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ANGLES-ONLY ROBUST TRAJECTORY OPTIMIZATION FOR
NRHO RENDEZVOUS

Timothy Cavesmith*, David Woffinden†, Nathan Collins‡

This study demonstrates a robust trajectory optimization approach for rendezvous and prox-
imity operations with angles-only navigation measurements. Often, sensors that directly
measure relative range and velocity require communication or coordination between the
chaser and target vehicle and can have limiting pointing accuracy, mass, or power require-
ments compared to angle measurement sensors. Thus, the capability to perform a rendezvous
with only angle measurements can be advantageous for vehicle design and to improve robust-
ness to failures. However, the well studied limitation of angles-only navigation in measuring
range results in large uncertainties in the navigation system that must be reduced with known
chaser vehicle translational maneuvers to induce observability in range for the navigation
filter. This analysis presents a trajectory optimization problem for a lunar ascent rendezvous
during a crewed lunar mission in a Near-Rectilinear Halo Orbit (NRHO) that is limited to
only angle measurements. The objective of this study is to show that an angles-only ren-
dezvous is feasible in an NRHO and to present the sensitivity to an assortment of constraints
generated from a systematic optimization process using linear covariance analysis and par-
ticle swarm optimization. Linearized NRHO dynamics and linearized relative targeting are
applied to use linear covariance analysis to determine the expected ∆v and trajectory disper-
sions due to initial state uncertainty, sensor errors, maneuver execution errors, and unmod-
eled dynamics. The ∆v and trajectory dispersions are passed into a particle swarm optimiza-
tion algorithm to find the optimized maneuver profile that minimizes propellant use while
satisfying constraints such as free drift and underburn to 3σ certainty. The trajectory con-
straints including time available, desired final uncertainty, and initial uncertainty are varied
to ascertain sensitivity and desirable engineering trades.

INTRODUCTION

As interest in exploring the lunar poles grows, space programs around the world are planning and executing
missions to cislunar space with unprecedented complexity and scale. NASA’s Artemis program plans to land
human explorers on the moon and focuses its operations in an Earth-Moon L2 Near Rectilinear Halo Orbit
(NRHO) due to its favorable communication and thermal properties and its transfer options to Earth, other
cislunar orbits, the lunar surface, and beyond.1 With the need to perform rendezvous and proximity opera-
tions in this new flight regime shown in Figure 1, which has yet to be flown by humans, robust plans will be
critical for mission success and crew safety. When selecting sensor suites and designing trajectories in this
new environment, mission planners must account for uncertainties in the guidance, navigation, and control
system (GN&C). Ideally, the selection of reference trajectories, navigation requirements, and mission con-
straints would account for expected and worst-case integrated GN&C performance in the presence of initial
state uncertainties, measurement errors, maneuver execution errors, and uncertainties in the environmental
dynamics model.2 In this text, robust trajectory design refers to techniques that account for such uncertainties
in GN&C performance. A trajectory optimization refers to using techniques to minimize a parameter such
as propellant use. Thus, the robust trajectory optimization process in this study generates maneuver profiles
that use minimal propellant while meeting specified mission objectives and constraints to a high probability
(corresponding to 3σ from the expected value in this analysis).
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Figure 1: Notional cislunar trajectory to NRHO

The conventional method of characterizing GN&C system performance in the presence of uncertainties
involves using Monte Carlo analysis to find the distribution of ∆v and trajectory dispersions for a given ref-
erence (nominal) trajectory.3 This is computationally intensive with lengthy run times because Monte Carlo
simulations involve running the specific reference trajectory hundreds or thousands of times with random
variables to generate statistical information (3σ dispersions). Thus, a Monte Carlo simulation to evaluate
a single reference trajectory might take on the order of minutes or hours. While this is feasible for valida-
tion, such a technique would be infeasible for use in a numerical optimization process, which might require
evaluating hundreds or thousands of reference trajectory candidates to find the global minimum solution.
Since the rendezvous scenario presented in this work includes safety constraints that are enforced with penal-
ties, the cost function becomes non-continuous and thus non-differentiable. This prevents the use of faster
optimization algorithms such as gradient descent. This work utilizes particle swarm optimization (PSO) to
minimize the trajectory cost function due to its ease of implementation and accuracy at finding the global
optimal solution, but previous robust optimization processes have utilized a genetic algorithm.4

Using Monte Carlo analysis to evaluate the hundreds or thousands of reference trajectories in the optimiza-
tion loop would take days or weeks. Instead, this work uses linear covariance analysis (LinCov) to determine
the equivalent statistical GN&C performance because it is significantly faster. LinCov determines these met-
rics by directly propagating (dynamics), updating (measurements), and correcting (impulsive translational
maneuvers) the covariance of the state dispersions and navigation error in time with a single simulation run.
This is possible by linearizing the dispersion dynamics, the navigation update equation, and the state impul-
sive correction about the nominal (reference) trajectory at each time step.5 The nominal trajectory is still
propagated with non-linear dynamics. LinCov for robust trajectory optimization has been used for cislunar
midcourse correction,4 rendezvous with range and range-rate measurements,6 powered descent and landing,7

and Mars aerocapture8 and the optimal solution can be validated by Monte Carlo analysis once found.9 This
study expands this robust trajectory optimization technique to angles-only rendezvous trajectories.

