
A Proposed Clock Synchronization Method for the Solar
System Internet

Michael Moy
Colorado State University

michael.moy@colostate.edu

Alan Hylton
NASA Goddard

alan.g.hylton@nasa.gov

Robert Kassouf-Short
NASA Glenn

robert.s.short@nasa.gov
Jacob Cleveland

NASA Glenn
jacob.a.cleveland@nasa.gov

Jihun Hwang
Purdue University

hwang102@purdue.edu

Justin Curry
University at Albany, SUNY

jmcurry@albany.edu

Mark Ronnenberg
Indiana University
maronnen@iu.edu

Miguel Lopez
University of Pennsylvania
mlopez3@sas.upenn.edu

Oliver Chiriac
University of Oxford

oliver.chiriac@trinity.ox.ac.uk

Abstract—Networked communications in space are necessary to
achieve scalability in terms of the number of communicating
nodes but also in terms of the overall system complexity. A key
component to such a system is the ability to synchronize clocks,
which is the focus of this paper. The so-called Solar System
Internet (SSI) will be built upon Delay Tolerant Networking
(DTN), which, in analogy to the Internet Protocol (IP), can
be considered a suite of protocols necessary for networking in
the space domain. Therefore, our goal is to extend this suite
to include a DTN clock synchronization capability, analogous
to the Network Time Protocol (NTP) used in the Internet. A
motivating example of a network in space is NASA’s LunaNet,
a vision for a multi-hop multi-path network extending to the
moon wherein not all nodes will have direct connections to
an authoritative reference clock. In this paper, we propose a
general clock synchronization methodology and algorithm that
could be used for LunaNet as well as more elaborate time-
varying networks.

In recent years, DTN has benefited from modeling efforts
founded on the mathematical tool of sheaves. Here we continue
this work to provide an approach to clock synchronization.
Due to the time-varying nature of space networks, absolute
consensus is not possible. However, the sheaf Laplacian provides
a practical, distributed approach to approximating consensus by
allowing data to diffuse through the network. In particular, the
sheaf Laplacian is readily computable, lending our approach to
implementation.

Our approach is well suited to handle the difficulties of space
networks. For instance, differences in clock accuracy mean cer-
tain nodes are more authoritative than others; we can account
for these differences through hierarchies in the network, gener-
alizing the strata in NTP. Furthermore, just as error estimation
is an integral part of NTP, we are able to give concrete error
bounds for our approach. Indeed, different applications (e.g.,
communications schedules, pointing, navigation, distributed sci-
ence) will have different requirements, hence it is necessary to
maintain clocks within a given tolerance. We outline some of the
necessary steps to turn our approach into a practical network
protocol that could be used in DTN, and we conclude the paper
with suggestions for future research.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. PRELIMINARIES AND CONVENTIONS 2
3. THE METHOD AND ANALYSIS . 4
4. TOWARDS A PROTOCOL . 10
5. CONCLUSION AND FUTURE WORK 12

REFERENCES . 13
APPENDIX . 15
A. OVERVIEW OF SHEAF LAPLACIANS 15
BIOGRAPHY . 17

1. INTRODUCTION
The large number of spacecraft expected over the next several
decades has motivated research into networked communi-
cations in space. A computer network in space must be
able to handle the delays and disruptions inherent in space
communications, and as such, the network protocols used on
Earth must be adapted before being applied in space. Re-
cent research addressing these problems has produced Delay
Tolerant Networking (DTN), a collection of protocols and
techniques that aim to help realize a Solar System Internet
(SSI) [1–4]. NASA is actively researching DTN for use in
future missions; to this end, the High-Rate Delay Tolerant
Networking (HDTN) project at NASA Glenn Research Cen-
ter is one implementation of DTN currently being developed
and tested [5–10]. DTN operates as an overlay network over
an extremely heterogeneous setting, where one-way light
times can vary from milliseconds to hours; a consequence is
that some links (and hence network segments) can feature re-
activity and others must be proactive. In particular, there may
be portions of the overall network that can utilize discovery-
based routing, but schedule-based routing will always be a
component. Therefore, it is essential for routing (and antenna
pointing, attitude control, etc.) that the nodes agree on what
time it is.

