
 1 

Anthropogenic influences alter the response and seasonality of 1 

evapotranspiration: A case study over two High Mountain Asia 2 

basins 3 

Fadji Z. Maina1,2*, Sujay V. Kumar1 4 
 5 
1 NASA Goddard Space Flight Center, Hydrological Sciences Laboratory, Greenbelt, Maryland, 6 
USA  7 
2 University of Maryland, Baltimore County, Goddard Earth Sciences Technology and Research 8 
Studies and Investigations, Baltimore, Maryland, USA 9 
 10 

*Corresponding Author: fadjizaouna.maina@nasa.gov  11 

 12 

 13 

Key points: 14 

1. Climate and human induced greening have different effects on evapotranspiration and 15 

therefore the land-atmosphere interactions. 16 

2. Though irrigation-induced greening rises pre-monsoon evapotranspiration, the latter 17 

decreases in post-monsoon due to groundwater depletion. 18 

3. Climate-induced greening increases evapotranspiration because the energy demand is 19 

easily met.  20 
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Abstract 21 

Earth’s vegetation has been increasing over the past decades, altering water and energy 22 

cycles by changing evapotranspiration (ET). Greening, caused by climatic and anthropogenic 23 

factors, has high rates in High Mountain Asia (HMA). Here we focus on two HMA basins (the 24 

Yangtze and the Ganges-Brahmaputra) to contrast the impacts of climate- and human- induced 25 

greening on ET. Though the rate of greening is similar in both basins, anthropogenic influences 26 

lead to dissimilar responses in ET. In the Yangtze, climate-induced greening increases ET, with 27 

the increase in moisture being high enough to meet the ET demand. In the Ganges-Brahmaputra, 28 

irrigation-induced greening does not alter annual ET, only pre-monsoon ET increases. The dry 29 

season declines in water storage due to pumping decrease ET, while laboriously meeting the 30 

demand. This study provides a representative example of the contrasting influences of climate 31 

induced and anthropogenic driven processes on the seasonality of ET.    32 

Keywords: High Mountain Asia, Greening, Evapotranspiration, irrigation, warming, climate 33 

change  34 

 35 

Plain Language Summary 36 

The significant increases in vegetation occurring on Earth are susceptible to altering the 37 

climate by affecting evapotranspiration. However, the responses in evapotranspiration to the 38 

changes in vegetation depend on the drivers of greening. Here we use High Mountain Asia as a 39 

testbed to contrast the impacts of greening on evapotranspiration. Irrigation-induced greening 40 

leads to an increase in transpiration and evapotranspiration in the pre-monsoon. However, because 41 

irrigation decreases water storage it decreases evapotranspiration in the post-monsoon. Climate-42 

induced greening, on the contrary, increases both evapotranspiration and water storage.   43 
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1. Introduction 44 

Terrestrial Evapotranspiration (ET) is a key component of the global energy and water 45 

cycles (Jung et al., 2010) and the second largest water vapor flux at continental scales. Around 46 

60% of the global annual precipitation returns to the atmosphere through ET (Findell et al., 2011; 47 

Oki & Kanae, 2006). ET connects the land surface with the atmosphere and is composed of: (1) 48 

transpiration (T), the dominant process of ET (Jasechko et al., 2013), (2) evaporation (E), and (3) 49 

canopy evaporation of intercepted rainfall (I). The coupling of water and energy cycles is generally 50 

dominated by T and E with I being the smaller contributor to overall ET. Assessing the long-term 51 

variability in ET and its drivers is essential for disentangling the impacts of climate change and 52 

human activities on the interactions between the land and the atmosphere (Douville et al., 2013). 53 

Anthropogenic activities and CO2 fertilization induce greening on Earth (Piao et al., 2020; 54 

Zhu et al., 2016), which affects the atmosphere and the climate by changing ET (Piao et al., 2020; 55 

Zeng, Peng, et al., 2018; Zeng, Piao, et al., 2018). Greening impacts the climate by cooling the 56 

land surface temperature (Kiehl & Trenberth, 1997; Shen et al., 2015) and influencing the 57 

redistribution of heat and moisture and the ratio of T to ET (T/ET; Forzieri et al., 2020; Yang et 58 

al., 2022). Consequently, greening impacts the surface energy partitioning, which exerts control 59 

on the atmospheric boundary layer and regulates the land-atmosphere feedback (Forzieri et al., 60 

2020; Puma et al., 2013; Williams & Torn, 2015).  61 

Human activities and global warming have intensified ET (Douville et al., 2013; Hu & Mo, 62 

2022; Zeng et al., 2012, 2014, 2016; Zeng, Peng, et al., 2018; K. Zhang et al., 2015) and more than 63 

50% of this ET intensification over the past 30 years is attributed to greening (Zhang et al., 2015). 64 

Increases in ET can slow down global warming as ET contributes to 70% of cooling on Earth 65 