As outlined by Raja Chari, angles-only navigation is desirable because simple sensors, including optical
and infrared cameras, radio direction finders, and two-way radio systems, can determine the line-of-sight
direction.10 These systems use less power and mass (especially at longer ranges) and can have less stringent
pointing accuracy requirements than radar and lidar systems. Additionally, angles-only navigation often has
looser cooperation requirements between the chaser and target vehicle than relative GPS and lidar systems.
Also, some angles-only techniques provide the potential for passive sensing for stealth, and angles-only
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backup plans can provide robustness to systems that already possess a means of acquiring angle measure-
ments. Despite these benefits, a later section in this analysis and previous work10 show that angles-only
navigation has a limitation in determining range. Often, the relative position and velocity cannot be de-
termined with angle measurements alone due to a lack of observability. However, Woffinden shows that
observability of a linear system can be guaranteed with a calibrated translational maneuver that generates an
alternate line-of-sight profile.11 The observability burns are most effective when they maximize the change
in the line-of-sight profile (or increase the corresponding observability angle). Since adding observability
maneuvers to the nominal trajectory adds time and ∆v to the baseline maneuver profile, it is desirable to
optimally place these observability burns to minimize total ∆v, which is the sum of nominal propellant usage
and 3σ ∆v dispersions. The optimized profile must robustly adhere to desired performance requirements and
safety constraints given uncertainties in integrated GN&C performance. This study analyzes a contingency
scenario shown in Figure 2 where astronauts departing the lunar surface in an ascent vehicle must complete
a rendezvous to a target vehicle in an NRHO with only angle measurements.

Figure 2: Notional departure from lunar surface to NRHO insertion

This paper begins by describing LinCov analysis, trajectory constraints, cost functions, and the optimiza-
tion method. It also summarizes the linearized NRHO dynamics, impulsive maneuver targeting, and sensor
models used in LinCov to propagate, update, and correct a GN&C system’s covariance matrix. Then, it com-
pares the statistical GN&C performance of the baseline rendezvous trajectory with direct ranging sensors and
angles-only sensor suites. Finally, it presents the results of a trade space analysis, showing how variation
in the number of observability burns, the time available to generate observability, allowed final position dis-
persions from the nominal trajectory (measure of accuracy), and initial state uncertainty (function of ground
tracking performance) affects total ∆v in the optimized maneuver profiles.

ANALYSIS APPROACH

Performance Metrics

To determine the optimal performance for utilizing an angles-only navigation strategy for NRHO ren-
dezvous, several key performance metrics must be defined to objectively quantify what is acceptable and
what constitutes an integrated system failure. These metrics are derived from four states illustrated in Figure
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3. The first is the true state x which is an n-dimensional vector that represents the real world environment
or actual state. The nominal state x̄ is another n-dimensional vector that represents the desired or reference
state. The navigation state x̂ is an n̂-dimensional vector (n̂ < n) that represents the filter’s estimated state.
The design state x, often assumed to be the true state, is used to design the onboard navigation filter.

Figure 3: GN&C performance metric variables

The variation between these states constitute the actual performance metrics considered in this analysis,
also depicted in Figure 3. These include the true trajectory dispersions δx, the navigation dispersions δx̂,
the true navigation error δe, and the onboard navigation error δê. The true dispersions δx are defined as the
difference between the true state x and the nominal state x̄. The covariance matrix of the true dispersions, D,
indicates how precisely a GN&C system can follow a desired trajectory.

δx
∆
= x− x̄ D = E

[
δxδxT

]
(1)

The navigation dispersions δx̂ are defined as the difference between the navigation state x̂ and the nominal
state x̄. The covariance of the navigation dispersions, D̂, reflects how precisely the onboard system thinks it
can follow a prescribed reference trajectory.

δx̂
∆
= x̂−Mxx̄ D̂ = E

[
δx̂δx̂T

]
(2)

The matrix Mx is an (n̂×n) matrix that maps the estimated state in terms of the true and nominal state. This
matrix is necessary to account for the differences in vector length for x̂ and x̄.

The true navigation error δe is the difference between the true state and navigation state. It can also be
calculated using the difference between the true dispersions and navigation dispersions. The covariance of
the true navigation error, P, quantifies how precisely the onboard navigation system can estimate the true
state.

δe
∆
= Mxx− x̂ = Mxδx− δx̂ P = E

[
δeδeT

]
(3)

The onboard navigation error δê itself is never computed, but it is used to develop the onboard navigation
filter equations. It is defined as the difference between the design state, x, and the navigation state x̂. The
covariance of the onboard navigation error, P̂, quantifies how precisely the onboard navigation system ex-
pects it can determine the actual state. The performance of the onboard navigation system is determined by
comparing P̂ to the actual navigation performance P.

δê
∆
= x− x̂ P̂ = E

[
δêδêT

]
(4)
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If the true states and the design states are assumed to be the same, then the true navigation covariance will
equal the onboard navigation covariance.

The covariance matrices of the true dispersions, navigation dispersions, true navigation error, and the
onboard navigation error are ultimately used to analyze and assess the performance of a proposed GN&C
system. A common approach to obtain these performance metrics is to use a Monte Carlo simulation outlined
in Figure 4, where the sample statistics of hundreds or thousands of runs, N , are used to numerically compute
the desired covariance matrices.