In this paper, we propose a method for automated clock
synchronization in a space network (Solar System Internet,
in particular) that fits into the current framework of DTN and
could be incorporated into implementations such as HDTN in
the near future.

Certain aspects of clock synchronization in space are, of
course, well understood. Indeed, the Messenger and New
Horizon missions were able to synchronize their clocks to
UTC within sub-millisecond and sub-ten-milliseconds, re-
spectively [11]. Satellite tracking and ranging techniques
allow us to determine the distance between a satellite and a
ground station with a high degree of precision, which in turn
allows for a precise exchange of clock data that takes into
account the light speed delay. Relativity predicts the differing
speeds at which clocks in orbit run compared to those on

1

Earth. And the increasing accuracy of clocks in space is
exemplified by the Deep Space Atomic Clock (DSAC) [12–
14], launched in 2019. The clock synchronization problem
expands its presence beyond the “classic” world; the quan-
tum space network—including the deep space network—is
expected to provide a clock synchronization service with the
error only within a degree of picoseconds [15–17]. This
paper does not aim to improve upon any of these aspects of
timekeeping in space, but rather addresses the mathematical
theory needed to make these existing techniques extensible
across networked communications. Specifically, our goal is
to automate clock synchronization in space networks in a way
that builds on existing technology and can be incorporated
into SSI-scaled DTNs.

These goals are motivated in part by clock synchronization
in the Internet, governed by the Network Time Protocol
(NTP) [18,19]. Based on the ability of computers to exchange
clock data over the Internet, NTP provides a systematic way
for a computer to update its clock based on clock values and
error estimates obtained from multiple sources. As with other
Internet protocols, NTP cannot be applied directly to space
networks, as it relies on properties of Internet communica-
tions that do not hold in space. In particular, it assumes
some amount of consistency in the time it takes a packet to
travel along a given path in the Internet, whereas in space
networks, an end-to-end path does not always exist and travel
times can be more variable. Additionally, a node using NTP
will typically obtain and process an ample amount of clock
data from other nodes in the network, whereas in space, links
are intermittent and less frequent, and updates will likely
need to be made using limited clock data; put another way,
communications is expensive, and despite the importance
of clock synchronization it cannot afford to be too chatty.
Our method accounts for these differences by only requiring
clock data to be exchanged across direct links, i.e. between
adjacent nodes in the network, and by updating a node’s clock
using only a single clock value from each of its neighbors.
It also requires minimal computation by the network nodes,
an important feature in space networks, where computational
power follows a stringent budget.

Clock synchronization methods for DTN and space commu-
nications based on NTP have been actively studied and pro-
posed. The Double-pairwise Time Protocol (DTP) by Ye and
Cheng [20] is one of them; however, DTP appears to require
the presence of the time server within a certain distance,
which may not be possible for SSI-scaled DTNs. Thanks
to its robustness and fault tolerance, even direct applications
of NTP have shown successful results, although in limited-
scaled environments such as the Proximity Link [21–23]. The
technical introduction to the previous deployment of NTP for
space missions is available in [24, Chapter 17-18], and see
[25] for further explanations on why NTP or protocols that
rely on the existence of time servers may not be sufficient for
upcoming space missions.

In spite of the aforementioned restrictions, which we believe
are realistic and are necessary constraints on a clock synchro-
nization protocol for space, we obtain theoretical guarantees
of the performance of our method. In particular, we show that
we can maintain synchronized clocks to within certain error
tolerances, which can be computed given knowledge of the
errors introduced into the network (which most importantly
include those resulting from inaccuracies of clocks in the
network and the exchange of clock data between nodes).
Our method is based on a linear model of diffusion, which
lends itself to a simple distributed approach and has the

benefit of requiring only minimal computations by spacecraft
computers.

Such a method was suggested but not thoroughly developed
in [25] by many of the same authors. [25] also provides a sum-
mary of other clock synchronization approaches proposed in
various settings. These past approaches, being designed for
different types of networks, generally were based on assump-
tions that would not hold for delay-tolerant networks in space.
For instance, the protocol given by Choi et al. in [26] and [27]
addresses clock synchronization in terrestrial DTNs, which
behave differently from space networks, especially the large-
scaled ones such as SSI. Our method is somewhat related to
the simple approach proposed by Sasabe and Takine [28] or
the asynchronous diffusion (AD) method such as the one by
Li and Rus [29], in which nodes average their clock values
when they communicate, similar to the traditional methods of
approximating consensus in asynchronous and/or distributed
settings [30–32]. Indeed, in our method, nodes update by
taking a carefully designed weighted average. Our method
stands in contrast to these previous approaches because of our
focused application—delay tolerant networks in space—and
because of the particular mathematical approach we take.

