plane motion will
also produce different vectors when the cross-correlation is performed between
the two images. For the current setup, we do not have any substantial out-of-
plane motion to measure, nor could it be verified with the 2D lens-based PIV
setup. However, we demonstrate the concept using a point source to produce
PSFs at varying depths (Fig. 3). The resulting reconstructed particle locations
from the left (red) and the right (green) windows for two different depths are
shown in the insets of Fig. 3(b), and the profiles across the middle of the parti-
cles are shown in the plot. The minimum resolvable distance will be determined
by the magnification of the system, the separation of the two windows that
are measured (in our case 400 pixels), as well as the properties of the mask.
For the current case, a shift of approximately 1 pixel is observed for an axial
distance of 0.2 mm, and the shift is approximately 4 pixels for Az =0.6 mm.
There is also a clear degradation of the signal of the reconstructed particles as
the axial distance is increased. Thus, this technique would be limited to small
axial distances, which would work well for a typical stereo PIV setup in which
the laser sheet is typically on the order of 1 mm thick.
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Fig. 3 a Sketch of stereo PSF processing subzones. b Example reconstructed particles from
pinhole images taken at varying depths (insets) and the intensity profiles across the middle
of the particles.
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2.2.5 3D Reconstruction

Finally, we demonstrate the 3D capability of lensless imaging on a particle
image using the approach of Antipa et al (2018). This technique relies on
the assumptions mentioned previously that allow the use of a single PSF at
each depth. Their algorithm uses the alternating direction method of mul-
tipliers (ADMM) to reduce the computational time required to solve the
large inverse problem. This method also incorporates a sparsity parameter,
which allows the user to control the level of sparsity of the reconstruction. A
sparsity-constrained optimization could be ideal for particle image reconstruc-
tion, which is sparse by nature. However, this has not been studied in detail
for the current work. For the calibration, a PSF is required at multiple depths
throughout the field of interest. We acquired 49 PSFs with an axial spacing of
Az = 0.2 mm located at the center of the field of view.

3 Results
3.1 2D Results

An example reconstructed particle image using the overlapping reconstruction
approach is shown in Fig. 4. The particles reconstructed from the lensless image
are shown in black, while the lens-based PIV particle image is shown in red.
The lensless image was scaled and shifted to align with the PIV image. The
images are purposefully offset slightly to allow for easier comparison (LLPIV
to the left). Many of the particles that are visible in the PIV particle image are
also visible in the LLPIV reconstructed image, although there are a number of
particles that were also not seen by the LLPIV system. This could be due to
several factors, one of which is the difference in magnification between the two
systems. The other potential issue mentioned previously is the stereo effect
that could be negatively impacting the reconstruction. Regardless, this is an
encouraging result since we can clearly verify that the particles imaged by the
LLPIV system are the same particles seen by the lens-based PIV system. It
should be noted that the seeding density is relatively low, even in the lens-based
PIV images. We estimate a particle density of approximately 4-5 particles per
64x64 pixel interrogation window. The lensless system achieved approximately
60% of that particle density, on average. Maintaining consistent and dispersed
seeding was difficult with the current setup. In addition, if the particle seeding
was too dense, the lensless sensor would saturate. Thus, there may be a limit
to how many particles can be imaged for a given lensless setup.

Flow field data were acquired first for a uniform flow field. The time-
averaged results over 200 images are shown in Fig. 5. LLPIV results are shown
for both the overlapping reconstruction method (5(a)), and the local vector
method (5(b)). In order to quantify the difference in measured velocity across
the field of view, the time-averaged PIV velocity is first interpolated onto the
LLPIV grid, and then the difference is computed (AU=U 1 prv —Uprv). For
the most part, the LLPIV results are within 3% of the PIV results for both
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Fig. 4 Comparison of a reconstructed (inverted) particle image from the lensless camera
(black) and the particle image from the lens-based PIV setup (red)

reconstruction methods. A more extensive calibration of the LLPIV camera
would likely improve the comparison. Additionally, the u!. . . results are com-
puted by taking the root mean square of the differences at each location over
each of the 200 instantaneous flow fields. These values mainly fall within 4 to
10%. The differences are larger near the left and right edges of the field of view
(>10%). This area tended to have less particle density because it is near the
edge of the laser sheet. One problem with the LLPIV approach, as currently
implemented, is that there can be some noise present in the reconstructed
image, particularly in areas where no or very few particles are present. Thus,
in some cases, spurious vectors are sometimes computed in regions with low
particle density.