D =
1

N − 1

∑
δxδxT D̂ =

1

N − 1

∑
δx̂δx̂T P =

1

N − 1

∑
δeδeT (5)

The onboard navigation error covariance P̂ is the navigation filter covariance for each run.

Figure 4: Extracting GN&C performance metrics using Monte Carlo techniques

This same statistical information can be obtained using linear covariance analysis techniques. Linear
covariance analysis incorporates the non-linear system dynamics models and GN&C algorithms to generate
a nominal reference trajectory x̄ which is then used to propagate, update, and correct an onboard navigation
covariance matrix P̂ and an augmented state covariance matrix C,

C = E
[
δXδXT

]
(6)

where the augmented state δXT = [δxT δx̂T] consists of the true dispersions and the navigation dispersions.
Pre- and post-multiplying the augmented state covariance matrix by the following mapping matrices, the
covariance matrices of the trajectory dispersions, navigation dispersions, and the navigation error can be
obtained with a single simulation run.

D = [ In×n, 0n×n̂ ]C [ In×n, 0n×n̂ ]
T

D̂ = [ 0n̂×n, In̂×n̂ ]C [ 0n̂×n, In̂×n̂ ]
T (7)

P = [ In̂×n, −In̂×n̂ ]C [ In̂×n, −In̂×n̂ ]
T

Linear Covariance Analysis

The linear covariance (LinCov) analysis equations used to propagate, update, and correct both the aug-
mented state covariance matrix and the onboard navigation covariance matrix are summarized here. For
additional details regarding the development and implementation of the linear covariance simulation, see the
following references.5, 9, 12–15
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LinCov Analysis Modeling The discrete-time propagation equations for augmented state covariance ma-
trix C and the onboard navigation covariance matrix P̂ are summarized as previously outlined by Goulet,6

C(tk+1) = Φ(tk+1, tk)C(tk)Φ
T (tk+1, tk) +GQGT (8)

P̂(tk+1) = Φ̂(tk+1, tk)P̂(tk)Φ̂
T (tk+1, tk) + ĜQ̂ĜT (9)

where Φ and Φ̂ are augmented and onboard state transition matrices, respectively for the linearized perturba-
tion dynamics about the reference trajectory. The mapping matrices, G and Ĝ, are used to map environmental
and navigation process noise characterized by Q and Q̂, into C and P̂.

The measurement update equations for augmented and navigation state covariance matrices, C and P̂, at a
measurement time ti are

C+(ti) = AC−(ti)A
T +BRj(ti)B

T (10)

P̂+(ti) =
[
Î− K̂j(ti)Ĥ

j
]
P̂−(ti)

[
I − K̂j(ti)Ĥ

j
]T

+ K̂j(ti)R̂
j(ti)K̂

j(ti)
T (11)

where the superscript ‘j’ denotes the jth measurement type. The matrices A and B map the effects of the
measurements and their associated noise to the navigation state dispersions. The Kalman gain is written as

K̂j(ti) = P̂(ti)(Ĥ
j)T

[
ĤjP̂−(ti)(Ĥ

j)T + R̂j(ti)
]−1

(12)

where the matrices Ĥ and R̂ are the measurement sensitivity and measurement noise matrices, respectively.

The correction equations for C and P̂ at a maneuver time tm are

C+(tm) = MC−(tm)MT +NQact
w NT (13)

P̂+(tm) =
[
Î+ M̂

]
P̂−(tm)

[
I + M̂

]T
+ N̂Q̂act

w N̂T (14)

The matrices M and M̂ contain the control partials associated with a linearized two-impulse targeting algo-
rithm. The matrices N and N̂ are used to map the effects of actuator noise, described by Qact

w and Q̂act
w , into

C and P̂.

Trajectory Constraints and Metrics

The baseline rendezvous maneuver profile contains 3 burns labeled Maneuver 1 (M1), Maneuver 2 (M2),
and Maneuver 3 (M3) as shown in Figure 5. The trajectory constraints are driven by safety, crew schedule,
desired final uncertainty, ground tracking performance, sensor requirements, and available propellant. To
ensure a safe rendezvous with the target vehicle, this analysis ensures passive safety with a free drift and
underburn constraint to guarantee that the chaser vehicle will not enter the approach sphere (before permission
is granted after M3) or the keep-out sphere if the thrusters fail mid-burn or mid-transfer. The 3σ position
dispersion from the nominal trajectory at M3 is the performance metric to quantify the GN&C system’s
uncertainty at the end of the profile. A high position dispersion indicates greater uncertainty of the chaser
vehicle’s position at M3 and implies poor performance. The constraints on time are driven by crew schedule
and are a requirement of at least 1 hour between maneuvers and a restriction on additional time from the
baseline profile’s duration. In this scenario, a maximum of 3 hours to generate observability is the desired
upper limit because any additional time poses a great demand on crew schedule. Also, in this notional
scenario, the desired upper limit for allowable position dispersions at M3 are 1 km given the short distance
to the target. The initial state dispersions in position and velocity are a function of ground site tracking
performance. The ±20 deg approach corridor is to allow optical sensors and crew to visual acquire and
track the target throughout the rendezvous and satisfy other vehicle system constraints. Finally, the available
propellant constrains the change in velocity (∆v) allotted to perform maneuvers in this phase of flight. Time
and nominal ∆v are negatively correlated because lower maneuver ∆v is generally associated with longer
transfer times.
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Figure 5: Direct-approach baseline NRHO rendezvous profile