We give the motivation for our method and establish some
assumptions on networks in the following section (Section 2),
before describing the theory in detail in Section 3. While this
paper is dedicated to developing the method and not to the
intricacies of designing a network protocol, Section 4 outlines
future steps needed to turn this method into a network proto-
col that could be incorporated into DTN. We then conclude
with additional thoughts on future work in Section 5.

2. PRELIMINARIES AND CONVENTIONS
Assumptions about the network

Before discussing clock synchronization techniques, we will
need to make certain assumptions about the networks we
consider and the other networking protocols involved. Our
goal will be to base our assumptions on the requirements
of space networks in the near future, primarily those op-
erated by a single entity such as NASA and designed us-
ing current approaches to DTN. NASA’s LunaNet [33], the
envisioned communications network between the moon and
Earth, serves as a motivating example of a network, and
NASA Glenn Research Center’s HDTN [10] serves as a
current implementation of DTN.

We assume throughout that our network follows the basic
principles of DTN and use this to guide our assumptions
about the network’s capabilities. With the current schedule-
based approach to routing used in DTN [8, 34], it is assumed
that each node has been sent a schedule of when links will be
available, which has been created on Earth. Our method does
not rely on the details of the routing algorithm, so it could be
applied alongside future schedule-based routing approaches
as well. We will assume that in addition to routing data,
parameters of a clock synchronization protocol can also be
sent to each node; our protocol will require only a minimal
amount of data to be sent, so this should not place a large
burden on the existing process. Some parameters will be
introduced in Section 3, and in Section 4, we include a more
thorough list of parameters we expect to be included in a
future protocol.

As mentioned above, we assume our network will have more
limited exchange of clock data than in the Internet: we

2

assume clock data is only exchanged across direct links,
with a node receiving data from each neighbor on a regular
basis, on the order of once per day. The requirement of
direct links could be adjusted in the future to allow for
cases of predictable multi-hop routes, including the use of
“bent pipes” like TDRS, but for now we will assume only
adjacent nodes exchange clock data. For assets near Earth,
including ground stations and satellites on both the Earth and
the moon, we assume standard techniques for ranging can
be used to determine the distance between a pair of nodes,
and thus to exchange clock data between them with a precise
measurement of the light speed delay. Such communications
near Earth will form the majority of applications of DTN in
the immediate future. To handle the automated exchange
of clock data over larger distances, we have the option of
using an estimated light speed delay between nodes that
is computed on Earth and included as part of the routing
information distributed to network nodes – this comes at
the cost of possibly introducing larger errors. A protocol
implementing our method will need to allow for multiple such
methods of exchanging clock data, as we discuss in Section 4.

We must keep in mind that a space network may contain
clocks with widely varying accuracies. These may include
devices using a typical crystal oscillator with a frequency
error on the order of 100 parts per million (ppm) or 10−4,
an oven controlled oscillator (OCXO) with an error on the
order of one part per billion (ppb) or 10−9, or an atomic
clock with an error on the order of 10−12. These drastically
different accuracies mean we need to take care to update a
clock’s value according to clocks with comparable or better
accuracy. As a first approach, we suggest organizing the
network into different regions or “strata,” to borrow a term
from NTP, in which clocks have comparable accuracies –
this is described in Section 4. For finer control, our work on
error tolerances may provide some insight on how to choose
parameters that handle different levels of accuracy, which we
leave as a problem for future work (see Section 5).

Model of the Network and Clock Data

Here we give some conventions for our modeling of networks
and the clock data exchanged by adjacent nodes. Networks
will be modeled by simple, undirected graphs. An edge
between a pair of nodes will indicate that there are regular
but possibly intermittent periods of time during which the two
nodes can communicate.