(Cook et al., 2011; Shen et al., 2015; Zeng et al., 2017). However, because greening is caused by 66 
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many drivers, the responses in ET to greening are diverse, yet little is known about the responses 67 

in ET to the different drivers of greening (Hu & Mo, 2022; Z. Niu et al., 2019; Yang et al., 2022; 68 

Zeng, Piao, et al., 2018). 69 

High Mountain Asia (HMA), home to the largest reservoir of freshwater outside the polar 70 

region, experiences one of the highest rates of greening on Earth (Chen et al., 2019; Cortés et al., 71 

2021; Liu et al., 2021; Maina et al., 2022; Piao et al., 2015a, 2015b). HMA covers nine countries, 72 

including China, Bangladesh, and India, and encompasses hydrologic basins such as the Yangtze, 73 

and Ganges-Brahmaputra. HMA’s greening is caused by anthropogenic activities (irrigation) and 74 

a changing climate, i.e., increases in precipitation and decreases in snow cover (Maina et al., 2022). 75 

Because of the diversity of the drivers of HMA’s greening and its high increases, the region is a 76 

good candidate for studying the impacts of greening on ET.  77 

Here, we contrast the impacts of irrigation- and climate- induced greening on ET as well 78 

as its components T and E over two key basins of HMA, to demonstrate how anthropogenic 79 

influences alter the hydrologic response and seasonality. This is enabled through the development 80 

of a multivariate analysis, consisting of five variables that capture the effects of human activities 81 

(irrigation and groundwater depletion) and a changing climate into the land surface model Noah-82 

multi-parameterization (Noah-MP; Niu et al., 2011). The multivariate observational constraints in 83 

this analysis enable an improved representation of the hydrological processes from the lower 84 

atmosphere to the bedrock.  85 

In the Ganges-Brahmaputra, irrigation triggers the highest increases in leaf area index 86 

(LAI) in addition to depleting groundwater (Maina et al., 2022). The Yangtze, covered by forests, 87 

experiences greening because of increasing precipitation and warming. Over HMA, warming is 88 

occurring at a rate that is double the global average. This increases soil moisture by decreasing the 89 
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snow cover and creates an environment favorable to vegetation growth by making the growing 90 

season longer. Though previous studies have linked increases in ET to vegetation growth over 91 

HMA, these studies did not contrast the diverse responses in ET to the different types of greening 92 

(Yang et al., 2022; Piao, et al., 2018; Zhang et al., 2015). Therefore, here we focus on the following 93 

science objectives: 1) Contrast the relative impacts of climate- and human management-driven 94 

processes on the ET variations; 2) Quantify how the seasonality of these external drivers impacts 95 

ET patterns and Water Use Efficiency (WUE); and 3) Assess how anthropogenic water 96 

abstractions impact the regional responses in meeting the ET demand. The study, thus, provides a 97 

representative example of quantifying the heterogeneous changes in ET in response to climate 98 

variability and anthropogenic influences, which is important for many water resource applications 99 

(Sherwood & Fu, 2014; Syed et al., 2014; Webster et al., 2010).  100 

2. Study area and Methods 101 

2.1.The Ganges-Brahmaputra and the Yangtze basins 102 

The Ganges-Brahmaputra and the Yangtze (Figure 1) are two of the most important 103 

hydrologic basins of HMA (Viviroli et al., 2007), home to over a billion people. The Ganges-104 

Brahmaputra with a draining area of approximately 2 million km2, is a transboundary basin that 105 

encompasses the Ganges River, which has its source in the glaciated area of Gomukh in the 106 

Himalayas, and the Brahmaputra River which also originates from the Himalayas in the glaciated 107 

zone of Lake Mana Sarovar. This basin stretching out from the Himalayas to the Bay of Bengal 108 

has one of the highest irrigated areas in the world due to intense agriculture (Figure 1b). Croplands 109 

represent the dominant land cover of the Ganges-Brahmaputra, evergreen and mixed forests are 110 

mainly found in the Himalayas (Figure 1a). The Yangtze spans from the Tibetan Plateau to the 111 
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East China Sea. In this work, however, we only study the Upper Yangtze, located above Three 112 

Gorges Dam.  113 

2.2.Land Surface Modeling 114 

We utilize the Noah-MP (Niu et al., 2011) version 4.0.1, a widely used model that simulates 115 

key land-atmosphere interactions in addition to groundwater changes (Niu et al., 2011). The 116 

surface energy balance is computed at the canopy layer and the ground surface. The soil with a 117 

depth of 2 m is divided into four layers, and the water movement is simulated using the Richards 118 

equation (Richards, 1931). An unconfined aquifer is added below the 2 m of the soil column.  119 

For the HMA simulations, we use (1) an ensemble precipitation generated by Maina et al., 120 

(2022) by applying a localized probability-matched method (Clark, 2017) to blend three gridded 121 

precipitation products (the Integrated Multi-satellitE Retrievals for Global Precipitation 122 