Cost Function

The cost function calculates total ∆v (nominal ∆v + 3σ∆vi ) across all thruster burns including the 3 burns
to maneuver from M1 to M3 in the baseline profile and the number of additional observability maneuvers
(nobs). Trajectory safety constraints are enforced using large penalties κ added to the cost function when a
constraint is violated. Thus, the optimization is set up to prioritize safety before propellant efficiency.

cost =
3+nobs∑
i=1

(∆v(ti) + 3σ∆vi) + κapproach corridor + κfree drift + κtransfer time (15)

The trajectory constraints that are enforced by penalty are defined below. Notably, underburn (passive
safety protection in case thrusters fail mid-burn) is not enforced by penalty and instead will be forced using
out of plane geometry as described in a later section to reduce computation time.

Approach Corridor The approach corridor constraint requires nominal trajectories and associated 3σ po-
sition dispersions to stay within a ±20o cone around the z-axis behind the target vehicle in the Sun-referenced
LVLH coordinate frame to satisfy operational requirements.

κapproach corridor =


10000 if |yz | > tan (20o) for any y, z on the 3σ position ellipses
10000 if |xz | > tan (20o) for any x, z on the 3σ position ellipses
0 otherwise

(16)

Free Drift The free drift constraint requires that if the thrusters fail after a burn, the nominal state with
3σ dispersions for the associated free-drift trajectories will not encroach a 1 km approach sphere around the
target vehicle for the M1, M2, and observability (OBS) burns and a 200 m keep-out sphere around the target
vehicle for the M3 burn.

κfree drift =

 10000 if ρ− 3σρ <

{
1000 m for the M1, M2, or OBS burns
200 m for the M3 burn

0 otherwise
(17)
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Maneuver Transfer Time The maneuver transfer time constraint requires at least one hour between burns.
This permits enough time for attitude adjustments and state measurements between maneuvers and would
give a crew time to prepare between burns.

κtransfer time =

{
10000 if for burn times ti, min( ti+1 − ti) < 3600sec
0 otherwise

(18)

Optimization Algorithm

The algorithms used to solve the angles-only optimization problem is a particle swarm optimizer (PSO)
combined with a direct search algorithm developed by Goulet.6 This dual approach allows the PSO to perform
a global optimization search of the rather complex system and discontinuous nature of the cost functions.
Once the PSO converges, the direct search algorithm continues the optimization process with just a few cost
function evaluations to ensure the optimized solution is at least a local minimum. During each iteration,
candidate values of the optimization variables are passed to the LinCov simulation, which passes results into
a cost function and then returns the cost value to the optimizer. This process is illustrated in Figure 6.

Figure 6: Functional relationship between the LinCov simulation and optimizers6

For all of the results presented in the sections below, each trajectory optimization used 400 particles and
300 iterations in the particle swarm optimizer. For a 17 core computer cluster, each optimization took ap-
proximately 3 hours, which corresponds to a wall clock time of about 1.5 seconds per particle (trajectory)
evaluation. In comparison to the PSO run time, the direct search algorithm added a trivial duration to total
run time (usually 1 to 2 minutes). The results from 35 simulations are presented below with a total simulation
time of approximately 110 hours.

GN&C MODELING

Reference Frames

As summarized by Mand,3 the reference frames that describe the inertial and relative rendezvous trajec-
tories are illustrated in Figure 7. The Earth-Centered inertial reference frame has its origin at the center of

8



Earth with the primary x-axis fixed, pointed at the vernal equinox, and the z-axis aligned with the rotation
axis of Earth at a specific epoch defined as noon on January 1st, 2000 as the J2000 frame. The bottom-right
picture displays the Earth-Moon rotating pulsating frame (EM) where the x-axis is pointed from the Earth
to the Moon and the z-axis is perpendicular to the Moon’s orbital plane. Notably, the distance between the
Earth and Moon is normalized to the mean value such that the frame is pulsating.

Figure 7: Inertial, LVLH, and Earth-Moon rotating reference frames

Conventionally, relative trajectories for rendezvous in a low Earth/lunar orbit are described using the local
vertical, local horizontal (LVLH) frame with its origin at the target vehicle. The x-axis (downrange) is
generally pointed in the direction of target velocity and the z-axis (altitude) is aligned with the radial vector
to the central body being orbited. However, for an NRHO, the velocity vector would not be generally aligned
with the x-axis. Additionally, in this case, operational constraints require that the chaser vehicle approaches
the target with the sun at a specific angle. Thus, this analysis uses the Sun-referenced LVLH frame (S-LVLH)
with the direction to the sun aligned with the z-axis and the negative y-axis generally pointing near the Moon
for most of the orbital period. Figure 8 presents the S-LVLH frame.
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Figure 8: Sun-referenced LVLH frame

Linearized NRHO Dynamics

The significant number of calculations made within the optimization process requires a simpler, lower
fidelity dynamics model to reduce computation time. Luquette linearizes relative motion dynamics for the
restricted three body problem (RTBP) about the target spacecraft in his doctoral dissertation Nonlinear Con-
trol Design Techniques for Precision Formation Flying at Lagrange Points. Assuming the rotation of the
Sun-referenced LVLH coordinate frame is negligible, this is expressed as the system of differential equations