To model the clock data kept by each node, let t be a variable
representing true time (in practice, UTC time), and for each
vertex v, let Cv(t) be the clock value of v. Since Cv(t) will
inherently fluctuate from the true time t, the job of a clock
synchronization protocol is to periodically correct this clock
values. Let xv = xv(t) = Cv(t)− t represent the clock error
at vertex v at time t, and let x = x(t) be the vector with a
component xv for each vertex v. Our goal is a protocol for
updating the clock values Cv such that x remains close to the
zero vector.

Of course, the errors in time xv are never actually known in
the network, but with the right approach, we can still adjust
them toward zero. The key observation is that the difference
in errors between two vertices is the same as the difference in
their clock values:

xv(t)− xw(t) = (Cv(t)− t)− (Cw(t)− t)

= Cv(t)− Cw(t).

This shows that if updates to clock values are computed
entirely in terms of the difference in clock values, we are jus-
tified in mathematically modeling the system in terms of the
vector x, without mention of the clock values Cv(t). These
differences are in fact all that are needed to model diffusion
in a network, and our method will be based on the idea of
allowing clock errors to diffuse through the network so that
clocks converge to consensus. In the following section, we
explain some of the initial mathematical motivation, which
will be further generalized shortly.

Motivation: Diffusion and the sheaf Laplacian

In physical settings, diffusion is typically modeled by the
heat equation ∂u

∂t = α∆u, where α > 0 is the “diffusivity
constant.” Previous works by Hansen and Ghrist [35, 36]
have considered a discrete analog of this equation to model
diffusion on a graph: the function u is replaced by a vector
x of values assigned to the vertices and the Laplacian ∆ is
replaced by a matrix L to produce an ordinary differential
equation2

dx

dt
= −αLx.

In the simplest case, the matrix L is the graph Laplacian,
which is a well-studied object in spectral graph theory. The
heat equation with the graph Laplacian can be visualized as
allowing heat to flow along the edges of the graph, so that
each vertex changes in temperature according to the relative
temperature of its neighbors. For more general modeling,
L may be a sheaf Laplacian, which allows different edges
to conduct heat differently. The sheaf Laplacian is also
flexible enough to allow each vertex to store a vector of
values rather than a single value, thus modeling the evolution
of multiple interdependent quantities rather than a single
temperature. See Appendix A for a brief introduction to the
sheaf Laplacian. Similarly to how the Laplacian ∆ in the
original heat equation is a differential operator, the graph
Laplacian and sheaf Laplacian are computed locally, with
each vertex using only the differences of the components of x
at the vertex and its neighbors. For our purposes, this allows
them to be computed in a distributed fashion in a computer
network; each node needs only knowledge of its neighbors’
information.

To apply these ideas to clock synchronization, we aim to
let the clock errors xv diffuse through the network. Recall
that we are assuming a network with intermittent links; as
adjacent vertices can only exchange clock values during the
periods during which they are in contact, we are forced to use
a discrete-time approximation of the heat equation. Euler’s
method for the heat equation with the sheaf Laplacian is de-
fined by xn+1 = xn − hαLxn, where h is a chosen length of
a time step. It can be shown that as long as hα is sufficiently
small, the sequence {xn} converges to a steady state for any
initial value x0. Moreover, it tolerates errors well; error
introduced at each step produces a predictable fluctuation
around the steady state. Adjusting this method slightly allows
us to introduce nodes whose values do not change, modeling
reference clocks that are maintained by an outside method.
These reference clocks are analogous to boundary conditions
for a differential equation. In the following section, we
present a generalization of this approach: we replace the
matrix L by a more general type of matrix that retains the
properties important to our setting. Throughout, we will keep

2Because of the common choices for the matrix L, the negative sign is
needed to produce the correct discrete analog of traditional heat equation.
See the discussion in Appendix A.

3

the sheaf Laplacian in mind as an important special case of
this more general matrix, describing how particularly useful
results apply when using a sheaf Laplacian.