Measurement IMERG (Huffman et al., 2015), the Climate Hazards group Infrared Precipitation 123 

with Stations CHIRPS (Funk et al., 2015), and the ECMWF Reanalysis ERA5 (Hersbach et al., 124 

2020)) and (2) meteorological forcing (temperature, shortwave, and longwave radiation, wind 125 

speed, relative humidity, etc.) generated by downscaling ERA5 following Xue et al., (2019), and 126 

(2022). The model uses the MERIT-DEM (Multi Error Removed Improved Terrain Digital 127 

Elevation Model; (Yamazaki et al., 2017)) elevation, slope, and aspect. The landcover is based on 128 

the Moderate Resolution Imaging Spectroradiometer (MODIS; (Friedl,  Mark & Sulla-Menashe,  129 

Damien, 2019)) at a resolution of 500 m, and the soil types are derived from the International Soil 130 

Reference and Information Centre (ISRIC, 2020) at a 250 m resolution. The model has a resolution 131 

of 5 km and was initialized by running it twice from 1990 to 2018. We, then, perform the 132 

assimilation from 2003 to 2020, a time frame based on the availability of the remotely sensed data. 133 

We assimilated five different remote-sensing data products:  134 
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• (1) European Space Agency Climate Change Initiative (ESA CCI) Soil Moisture: we 135 

assimilated the combined datasets using the one-dimensional ensemble Kalman Filter 136 

(EnKF) algorithm (EnKF;  Reichle et al., 2002). In this approach, the observations are 137 

rescaled to the model climatology using the cumulative density function (CDF) 138 

approach, following Kumar et al., (2012, 2014). 139 

• (2) MODIS LAI: We assimilated the MCD15A2H Version 6 of MODIS (Myneni et 140 

al., 2015) using the EnKF approach following Kumar et al., (2019). The updated LAI 141 

from assimilation is used to update the leaf biomass by dividing the LAI value with the 142 

specific leaf area, which varies with vegetation type (Liu et al., 2016). 143 

• (3) a Snow Water Equivalent (SWE) reconstruction: We assimilated the Kraaijenbrink 144 

et al., (2021)’s dataset, which employs a temperature index melt model (Hock, 2003) 145 

using the EnKF approach as described by Kumar et al., (2019).  146 

• (4) GRACE GSFC mascons terrestrial water storage (TWS) were assimilated using the 147 

one-dimensional ensemble Kalman smoother (EnKS) as described in Kumar et al., 148 

(2016) and Zaitchik et al., (2008).  149 

• (5) Irrigation: spatiotemporal values of the applied irrigated water were generated by 150 

combining a static irrigation dataset, the Global Irrigated Area Map (GIAM), and a 151 

time-varying irrigation map for India from Ambika et al., (2016). We directly added 152 

this estimated applied irrigated water as a source in the model using the sprinkler 153 

irrigation scheme for simplification though other irrigation schemes are used in the 154 

region. Also, the impacts of tillage are not accounted for. The applied irrigated water 155 

is subtracted from groundwater following (Nie et al., 2018). 156 
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A model ensemble of size 20 was created by perturbing the hourly meteorological forcing 157 

inputs (precipitation, downward longwave, and shortwave radiation), the modeled and the 158 

observed variables i.e., soil moisture, LAI, SWE, snow depth, and groundwater storage. The 159 

selected perturbation parameters are shown in Supplementary Table 1.  160 

Note that we also performed an open loop simulation i.e., a simulation without any 161 

assimilation accounting for the changes in climate only. The improved utility of the multivariate 162 

data assimilation has been validated by comparing the simulated streamflow, runoff, groundwater 163 

storage, ET, and snow cover to those obtained from other reanalyses, remotely sensed, and 164 

groundwater measurements (Maina & Kumar, 2023, Maina et al., 2023).  Here, we discuss the 165 

comparisons between the trends in simulated ET (Figure 2 and Supplementary Figure 3) and gross 166 

primary production (GPP, Supplementary Figure 1) and those derived from remotely sensed data.  167 

3. Results and discussions 168 

3.1.Greening and its influence on ET 169 

In HMA, the highest increases in LAI (>0.005 m2/m2/year) occur in the Ganges-170 

Brahmaputra and the Yangtze (Figure 2a). In the Ganges-Brahmaputra, greening mainly occurs 171 

over the croplands and the forests, however, the relative changes in LAI over the croplands remain 172 

higher than in the forests. Because of their lack of vegetation and high elevations, greening is not 173 

observed over the Himalayas. In the eastern part of the basin (i.e., the Brahmaputra), greening is 174 

very low (<0.001 m2/m2/year) because of the absence of irrigation and the climatological decrease 175 

in precipitation (Supplementary Figure 1). Though the Yangtze is predominantly covered by mixed 176 

forests and croplands (which are not irrigated), LAI increases only in mid- to low- elevation areas 177 

due to increasing precipitation (Maina et al., 2022), at a rate similar to the rates observed in the 178 