Ẋ =

[
03 I3
Ξ(t) 03

]
X = ALRX (19)

where

Ξ(t) = −
(

µ1

|r1L|3
+

µ2

|r2L|3

)
I3 +

3µ1

|r1L|3
[
e1L · eT

1L

]
+

3µ2

|r2L|3
[
e2L · eT

2L

]
(20)

Figure 9 shows the vectors referenced in Equation 20: r1L and r2L refer to the vectors from the two central
masses to the leader (target) satellite, whereas e1L and e2L refer to the normalized form of these vectors. µ1

and µ2 represent the gravitational parameters of the two central masses. In this paper, the two central masses
are the Earth and the Moon. Assignment of the “1” and “2” subscripts to these bodies is arbitrary.

Figure 9: Diagram of vectors in the RTBP
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Linearized Relative Targeting

Deriving the targeting equation for linear relative dynamics requires the system’s state transition matrix
(STM). Though ALR varies with time, this change is negligible for sufficiently small differences in timesteps.
For a given time tj , the system’s STM from tj to tj +∆t is given by

Φj(∆t) = eALR(tj)∆t (21)

An approximate STM between distant timesteps may be formed via the product of intermediate STMs. As-
suming a uniform δt between timesteps such that ∆t = nδt,

Φ(∆t) =
n∏

j=1

Φj(δt) (22)

Since there are six states in the current system (relative position and velocity vectors), Φ(∆t) is a 6x6 matrix.
Thus, it can be broken into four 3x3 components:

Φ(∆t) =
[

Φrr Φrv

Φvr Φvv

]
(23)

Using Φ(∆t) to determine how an instantaneous change in velocity ∆v will influence the relative position at
time ti +∆t, [

rf
vf

]
=

[
Φrr Φrv

Φvr Φvv

] [
ri

vi +∆v

]
(24)

rf = Φrrri +Φrv (vi +∆v) (25)

So, targeting a position rf from a given state [ri, vi]
T requires a ∆v of

∆vnominal = Φ−1
rv (rf − Φrrri)− vi (26)

In this simulation, there is 3σ thruster noise of 0.015 m/s. Thus, the actual ∆v produced by a maneuver is
given by

∆vactual = ∆vnominal + ηthruster (27)

Sensor Models

The sensor measurements assumed for this study are the relative range, range-rate, and bearing angle
between the chaser and target vehicle. To reduce the computational load, simplified models are adopted
which are presented in Equations 28-30.

zρ = |r|+ ηρ (28)

zρ̇ = vT r
|r|

+ ηρ̇ (29)

zlos =
r
|r|

+ ηlos (30)

The 3σ noise for the bearing angle is 2 · 10−4 rad in both the azimuth and elevation directions. The 3σ
dispersions for range and range-rate are 25 m and 0.25 m/s respectively in all directions.

ROBUST TRAJECTORY DESIGN FOR ANGLES ONLY NAVIGATION IN NRHO

This section begins by comparing the performance of a given GN&C system in following a baseline tra-
jectory with a sensor suite that provides range, range-rate, and angle measurements to an onboard navigation
filter. Then, this section illustrates the necessity of chaser vehicle maneuvers to sufficiently reduce navigation
uncertainties to enable an angles-only rendezvous. The objective of these results is to provide insight into the
feasibility of performing a robust optimization of an angles-only NRHO rendezvous and the costs of trades
in trajectory constraints to achieve desired performance.
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Baseline Rendezvous Trajectory

As shown in Figure 10, the baseline maneuver profile contains 3 burns (M1, M2, and M3) beginning on
the positive Y and Z S-LVLH axes at M1 and ending on the negative y-axis at M3. The M1 initiation point is
100 km from M3 and is preceded by a 1 hour period for target acquisition and preparation for the rendezvous
sequence. The M2 burn is a mid-course correction and has zero ∆v nominally. The shaded part of Figure 10
represents the ±20o cone of the approach corridor.

Table 1 below describes the assumed sensor error values, thruster errors, process noise, initial dispersions,
and initial navigation errors for the LinCov analysis.

Table 1: Uncertainty parameters for LinCov analysis

Description Value Units

Initial position dispersions (3σ) [7.75, 7.75, 7.75] km

Initial velocity dispersions (3σ) [1.55, 1.55, 1.55] m/s

Initial navigation position error (3σ) [7.75, 7.75, 7.75] km

Initial navigation velocity error (3σ) [1.55, 1.55, 1.55] m/s

Process noise dispersion and error
[
5× 10−8, 5× 10−8, 5× 10−8

]
m2/s3

Thruster noise dispersion and error (3σ) [15, 15, 15] mm/s

Comparison of Full Sensor Suite and Angles-Only Navigation on Baseline Trajectory

The chaser vehicle’s baseline relative navigation sensor suite includes range and range-rate measurements
along with bearing or angle measurements. However, the sensor suite in this contingency scenario relies
solely on angle measurements. Figures 11a and 11b illustrate the position dispersions from a LinCov analysis
for the integrated GN&C performance of the chaser vehicle along the direct-approach baseline trajectory

(a) Baseline in-plane (b) Baseline out-of-plane

Figure 10: Baseline NRHO rendezvous trajectory
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with range, range-rate, and angle measurements. Figures 11c and 11d illustrate the position dispersions with
angles-only navigation. By inspection, the plots of the angles-only navigation case have elongated position
dispersion ellipses in the line-of-sight direction.