3. THE METHOD AND ANALYSIS
Definitions

We begin with a linear model of clock synchronization in
which adjacent nodes compare and adjust their clock values.
Mathematically, we will work exclusively with finite graphs
and finite-dimensional vector spaces (with real or complex
coefficients). Let G be a graph, let B be a subset of vertices,
referred to as “boundary” vertices, and let Y consist of all
vertices of G not in B. Let C0(G) be the real vector space
spanned by the vertices of G. We will write elements as
column vectors with components indexed by vertices: if
x ∈ C0(G) and v is a vertex of G, we will write the v
component of x as xv . The component xv is interpreted as
the difference between the clock value of v and the true time,
and we will refer to this as the value of x over v. Later we
will consider sequences {xn} in C0(G), where terms are also
written with subscripts; the meaning of subscripts should be
clear from context, and when both meanings are needed, the
v component of and element xn of a sequence will be written
(xn)v . Linear maps from C0(G) to itself will be represented
by matrices, with entries indexed by pairs of vertices. We
also let C0(B) and C0(Y) be the subspaces spanned by the
vertices in B and Y respectively.

For each edge e = {v, w}, suppose we have a pair of
“weights” av,w, aw,v ∈ R, not necessarily equal. We define a
matrix M that will specify how clocks are adjusted. For each
v ∈ Y , define row v of M by setting

Mv,w = −av,w

for each w adjacent to v, and

Mv,v =
∑

w adjacent to v

av,w.

Let all other entries of M be zero.

We can use this matrix to model diffusion in a network:
letting x = x(t) ∈ C0(G), we have the differential equation

dx

dt
= −αMx (1)

similar to the heat equation3, where the constant4 α > 0
mimics the diffusivity constant in the usual heat equation.
For any vertex v in B, the v component of dx

dt is always zero
because the corresponding row of M is zero. This means the
value of x over v does not change, although it may influence
the values of its neighbors that lie in Y . Thus, the components
of x lying over B are analogous to a boundary condition in a
partial differential equation.

3This differential equation can be most reasonably viewed as modeling
diffusion or heat flow when all weights av,w are positive. In this case, the
definition of M shows that a difference in values of x over two adjacent
vertices yields “heat flow” from the higher valued vertex to the lower.
4Note that α is redundant, as it simply scales all the weights av,w . However,
it is helpful to keep it for our upcoming analysis. For instance, it provides
precise language for Theorem 2 on convergence, and in certain cases, once
weights av,w are chosen, we can show there is an optimal choice of α.

To apply this idea of diffusion to our setting of clock syn-
chronization in a network with intermittent connections, we
need a discrete-time analog of Equation (1). Suppose we can
divide time into steps of length h > 0 such that for each edge
of G, its two nodes are able to exchange clock data every
time step5. We apply Euler’s method with these time steps of
length h, obtaining

xn+1 = xn − hαMxn. (2)

An initial condition x0 determines the values of all xn, and
the collection of values of x0 over B can still be interpreted
as a boundary condition. Note that we are free to choose any
α > 0; we will discuss how to choose α later on.

Importantly, the structure of the matrix M allows for dis-
tributed computation: each node only needs data from its
neighbors to compute its component of xn+1. This follows
from the definition of M , since for each v ∈ Y , we have

(Mxn)v =
∑

w adjacent to v

av,w((xn)v − (xn)w). (3)

This further shows that (Mxn)v can be computed with just
the knowledge of the differences (xn)v − (xn)w, as we
required in Section 2. By our assumption that each edge
is active at least once per time step, we will require that
during the nth time step, each node v gathers clock values
from its neighbors, uses them to calculate the differences
((xn)v − (xn)w), and uses them to calculate (xn+1)v and
update its clock accordingly at the end of the time step.

We can simplify Equation (2) by setting A = I − hαM , so
that

xn+1 = Axn. (4)

This gives the explicit expression xn = Anx0. It can
also be helpful to express the update just for the values
of x over Y , since the values over B do not change.
Split into block matrices corresponding to the decomposition
C0(G) = C0(Y)⊕ C0(B), the equation above becomes[

yn+1
bn+1

]
=

[
AY,Y AY,B
0 I

][
yn
bn

]
, (5)

where xn =

[
yn
bn

]
and we have used the fact that rows of M

indexed by vertices in B consist of zeros. Thus, bn = b0 for
all n, so we obtain

yn+1 = AY,Y yn +AY,Bb0. (6)

Here, the yn are given explicitly by

yn = An
Y,Y y0 + (An−1

Y,Y + · · ·+AY,Y + I)AY,Bb0.