Ganges-Brahmaputra.  179 
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The Himalayas and the Brahmaputra have a decrease in ET (>7.5 mm/year) due to a 180 

decrease in water availability and the absence of greening, while the areas subject to greening in 181 

the Ganges-Brahmaputra have a mix of positive and no significant trends in ET (up to 15mm/year, 182 

Figure 2b). The highest increases in ET are in the Chambal and Betwa basins, which are not subject 183 

to irrigation, and areas near the Bay of Bengal. The Yangtze has a low to a statistically increasing 184 

trend in ET (>10 mm/year). Although greening is occurring at similar rates in both basins, the 185 

responses in ET to greening are different. As shown in Supplementary Figures 2 and 3 comparing 186 

the trends in ET obtained with the open loop and the multivariate assimilation, such an increasing 187 

trend in ET (which consistent with observations) is only observed while accounting for greening 188 

and groundwater depletion, while the open loop has statistically non-significant trends in ET in 189 

both the Ganges-Brahmaputra and the Yangtze basins.  190 

Figure 2g depicts the comparisons of the trends in the simulated and remotely sensed ET 191 

from MOD16 ( Running,  Steve et al., 2017) and the Global Land Evaporation Amsterdam Model 192 

(GLEAM; (Martens et al., 2017)). The trends in simulated ET agree with the trends in ET derived 193 

from MOD16 and GLEAM. 86% of GLEAM and 79% of MOD16 trends were captured by the 194 

model. In the Yangtze, the increases in ET agree with the trends in remotely sensed products. In 195 

the Ganges-Brahmaputra, the zero and positive trends in ET over the croplands agree with those 196 

of MOD16 and GLEAM. However, while our model indicates a decreasing trend in ET in the 197 

Himalayas, both MOD16 and GLEAM indicate a positive trend in ET. Such differences are likely 198 

arising from the assimilation of GRACE TWS, which has a decreasing trend in this region. The 199 

assimilation of GRACE data reduces subsurface moisture storage, which leads to a reduction in 200 

ET (Girotto et al., 2017).  201 

3.2.Impacts of greening on E, T, WUE, and the ratio ET/PET  202 
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In the Ganges-Brahmaputra, the trends in E are mostly a mix of decreasing and statistically 203 

insignificant (~4 mm/year, Figure 2c) patterns. Only the Chambal and the Betwa basins have 204 

sparse areas with increasing trends in E (up to 10 mm/year). On the other hand, T is increasing in 205 

all areas that experience greening (~15 mm/year, Figure 2d and Supplementary Figure 3), in 206 

agreement with previous studies (Niu et al., 2019; Yang et al., 2022). The spatial patterns of WUE 207 

(the amount of carbon gained through photosynthesis per unit of water lost through transpiration), 208 

computed as the ratio of GPP to ET, are similar to those of T and have increasing trends (Figure 209 

2e). However, the ratio of ET to the potential ET (ET/PET) has no and decreasing (very dispersed) 210 

trends over the irrigated lands (Figure 2f). The energy demand is, therefore, laboriously met despite 211 

the increasing trends in precipitation and applied irrigated water (shown in supplementary Figure 212 

4). The impacts of greening on T and ET are more prevalent in the Yangtze, as greening increases 213 

T (Supplementary Figure 3), while E decreases over the mixed forests (~ 3 mm/year). Though ET 214 

and WUE increase in the Yangtze, the energy demand is sufficiently met, as shown by the 215 

intensification of ET/PET. The increase in precipitation (shown in supplementary Figure 4a) is 216 

enough to meet the increasing ET demand and recharge the groundwater, consistent with Zhang 217 

et al., (2016). 218 

3.3.Influence of greening on the seasonal dynamics of ET  219 

Assessing the seasonality of ET as well as E and T provides a better understanding of the 220 

different behaviors observed in the two basins. ET is mainly increasing during the pre-monsoon 221 

and the monsoon (i.e., March to August) and decreases during the dry season (September to 222 

February). These trends in simulated ET by season are consistent with the trends in ET from 223 

MOD16 and GLEAM, shown in Supplementary Figure 5. Here, we present two selected periods 224 
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characterized by opposite trends, the pre-monsoon i.e., from March to May (Figure 3) and the post-225 

monsoon or the dry season from September to November (Figure 4).  226 

3.3.1. The pre-monsoon (March to May) 227 

The pre-monsoon season is characterized by low ET, ET/PET, and WUE (Supplementary 228 

Figures 6, 7, and 8). The highest increases in ET (>18 mm/year; Figure 3b) in the two basins are 229 

observed in the pre-monsoon. Over the irrigated lands of the Ganges-Brahmaputra, this 230 

intensification of ET is due to irrigation through the increases in LAI. This is confirmed by the 231 

high correlation coefficients between ET and LAI and the agreements on the signs of the trends in 232 