(a) In-plane: range + range-rate + angles (b) Out-of-plane: range + range-rate + angles

(c) In-plane: angles-only (d) Out-of-plane: angles-only

Figure 11: Baseline trajectory: sensor suite comparison

The performance values provided in Table 2 indicate that the angles-only case arrives at the M3 burn with
a navigation position error that is 77.33 times greater and position dispersions that are 25.38 times greater
than the value in the range + range-rate + angles case. This demonstrates that the lack of range observability
in the angles-only case creates significant uncertainties in the navigation filter, which lead to significant
position dispersions from the desired M3 location due to the GN&C system’s inability to accurately follow
the reference trajectory.
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Table 2: Baseline trajectory: Range + Range-rate + Angles vs Angles-only

Sensor Suite Nominal
∆v (m/s)

Total
∆v (m/s)

M3 Position
Dispersion (m)

M3 Navigation Posi-
tion Error (m)

Range + Range-rate +
Angles

12.49 19.377 248.8 7.3

Angles-only 12.49 30.082 6314.4 564.5

To highlight the difference in GN&C performance between the baseline navigation sensors and the angles-
only case between the previous scenarios, Figure 12 presents a summary of the relative position and velocity
statistics (environmental dispersions and true navigation error) in each S-LVLH axis for the full sensor suite
case (range + range-rate + angles). As expected, the navigation error rapidly decreases from the initial
values indicating that the sensor measurements have reduced the navigation filter’s uncertainty in position
and velocity. After the first maneuver (M1), the position environment dispersions decrease due to the GN&C
system correcting the vehicle back to the desired reference trajectory. Since the GN&C system has low
navigation uncertainty in this case, the maneuvers are successful in reducing the environmental dispersions.

Figure 12: Relative dispersion and error summary for baseline trajectory with Range + Range-rate + An-
gles

However, in the case of the baseline maneuver profile with only angle measurements, Figure 13 illustrates
the significant navigation uncertainties in the line-of-sight direction (mostly along the z-axis in the S-LVLH
frame). Unlike in the x-axis and y-axis, the navigation uncertainties do not rapidly approach zero in the
z-axis from their initial values as shown in the bottom two plots in Figure 13. Due to the high navigation
uncertainties in range, the M1 maneuver is unable to correct the environmental dispersions, which allows
significant growth in position dispersions as the chaser vehicle approaches the target. Thus, the apparent lack
of range observability is the cause of the M3 position dispersions being 25.38 times greater in the angles-only
case. Notably, the navigation errors in the z-axis eventually decrease because M1 is a known chaser vehicle
maneuver with a small velocity component perpendicular to the chaser’s line-of-sight to the target. However,
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despite the navigation error eventually converging, the position dispersions are too high at M3 to allow for a
safe rendezvous. Thus, the baseline trajectory profile must be modified to permit an angles-only rendezvous
by adding maneuvers that generate sufficient observability.

Figure 13: Relative dispersion and error summary for baseline trajectory with angles-only navigation

Observability Maneuvers

A system is observable if the initial state can be determined from the inputs and outputs,16 which are trans-
lational maneuvers and sensor measurements in this problem. Previously, Woffinden analytically demon-
strated that for a linear time-invariant system (including linear relative orbital motion dynamics), angles-only
measurements are insufficient for determining the initial relative position and velocity.11 He shows that the
relative range to a chaser vehicle is unobservable for linear relative orbital dynamics despite relative natural
motion and that observability is guaranteed when the change in position due to a calibrated thrust accelera-
tion is not aligned with the natural line-of-sight profile. A linear covariance analysis of angles-only relative
motion from Chari10 indicates that relative natural motion with a component normal to the line-of-sight will
eventually reduce the range uncertainty due to nonlinearities in the orbital dynamics. However, his analysis
indicates that relative orbital motion alone, which relies on natural motion is often not sufficient to reduce the
range uncertainty to an acceptable level for proximity operations in low earth orbit. As shown in the previ-
ous section, this observability problem persists in the case of linearized NRHO relative dynamics around the
moon. Thus, there is a need for chaser vehicle observability maneuvers to decrease range uncertainty. While
previous work indicates that the ideal observability maneuver is completely perpendicular to the line-of-sight,
such maneuvers require greater deviations from the baseline trajectory and more ∆v. Thus, the optimization
problem asks where and when to place additional observability maneuvers in the baseline trajectory to mini-
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mize the total (3σ + nominal) ∆v usage while adhering to operational and safety constraints included a cost
function.

In the presented scenario of a hypothetical angles-only contingency after lunar departure, the baseline
NRHO rendezvous trajectory will be modified by inserting observability maneuvers between M1 and M2.
The baseline profile between M2 and M3 will be preserved. This analysis will assume that due to mission
constraints, a desirable baseline for a maneuver-assisted trajectory would add up to an additional 3 hours
and 20 m/s of ∆v to the direct-approach baseline profile to generate observability and limit the allowable 3σ
position dispersion at M3 to 1 km. These constraints are attributed to crew schedule, available propellant,
and allowable risk (where a higher M3 3σ position dispersion implies greater risks of collision). Finally, the
observability maneuvers will be selected out-of-plane of the baseline direct-approach trajectory to preserve
the in-plane nominal profile between M1 and M3 and to ensure that the underburn constraint is met. As seen
in Figure 14, most locations for observability burns in-plane with the baseline trajectory would violate the un-
derburn constraint, which prevents a collision due to thruster failures mid-burn. Thus, selecting observability
maneuver locations on the x-axis while maintaining the in-plane baseline profile ensures that the underburn
constraint is fulfilled.