To increase the complexity of the flow, and to get an idea of how well the
LLPIV technique works in flows with gradients, the wind tunnel was elevated
so that the cameras were imaging the shear layer coming from the bottom of
the wind tunnel exit. An example comparison between the processed flow fields
is shown in Fig. 6. Only the overlapping reconstruction method results are
shown here, due to the limited area coverage and resolution of the local vector
field approach. Similar flow structures are seen in the U-velocity fields, and the
vectors agree well. However, once again there is more noticeable disagreement
near the left edge of the measurement region. Overall, the results are very
encouraging for a first attempt at this technique.
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Fig. 5 Example processed PIV results for a uniform flow field, in which the flow is from
right to left. The time-averaged LLPIV vector field is overlaid on contours of the normalized
difference in mean U velocity for the a Overlapping Reconstruction Method and b Local
Vector Method. Contours of the normalized u.,,,, velocity are shown for the ¢ Overlapping
Reconstruction Method and d Local Vector Method.

3.2 3D Results

Results for the 3D reconstruction are shown in Fig. 7. In Fig. 7(a), the 3D
reconstruction is compared with the 2D reconstruction of the same parti-
cle image in the = — y plane. The 3D result actually consists of multiple
reconstructed planes (one for each PSF provided in the calibration), so for
comparison purposes, the intensity is summed up over a z-depth of 2 mm in
order to capture all the particles in the laser plane. A slight offset is included
to allow for ease of comparison. Many of the same particles are recovered by
the 3D reconstruction, but several, particularly near the top and left side, are
not. This could be due to the fact that we use a single PSF per plane for the
3D reconstruction.

Due to the relatively thin laser plane, the 3D capability is demonstrated
by taking separate particle images with the laser plane translated by 0.5 mm
between the two images. This result is shown in Fig. 7(b). The intensities
are shown in red and black for the two separate laser planes. A clear shift is
evident between the two images, corresponding to approximately 0.5 mm in z,
although there is some overlap between the two as the laser plane appears to
have a thickness of approximately 1.5 mm. This 3D reconstruction capability
demonstrates the potential for doing volumetric PIV measurements with a
single camera sensor, although more work needs to be done to determine how
well the system can resolve out-of-plane motion of the particles.
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Fig. 6 Example processed instantaneous PIV results for the shear layer. a Vector field
comparison with LLPIV (black) and lens-based PIV (red), with zoomed-in views below.

Vector fields overlaid on U-velocity contours from the b LLPIV measurements and c lens-
based PIV measurements
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Fig. 7 a Comparison between 2D (black) and 3D (red) reconstructed particles. For the
3D reconstruction, intensities are summed over a z-range of 2 mm. b Comparison between

particle images taken with the laser plane at two different z-depths, separated by 0.5 mm.
Intensities are summed in .

4 Conclusions

Lensless particle image velocimetry was demonstrated for the first time using
a simple setup with readily available and off-the-shelf PIV equipment. The
velocity measurements were compared with measurements made using a lens-
based 2D PIV setup. The particle images and velocity field results agreed well
with the PIV results, though there is plenty of room for improvement. Sev-
eral areas, such as the design of the mask, reconstruction and post-processing



Springer Nature 2021 BTEX template

Lensless Particle Image Velocimetry 11

algorithms, and other system parameters need to be studied and optimized.
The main advantages of the lensless PIV system are its potentially small size
and its three-dimensional capability, along with the flexibility and versatility
of the system. The LLPIV system could conceivably be embedded in a model
surface, allowing near-surface velocity measurements that would otherwise be
impossible for some applications. Additionally, the stereo and 3D capabilities
of lensless imaging open the potential for 3D flowfield measurements with only
a single sensor, in a simple, compact, system.
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