ET and LAI shown in Supplementary Figure 9. However, though irrigation is expected to increase 233 

E, the increases in T and WUE are more significant because of greening (Figures 3d and f, 234 

Supplementary Figure 3). In the Yangtze, climate-induced greening decreases E and increases T, 235 

WUE, and ET (Figures 3b, c, d, and f, Supplementary Figures 3 and 9). 236 

Precipitation significantly increases in the pre-monsoon period (> 50 mm/year, Figure 3e). 237 

In addition, irrigation is also performed during this season (Zhou et al., 2023). As a result, the pre-238 

monsoon corresponding to the growing season has one of the highest rates of increases in 239 

vegetation greenness (>0.004 m2/m2/year, Figure 3a) and soil moisture (0.004/year, Figures 3h). 240 

The increasing ET demand driven by greening is easily met because of the trends in soil moisture. 241 

As a result, ET/PET increases (>0.02/year, Figure 3g). Though TWS decreases in the pre-monsoon 242 

as in the other seasons (45 mm/year, Figure 3i), the applied irrigated water and the increase in 243 

precipitation keep the soil sufficiently wet to meet the ET demand. Nevertheless, the limited water 244 

available (only at the soil surface) leads to enhanced control of the vegetation on ET translated by 245 

high increases in T and WUE as demonstrated by Forzieri et al., (2020) and Williams & Torn, 246 

(2015).  247 
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The increases in pre-monsoon precipitation increase LAI, soil moisture, and TWS during 248 

the growing season (Figures 3e, a, h, and i) over the Yangtze. Such a rise in water supply increases 249 

ET/PET (>0.03/year, Figure 3g). However, the increase in ET (Figure 3b) is mainly related to the 250 

increases in T (>10 mm/year, Figure 3d, also indicated by the correlation coefficients between ET 251 

and E and T and the comparisons between the signs of the trends in ET, E, and T shown in 252 

supplementary Figure 10), as greening leads to more shading of the soil surface, which decreases 253 

E (>5 mm/year, Figure 3c), thereby weakening the coupling between the atmosphere and the soil 254 

surface while increasing the plant productivity as translated by the increase in WUE. 255 

Similar to the quantifications in Forzieri et al., (2020), these strong responses in ET to 256 

greening in the pre-monsoon are due to the high influence of LAI in the partition of surface-257 

available energy during the growing season. In addition, the high increases in ET induced by 258 

irrigation-driven greening over the Ganges-Brahmaputra could further increase the monsoon 259 

rainfall, in particular over the mountains, because of moisture transportation (Fletcher et al., 2022). 260 

3.3.2. The post-monsoon (dry) season (from September to November) 261 

The post monsoon season is characterized by high ET, ET/PET, and WUE (Supplementary 262 

Figures 6, 7, and 8). ET has increasing and decreasing trends over the irrigated lands of the Ganges-263 

Brahmaputra (Figure 4b) with ET increasing in the Himalayas foothills and the Chambal and 264 

Betwa basins. Over the croplands, the decreases in ET are linked to the decreases in E as T has no 265 

significant trends despite the greening (Figure 4c and d, Supplementary Figure 10). The post 266 

monsoon is characterized by a decreasing precipitation (25 mm/year, Figure 4e), and irrigation is 267 

not performed. Nonetheless, LAI keeps increasing (Figure 4a) likely because of the lagged 268 

influence of the monsoon while the groundwater decline influences the soil moisture (Figure 4h 269 

and i). The decline in water availability decreases ET/PET (0.025/year, Figure 4g) and affects the 270 
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crop productivity as shown by the trends in WUE. In the Chambal and Betwa basins, the soil 271 

humidity keeps increasing and is enough to maintain the ET demand, as such ET/PET rises.  272 

In the Yangtze, the post-monsoon ET increases at a rate lower than that of the pre-monsoon 273 

(~10 mm/year, Figure 4b). Though this season corresponds to senescence, the changes in ET are 274 

attributed to both the variations of T and E, with T having the highest control as shown by the 275 

correlation coefficients in Supplementary Figure 10. Nonetheless, the WUE increases. The 276 

intensification of the post-monsoon precipitation (Figure 4e) along with the increase in snowmelt 277 

resulting from warming, enhances both soil moisture and TWS (Figure 4h and i). ET demand is, 278 

therefore, met and ET/PET increases despite the low variations of ET (0.02/year, Figure 4g). These 279 

low trends in ET are not due to the limited water availability as shown by the trends in ET/PET 280 

and WUE, rather by the energy demand, which plays an important role since ET is mostly 281 

controlled by E during that season. 282 

In the Ganges-Brahmaputra, greening can exacerbate the decline in water availability in 283 

the post-monsoon because the limited moisture is not enough to meet the ET demand and affects 284 

the WUE. In such conditions, the increasing vegetation will pull out water from the deeper zones 285 