Figure 14: Illustration of underburn conflict with in-plane observability maneuvers

The optimizer minimizes the cost function for minimum total ∆v (3σ + nominal) by choosing the fol-
lowing variables for each observation burn (OBS burn): x-axis burn location, z-axis burn location, and burn
time. The following sections present the results of this optimization problem while highlighting sensitivities
in the trade space. Each section will present a plot with each point describing a minimum ∆v optimized
trajectory to show variations in trajectory parameters and the associated increase in total ∆v (nominal + 3σ)
from the baseline trajectory. Each section also compares the GN&C statistics and dispersion plots of the pre-
viously described baseline observability maneuver-assisted trajectory (additional 3 hours and 1 km allowable
M3 3σ position dispersion) with an “improved” maneuver-assisted trajectory based on potentially desirable
engineering trades.
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Variation of burn number with additional time

The baseline direct-approach trajectory has a total transfer time of 4.6 hours from M1 to M3. For this
hypothetical angles-only scenario, additional time to generate observability is unfavorable for the crew’s
schedule. Thus, the aforementioned desired maneuver-assisted baseline limits the additional time to 3 hours.
In this section, the additional time for observability maneuvers between M1 and M2 is varied with the number
of observability burns to find desirable engineering trades between additional time and additional ∆v usage.
From this analysis, a single observability burn results in the lowest additional ∆v from the direct-approach
baseline trajectory. Thus, the baseline maneuver-assisted trajectory is limited to one observability burn, 3
additional hours, and a 1 km allowable position dispersion. Since a lower total ∆v usage is highly desirable
and would likely outweigh minor impacts on crew schedule, the chosen “improved” trajectory adds 2 more
hours from the maneuver-assisted baseline for a 1.98 m/s reduction in total ∆v as shown in Table 3.

Table 3: Comparison of variation in burn number and additional time from baseline

Case OBS
burn
number

Additional
time (hrs)

Additional total
∆v (m/s)
from baseline profile

M3 Position
Dispersion (m)

M3 Navigation Posi-
tion Error (m)

Baseline
maneuver-
assisted

1 3 10.898 1000.0 252.2

Improved 2 5 8.913 1000.0 256.4

Figure 15a presents a summary of the variations in additional time and observability burn number. Intu-
itively, additional time would be expected to reduce the total ∆v because longer transfer times have smaller
velocities. However, as shown in the summary plot, additional time is only shown to reduce total ∆v in the
trajectories with 2 or 3 observability burns. This is because the single observability burn case is limited by the
approach corridor since the chaser vehicle must drift in a single direction for the longest distance compared
to the 2 and 3 OBS burn cases. To prevent the 3σ position dispersions from exiting the approach corridor, the
optimizer is limited to trajectories that are less ∆v efficient for increasing values of additional time. This re-
sults in the total ∆v increasing with additional time for the 1 OBS burn case after approximately 3 additional
hours. Figures 15b and 15c are plots of the baseline 1 OBS burn maneuver-assisted trajectory and Figures
15d and 15e are plots of the 2 OBS burn “improved” trajectory.

(a) Minimum ∆v optimized trajectory variations in burn number and additional time
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(b) In-plane: baseline maneuver-assisted (c) Out-of-plane: baseline maneuver-assisted

(d) In-plane: improved maneuver-assisted (e) Out-of-plane: improved maneuver-assisted

Figure 15: Variation in burn number and additional time

Variation of burn number and position uncertainty at M3

As mentioned, the baseline maneuver-assisted trajectory has a 1 km allowable 3σ position dispersion limit
at M3 because higher position dispersion values, which are a metric for state uncertainty, imply a greater risk
for a successful rendezvous. Thus, for this scenario of a crewed cislunar rendezvous, it is assumed a smaller
allowable position dispersion would outweigh minor increases in ∆v usage. As such, the chosen “improved”
trajectory reduces the limit on allowable M3 3σ position dispersions to 700 m for a 2.35 m/s increase in total
∆v from the maneuver-assisted baseline as shown in Table 4.
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Table 4: Comparison of variation in burn number and allowable 3σ M3 position dispersions from baseline

Case OBS
burn
number

Allowable
position
dispersion
(m)

Additional total
∆v (m/s)
from baseline profile

M3 Position
Dispersion (m)

M3 Navigation Posi-
tion Error (m)

Baseline
maneuver-
assisted

1 1000 10.898 1000.0 252.2

Improved 2 700 13.249 700.0 232.8

Figure 16a presents a summary of the variations in allowable position dispersions and observability burn
number. As expected, looser position dispersion requirements (higher value) require smaller observability
maneuvers to generate observability and thus less total ∆v. This is indicated by the summary plot, which
shows that higher values of allowable M3 position dispersions consistently reduce total ∆v across 1, 2, and 3
OBS burn cases. The summary plot also indicates that for a 1 km allowable M3 dispersion, the 1 and 2 OBS
burn trajectories have similar deltav usage. However, for smaller (tighter) allowable position dispersions, the
2 OBS burn case uses the least total deltaV. Thus, the “improved” trajectory uses 2 OBS burns for a tighter
position dispersion requirement. Figures 16b and 16c are plots of the baseline 1 OBS burn maneuver-assisted
trajectory and Figures 16e and 16e are plots of the 2 OBS burn “improved” trajectory.

