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The application of photonic lanterns in free 
space optical communications



Motivation for Free Space Optical Communications
• Future NASA communications and navigation systems in the Lunar and deep 

space environment will need to accommodate missions requiring high data-
volume transmissions

• Optical communications can provide orders of magnitude system 
improvements vs. current RF systems

• Fiber coupled receivers can offer lower cost, more flexible design options for 
ground terminals.
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NASA Laser Communications Relay Demonstration (LCRD)



Space to ground atmospheric effects impact on fiber coupled 
receivers

• The laser transmitted from a spacecraft originates as a Gaussian 
shape (LP01).

• Atmosphere distorts the beam profile and scatters energy into 
higher-order spatial modes.

• The efficiency of fiber coupling is dependent on the number of the 
modes supported by the fiber.

3Increasing turbulence

D
r0

D- diameter of collection aperture
r0- coherence length



Efficient Multi-Spatial Mode Receivers - Photonic Lanterns

• Increasing number of modes improves coupling

• But increasing number of modes increases fiber core size: 
• Pulse position modulation: poor coupling to small area detectors

• Coherent modulation requires single mode fiber

• Photonic lantern enables efficient transition of multi spatial 
modes to multiple smaller core fibers
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Photonic Lantern

Light from 
Back-end 
Telescope 
Optics

Multimode input of lantern
Core

Cladding

Fully packaged photonic lantern, next to bare photonic lantern

• Number of modes supported matches the sum of the modes supported 
by the output fibers



Pulse Position Modulation Photon-Counting Optical Receiver

• Pulse position modulation uses direct detection of timed pulses

• NASA is using the CCSDS Optical Communications High Photon Efficiency 
(HPE) waveform: Optical Artemis-2 Orion (O2O) and Psyche

• NASA Glenn is building a photon-counting ground receiver compliant with the 
CCSDS Optical Communications HPE standard using commercial off the shelf 
(COTS) components where possible.
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Receiver Subsystems Under Development at NASA GRC
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2 Fiber\Detector Architectures under development

FMF + 16-Channel 
SNSPD Array

FMF Photonic Lantern 
+ 7 single pixel SNSPDs



Photonic Lantern/Single Pixel SNSPDs 
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Photonic Lantern:

• FMFs: 

- 20 um graded-index core

- 4LP, 6-mode

• MMF input:

- 55 um

- 42 total modes

Fully packaged photonic lantern Rack-mounted SNSPD cryogenic system

55 um

System Diagram

• Detectors can be coupled with FMFs without loss, therefore we created a new type of lantern with FMFs 
• Increase the number of modes supported by each fiber output leg  (1 mode→6 modes)
• Enables higher number of modes coupled with same number of detectors (7 fibers → 42 modes)



FMF + 16-Channel SNSPD Array
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*Rambo, T. M., Conover, A. R., and Miller, A. J., “16-element superconducting nanowire single-photon detector for 
gigahertz counting at 1550-nm," (2021). https://arxiv.org/abs/2103.14086  

Detector array layout*

FMF on alignment stage Rack-mounted SNSPD cryogenic system

FMF #1 (20 m system input):
• 25 um graded-index core
• 6 LP, 10-modes

FMF #2 (coupled to SNSPD array):
• 20 um graded-index core
• 4 LP, 6-modes

System Diagram



Comparing fiber interconnects insertion loss due to 
atmospheric effects
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Simulated 2D beam profiles (phase and 
intensity) are recreated in the lab by 
modulating the beam via a complex amplitude 
phase hologram written to the SLM. 

42 modes/7 detectors 10 modes/16 detectors



Fiber-Detector Subsystem Loss Comparison
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• Combined coupling loss, blocking loss, and 
input distribution effects over a range of 
input power

• FMF/SNSPD array system has more loss at 
lower received power and higher D/r0 due 
to coupling

• Photonic lantern/single SNSPDs system has 
more loss at higher input powers due to 
detector count rate limitations/blocking 
loss

• There is a cross-over input power where 
relative coupling loss balances detector 
blocking losses 



Receiver will be demonstrated at the NASA GSFC Low Cost 
Optical Terminal 
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Fiber InterconnectSNSPDs

FPGA-based Transmitter 

FPGA-based 
Receiver 

GSFC LCOT: dome, 
telescope, back-end 
optics, pointing & 
tracking



Photonic Lanterns for Coherent Optical Communication
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• Adaptive optics is required for efficient single mode fiber 
coupling
- Photonic lantern- offer a solution to reduce or eliminate adaptive optic 

requirements.

- Could reduce cost, size, weight, power, and complexity

• Light is output in multiple single mode fibers requiring 
system considerations:
- Multiple detectors – find the balance between system complexity and 

increase coupling efficiency

- Type of signal recombining – optical or digital

- Time and phase alignment- maintaining coherence information of the 
signal efficiently.



Photonic Lantern Coherent Combining at NASA GSFC*
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• 10 Gbps DP-QPSK transmit signal from CFP2 module

• Variable optical attenuator 

• Three separate integrated coherent receivers (ICR)

• DFB local oscillator shared between integrated 
receivers

• High sample rate digitizing oscilloscopes collect X/Y-pol 
I and Q signals for post processing

• Experiments repeated at powers between -3 and -33 
dBm COTS Integrated coherent receiver 

(ICR) module stack

Photonic lantern

Coherent combining test setup

Multiple sampling oscilloscopes for data collection

*Yevick, A., Lafon, R., Bayne, R., Garcia, R., Grigoryan, V.S., and J. Veselka, 
“Experimental demonstration of coherent receiver with photonic lantern and digital signal processing”



GSFC - Recent Coherent Combining Results*

• Digital-domain coherent combining

• SNR improvement due to optimum coherent 
combining increases as SNR for best individual leg 
decreases:   SNR improvement reaches ≈ 4dB at Pch
= -34dBm 

• Theoretical maximum ≈ 4.77 dB

• Power monitoring each signal will maximize SNR 
improvement
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*Yevick, A., Lafon, R., Bayne, R., Garcia, R., Grigoryan, V.S., and J. Veselka, 
“Experimental demonstration of coherent receiver with photonic lantern and digital signal processing”



Photonic Lantern Wavefront Sensing
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• Intensities and phases of the single mode 
outputs have a direct relationship to both 
phase and amplitude information of the 
incident wavefront

• Replace the wavefront sensor – expensive 
part of adaptive optics systems

• If combined with a photonic integrated 
circuit, could serve as both light delivery 
and adaptive optics system through optical 
coherent combining to greatly reduce size, 
weight, power, and complexity

Intensity

Phase

1 2 3 4 5 6 7

1x7 SMF photonic lantern input/output measured with wavefront sensor



Summary
• We have developed 1x7 MMF – FMF photonic lantern coupled to 

superconducting nanowire single photon detectors (SNSPDs) for a 
spatial-mode diversity photon-counting optical receiver – will 
demonstrate with the GSFC 70-cm low-cost optical receiver (LCOT).

- reduces coupling losses at higher turbulence levels.

• Currently investigating applications to coherent optical communications 
- reduces coupling losses in turbulence levels.

- could reduce cost and complexity.

• Photonic lanterns can be used for wavefront sensing
- could reduce cost and requirements for adaptive optics.
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