(Maina & Siirila-Woodburn, et al., 2022; Maina & Siirila‐Woodburn, 2020; Maxwell & Condon, 286 

2016), contributing to decreasing the groundwater storage. On the contrary, in the Yangtze, 287 

because greening is caused by climatic factors, the increases in precipitation and snowmelt are 288 

sufficient to maintain the ET demand, increase the WUE, and recharge the groundwater.  289 

4. Conclusions 290 

HMA’s greening, caused by human activities and changes in climate, triggers different 291 

responses in ET. In the Ganges-Brahmaputra, greening induced rise of ET is dampened by 292 

groundwater depletion during the dry season. ET is mainly controlled by variations in moisture 293 
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supply rather than atmospheric demand, therefore vegetation controls ET. Because greening causes 294 

ET to significantly change during the pre-monsoon, greening could amplify the impacts of 295 

irrigation on the monsoon by intensifying land-atmosphere interactions. Nevertheless, the decrease 296 

in ET and ET/PET likely weakens the connection between the atmosphere and the land during the 297 

dry season. In addition, the limited water availability conditions impact crop productivity by 298 

affecting the WUE. 299 

In the Yangtze, where greening is caused by climatic factors, ET, WUE, and ET/PET 300 

increase. The increases in precipitation and snowmelt are significant enough to meet the ET 301 

demand while increasing soil moisture and groundwater. Though greening is driven by climatic 302 

factors and the climate variability drives the ET patterns, these factors alone cannot explain the 303 

rise of ET, especially T and WUE (see Supplementary Figure 2 illustrating the trends in these 304 

variables when only accounting for the changes in climate). Such an increase in ET is mainly 305 

attributed to greening. 306 

Climate and human induced greening have different effects on ET and likely the climate 307 

dynamics. Future studies can rely on climate models to study the interactions between greening 308 

and climate while incorporating the vegetation dynamics and the processes controlling water 309 

availability, such as groundwater depletion.  310 
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2.0/global_daily/netcdf/p05/ 324 

• MODIS LAI: https://lpdaac.usgs.gov/products/mcd15a2hv006/ 325 
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Figure Caption 575 

 576 

Figure 1: High Mountain Asia (a) land cover derived from MODIS (Friedl,  Mark & Sulla-577 

Menashe,  Damien, 2019) and (b) the percent of irrigated areas (Salmon et al., 2015).  578 

Figure 2: Spatial distributions of the statistically significant annual trends in (a) LAI, (b) ET, (c) 579 

E, (d) T, (e) WUE, and (f) ET/PET; (g) represents the trends detection of ET compared to MOD16 580 

and GLEAM.  581 

Figure 3: Spatial distributions of the statistically significant pre-monsoon trends in (a) LAI, (b) 582 

ET, (c) E, (d) T, (e) P, (f) WUE, (g) ET/PET, (h) soil moisture, and (i) TWS. 583 

Figure 4: Spatial distributions of the statistically significant post-monsoon trends in (a) LAI, (b) 584 

ET, (c) E, (d) T, (e) P, (f) WUE, (g) ET/PET, (h) soil moisture, and (i) TWS.  585 
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  586 

Figure 1: High Mountain Asia (a) land cover derived from MODIS (Friedl,  Mark & Sulla-587 

Menashe,  Damien, 2019) and (b) the percent of irrigated areas (Salmon et al., 2015).  588 
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 590 

Figure 2: Spatial distributions of the statistically significant annual trends in (a) LAI, (b) ET, (c) 591 

E, (d) T, (e) WUE, and (f) ET/PET; (g) represents the trends detection of ET compared to MOD16 592 

and GLEAM.   593 

E
v

a
p

o
tr

a
n

sp
ir

a
ti

o
n

 (
E

T
)

L
e
a
f 

A
re

a
 I

n
d

e
x
 (

L
A

I)

Figure 2

(a)

(b)

GB Y

GB Y

75.975ºE 85.975ºE 95.975ºE
23.025ºN

26.025ºN

29.025ºN

75.975ºE 85.975ºE 95.975ºE
23.025ºN

26.025ºN

29.025ºN

90.975ºE 105.975ºE

26.025ºN

32.025ºN

90.975ºE 105.975ºE

26.025ºN

32.025ºN

G
L

E
A

M
M

O
D

1
6

(g)

GB Y

GB Y

75.975ºE 85.975ºE 95.975ºE
23.025ºN

26.025ºN

29.025ºN

75.975ºE 85.975ºE 95.975ºE
23.025ºN

26.025ºN

29.025ºN

90.975ºE 105.975ºE

26.025ºN

32.025ºN

90.975ºE 105.975ºE

26.025ºN

32.025ºN

Negative Hit (i.e., both remotely sensed and 

simulated ET have negative trends)

Negative Miss (i.e., remote sensing datasets have 

negative trends and simulations positive) 