(a) Minimum ∆v optimized trajectory variations in burn number and allowable position dispersion
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(b) In-plane: baseline maneuver-assisted (c) Out-of-plane: baseline maneuver-assisted

(d) In-plane: baseline maneuver-assisted (e) Out-of-plane: improved maneuver-assisted

Figure 16: Variations in burn number and allowable M3 3σ position dispersion

Variation in burn number, initial navigation error, and initial state uncertainty

The initial uncertainty parameters from Table 1 indicate an initial 3σ position dispersion and navigation
error of 7.75 km and an initial 3σ velocity dispersion and navigation error of 1.55 m/s in all axes. For
this notional scenario, the initial dispersions and navigation error at the beginning of the rendezvous are a
function of the ground site tracking performance and the GN&C performance during the lunar departure and
NRHO insertion before rendezvous. Thus, a scaling factor that decreases the initial dispersions and navigation
error in this section represents better ground site tracking performance and better GN&C performance pre-
rendezvous. In this scenario, a lower total ∆v usage is assumed to outweigh the cost of achieving a smaller
initial navigation error and state uncertainty. Accordingly, the “improved” maneuver-assisted trajectory scales
the initial errors and dispersions by 0.5 for a significant 3.808 m/s reduction in total ∆v from the baseline
maneuver-assisted trajectory as shown in Table 4.
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Table 5: Comparison of variation in burn number and initial environmental dispersions/navigation errors
from baseline

Case Burn
number

Scale Factor
to initial disp and
nav error (m)

Additional total
∆v (m/s)
from baseline pro-
file

M3 Position
Dispersion (m)

M3 Navigation
Position Error
(m)

Baseline
maneuver-
assisted

1 1.0 10.898 1000.0 252.2

Improved 1 0.5 7.090 1000.0 252.4

Figure 17a is a summary of the variations in initial navigation error, state dispersion, and OBS burn number.
For all variations on OBS burn number, the total ∆v decreased with smaller initial errors/dispersions. Since
the trajectories with a single observability burn used the least total ∆v for any given scale factor, both the
baseline and “improved” maneuver-assisted trajectories use a single OBS burn. Figures 17b and 17c are plots
of the baseline 1 OBS burn maneuver-assisted trajectory and Figures 17d and 17e are plots of the 2 OBS burn
“improved” trajectory.

(a) Minimum ∆v optimized trajectory variations

21



(b) In-plane: baseline maneuver-assisted (c) Out-of-plane: baseline maneuver-assisted

(d) In-plane: improved maneuver-assisted (e) Out-of-plane: improved maneuver-assisted

Figure 17: Variations in burn number and scale factor on initial environmental dispersions and navigation
errors

CONCLUSION

The objective of this paper was to demonstrate that a LinCov robust optimization method could be applied
to angles-only rendezvous in an NRHO and to highlight the sensitivity to various trajectory constraints. The
observability limitations of angles-only navigation result in significant navigation errors in the line-of-sight
direction from a chaser vehicle to a target. Consequently, the state uncertainty of the chaser vehicle GN&C
system is often too high to permit a safe rendezvous with angles-only navigation. Thus, calibrated chaser
vehicle maneuvers are required to induce observability. In this analysis, an optimization algorithm is used to
solve for the optimal times and locations for these observability maneuvers to minimize ∆v while adhering
to specific operational constraints expressed in a cost function. Since optimization algorithms such as the
particle swarm optimizer in this analysis must evaluate the GN&C performance metrics for hundreds of
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trajectory candidates, LinCov analysis is used to determine these metrics rapidly compared to conventional
methods. By optimizing angles-only trajectories for an assortment of constraints, this work highlights the
utility of a similar analysis to find desirable engineering trades. This study indicated that when generating
observability in the notional crewed NRHO rendezvous scenario, a longer time duration does not necessarily
result in smaller total ∆v usage. In this case, the approach corridor (an operational constraint) made it
such that the number of observability maneuvers had to increase to at least two burns for additional time
to result in ∆v savings. Further, this study showed that to achieve a smaller position dispersion (metric for
uncertainty) at the end of the rendezvous profile, a higher number of observation burns resulted in smaller
total ∆v usage for dispersions less than approximately 1 km. It also indicated the upper and lower bounds
for feasible values of time duration and position dispersions around which the total ∆v grew rapidly. Finally,
this study indicated that reducing the initial navigation error and initial state dispersions generally resulted
in significant reductions in total ∆v use. While the specific sensitivities in this notional angles-only scenario
with its associated constraints may be unique to this case, the systematic process of evaluating an assortment
of trajectory variations using a LinCov analysis in the loop with an optimization algorithm could be applied
to develop robust, optimal rendezvous trajectories and to find desirable engineering trades for future missions
to cislunar space.
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