Positive Miss (i.e., remote sensing have positive 

trends and simulation negative)

Positive Hit (i.e., both remotely sensed and 

simulated ET have negative trends)

(m2/m2/yr)

(mm/yr)

-15

-7.5

0

7.5

15.0

0.0

0.001

0.003

0.005

-0.03

-0.015

0

0.015

0.03

T
r
a

n
sp

ir
a
ti

o
n

 (
T

)
E

v
a
p

o
ra

ti
o
n

 (
E

)

(c)

(d)

GB Y

GB Y

75.975ºE 85.975ºE 95.975ºE
23.025ºN

26.025ºN

29.025ºN

75.975ºE 85.975ºE 95.975ºE
23.025ºN

26.025ºN

29.025ºN

90.975ºE 105.975ºE

26.025ºN

32.025ºN

90.975ºE 105.975ºE

26.025ºN

32.025ºN

E
T

/P
o

te
n

ti
a

l 
E

T
 (

P
E

T
)

(e)

GB Y23.025ºN

26.025ºN

29.025ºN

26.025ºN

32.025ºN

(mm/yr)

(/yr)

-15

-7.5

0

7.5

15.0

W
a
te

r 
U

se
 E

ff
ic

ie
n

c
y

 (
W

U
E

) 

(f)

GB Y

26.025ºN

29.025ºN

26.025ºN

32.025ºN

-0.05

-0.025

0

0.0725

0.05

(g C kg-1/yr)



 30 

 594 

Figure 3: Spatial distributions of the statistically significant pre-monsoon trends in (a) LAI, (b) 595 

ET, (c) E, (d) T, (e) P, (f) WUE, (g) ET/PET, (h) soil moisture, and (i) TWS.  596 
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 597 

Figure 4: Spatial distributions of the statistically significant post-monsoon trends in (a) LAI, (b) 598 

ET, (c) E, (d) T, (e) P, (f) WUE, (g) ET/PET, (h) soil moisture, and (i) TWS.  599 
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Supporting Information 600 

 601 

Variables Type Standard 

Deviation 

Temporal 

Correlation 

Perturbation cross-

correlations 

Forcing     

Precipitation M 0.2 24h 1.0   -0.5     -0.8 

Shortwave Radiation M 30 24h -0.5    1.0        0.5 

Longwave Radiation A 0.50 24h -0.8      0.5       1.0 

Assimilation of Soil 

Moisture 

    

ESA CCI Soil Moisture A 0.02 12h  

Modeled Soil Moisture 

Layer 1 

A 0.1 3h 1.0   0.6  0.4  0.2 

Modeled Soil Moisture 

Layer 2 

A 0.1 3h 0.6  1.0  0.6  0.4 

Modeled Soil Moisture 

Layer 3 

A 0.1 3h 0.4  0.6  1.0  0.6 

Modeled Soil Moisture 

Layer 4 

A 0.1 3h 0.2  0.4   0.6  1.0 

Assimilation of LAI     

MODIS LAI A 0.01 1 h  

Modeled LAI A 0.01 1h  

Assimilation of SWE     

SWE Reconstruction M 0.05 3h  

Modeled Snow Depth M 0.01 3h 1.0   0.9 

Modeled SWE M 0.01 3h 0.9   1.0 

Assimilation of GRACE     

GRACE TWS A 5.0 24h  

Modeled Soil Moisture 

Layer 1 

A 0.005 3h 1.0  0.6  0.4  0.2  0.0 0.0 

Modeled Soil Moisture 

Layer 2 

A 0.005 3h 0.6  1.0  0.6  0.4  0.0  0.0 

Modeled Soil Moisture 

Layer 3 

A 0.005 3h 0.4  0.6  1.0  0.6. 0.0  0.0 

Modeled Soil Moisture 

Layer 4 

A 0.005 3h 0.2  0.4   0.6  1.0  0.0  0.0 

Modeled Groundwater 

Storage 

A 0.1 3h 0.0  0.0  0.0 0.0  0.0  1.0  0.0 

Modeled SWE M 0.001 30min 0.0  0.0  0.0 0.0  0.0  0.0  1.0 

Supplementary Table 1: Applied perturbations for the multivariate data assimilation 602 

 603 

 604 

 605 

  606 
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 607 
Supplementary Figure 1: The trends detection of gross primary productivity (GPP) compared to 608 

MODIS. "Negative Hit" corresponds to locations where both remotely sensed and simulated GPP 609 

have negative trends, in "Negative Miss" remote sensing have negative trends and simulations 610 

positive, in "Positive Hit" both remotely sensed and simulated GPP have negative trends, and in 611 

"Positive Miss" remote sensing have positive trends and simulation negative. 612 
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 614 
Supplementary Figure 2: Spatial distributions of the open-loop trends in (a) Evapotranspiration 615 

(ET), (b) Evaporation (E), (c) Transpiration (T), (d) the water use efficiency (WUE) defined as the 616 

ratio of the gross primary production (GPP) to the evapotranspiration (ET), and (f) the ratio of 617 

evapotranspiration (ET) to the potential evapotranspiration (PET) i.e., ET/PET over the Ganges-618 

Brahmaputra (GB) and the Yangtze (Y). The open-loop simulation was performed without 619 

accounting for the impacts of greening and groundwater depletion. The trends were computed from 620 

2003 to 2020 using the Mann-Kendall test with a confidence level of 95%, non-significant trends 621 

were set to 0.  622 
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 623 

Supplementary Figure 3: Differences in the trends in ET (with subscript 1), T (with subscript 2), 624 

and E (with subscript 3) obtained with the open loop (i.e., simulation without the impacts of 625 

greening and groundwater depletion) and the multivariate assimilation (i.e., simulation accounting 626 

for the impacts of greening and groundwater depletion). Blue indicates areas where the 627 

multivariate assimilation has higher values than the open loop and red the opposite. This figure 628 

depicts the intensification of ET and its components triggered by greening. 629 
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 630 

 631 

Supplementary Figure 4: Spatial distributions of trends in (a) precipitation (P) and (b) applied 632 

irrigated water over the Ganges-Brahmaputra (GB) and the Yangtze (Y). The trends were 633 

computed from 2003 to 2020 using the Mann-Kendall test with a confidence level of 95%, non-634 

significant trends were set to 0. 635 
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 638 

 639 

Supplementary Figure 5: Spatial distributions of trends in Evapotranspiration (ET) from the 640 

Moderate Resolution Imaging Spectroradiometer (MODIS, MOD16) and the Global Land 641 

Evaporation Amsterdam Model (GLEAM) over the Ganges-Brahmaputra (GB) and the Yangtze 642 

(Y). The trends are computed for the four seasons (December-January-February DJF, March-643 

April-May MAM, June-July-August JJA, and September-October-November, SON). The trends 644 

were computed from 2003 to 2020 using the Mann-Kendall test with a confidence level of 95%, 645 

non-significant trends were set to 0. 646 
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 648 
Supplementary Figure 6: Spatial distributions of the (a) annual average Evapotranspiration (ET) 649 

and the annual average of the four seasons ((b) December-January-February DJF, (c) March-April-650 

May MAM, (d) June-July-August JJA, and (e) September-October-November, SON) over the 651 

Ganges-Brahmaputra (GB) and the Yangtze (Y).  652 
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 654 
Supplementary Figure 7: Spatial distributions of the (a) annual average of the ratio of 655 

evapotranspiration (ET) to the potential evapotranspiration (PET) i.e., ET/PET and the annual 656 

average of the four seasons ((b) December-January-February DJF, (c) March-April-May MAM, 657 

(d) June-July-August JJA, and (e) September-October-November, SON) over the Ganges-658 

Brahmaputra (GB) and the Yangtze (Y). 659 
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 661 

Supplementary Figure 8: Spatial distributions of the (a) annual average of the water use efficiency 662 

(WUE) defined as the ratio of the gross primary production (GPP) to the evapotranspiration (ET) 663 

and the annual average of the four seasons ((b) December-January-February DJF, (c) March-April-664 

May MAM, (d) June-July-August JJA, and (e) September-October-November, SON) over the 665 

Ganges-Brahmaputra (GB) and the Yangtze (Y). 666 
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 669 

 670 
Supplementary Figure 9: Pearson’s correlation coefficients between ET and LAI (a) on the annual 671 

scale, and during the (b) pre-monsoon and (b) post-monsoon. Comparisons between the trends in 672 

ET and LAI (d) on the annual scale, and during the (e) pre-monsoon and (f) post-monsoon. 673 

Negative Hit means that both ET and LAI have negative trends, Negative Miss is when ET has a 674 

negative trend and LAI a positive trend, Positive Miss is when ET has a positive trend and LAI a 675 

negative trend, and Positive Hit is when both ET and LAI have positive trends.  676 

 677 
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 679 

 680 
Supplementary Figure 10: Pearson’s correlation coefficients between ET and T (with subscript 1) 681 

and E (with subscript 2) (a) on the annual scale, and during the (b) pre-monsoon and (b) post-682 

monsoon. Comparisons between the trends in ET and T (with subscript 1) and E (with subscript 683 

2) (d) on the annual scale, and during the (e) pre-monsoon and (f) post-monsoon. Negative Hit 684 

means that both ET and T/E have negative trends, Negative Miss is when ET has a negative trend 685 

and T/E a positive trend, Positive Miss is when ET has a positive trend and T/E a negative trend, 686 

and Positive Hit is when both ET and T/E have positive trends. (g) areas where the transpiration T 687 

is the dominant driver to ET (i.e., ratio of T/ET is greater than 0.5) on the annual scale.  688 
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