Example 1. For a simple example, let G be the complete
graph on three vertices u, v, and w, and let B consist of the

5In practice, the choice of h may influence the decision of which intermittent
links to include as edges in the graph. See Section 4 for further discussion.

4

single vertex w. Then,

M =

[
au,v + au,w −au,v −au,w

−av,u av,u + av,w −av,w
0 0 0

]

A =

[
1− hα(au,v + au,w) hαau,v hαau,w

hαav,u 1− hα(av,u + av,w) hαav,w

0 0 1

]

Given a boundary condition (x0)w = b, Equation (6) be-
comes

yn+1 =

[
1− hα(au,v + au,w) hαau,v

hαav,u 1− hα(av,u + av,w)

]
yn

+ b

[
hαau,w
hαav,w

]

Choosing α = 1/h, au,v = 0, av,u = 0, au,w = 1, av,w = 1
models the obvious process in which vertices u and v do not
exchange any information and simply update their clocks to
match w. The equation above becomes

yn+1 =

[
0 0
0 0

]
yn + b

[
1
1

]
,

so that yn =

[
b
b

]
for all n ≥ 1. Thus, in this case, we

can achieve perfect synchronization after just one time step
– this is a result of every vertex being adjacent to the single
boundary vertex.

Choice of Weights

Notice that since we have the freedom to choose the weights
av,w in the definition of M , Equation (2) and its reformula-
tions do not serve to model behavior in the network, but rather
give a prescriptive choice of how our clock synchronization
method will operate. This raises the possibility of optimizing
the choice of weights to produce the optimal behavior. We
list some ways of formulating this optimization problem later,
after developing the necessary framework in the analysis
below.

For now, we comment that by placing certain restrictions on
these weights, we obtain important special cases; we will see
later on that certain special cases can lead to better theoretical
properties and in particular may be more practical for large
networks. In the most restrictive case, if the boundary B
is empty and if av,w = 1 for all adjacent v and w, the
matrix M is the graph Laplacian; if instead we only require
symmetric weights av,w = aw,v > 0, then it is the more
general sheaf Laplacian, arising from a certain sheaf on the
graph (see Appendix A). In these cases, M is symmetric and
positive semi-definite. This implies it is diagonalizable by
orthogonal matrices and has all real, nonnegative eigenvalues.
If we allow B to be nonempty, these properties are still true
of the square block of M corresponding to the vertices in
Y . These properties lead to particularly simple behavior. We
will frequently mention how our results apply in the case
that av,w = aw,v > 0, which we will refer to as the “sheaf
Laplacian case” (even when the boundary B is nonempty).

Some less restrictive requirements on the weights are also
useful. For instance, we can require that av,w = aw,v but
allow negative values. Then the block of M corresponding to
the vertices of Y is symmetric and thus is diagonalizable by
orthogonal matrices and has real eigenvalues. In some cases,
these matrices may still have all nonnegative eigenvalues,
in which case many of our techniques will still apply – we
mention this as a possibility for future work, but we will not
address this case much here. Finally, for the case we will use
most often, we instead allow for av,w and aw,v to be different,
but require that they be positive. We will prove our main
results with these assumptions, as they are reasonably general
but retain some of the useful properties of M .

Convergence to Steady States

Here we turn to the theoretical analysis of our method.
Readers who are willing to trust the results can skim the
mathematical details, and those wanting to move directly to
understanding a protocol based on these ideas can glance
ahead to Section 4. However, many of the benefits of our
method follow from this analysis, and future work on opti-
mizing performance will likely depend on the work below.

Referring to Equations (2) and (4), we will call any vector
x such that x = Ax = x − hαMx a steady state or a
steady-state solution. These are of course the eigenvectors
of A with eigenvalue 1, which can equivalently be defined as
vectors in the kernel of M . They represent consensus in the
network, in the sense that the value over each vertex agrees
with a weighted average of its neighbor’s values, defined by
the weights av,w. Note that (1, . . . , 1)T is always a steady-
state solution, representing the exact agreement between all
vertices. Different steady-state solutions arise if the values
over the boundary vertices disagree. However, the following
result shows that all steady-state solutions can be viewed as
consensus to within the level of accuracy of the boundary
nodes.

Theorem 1. Suppose that G is connected and all weights
av,w are positive. If x is a steady-state solution of Equa-
tion (4), then the component of x with maximal absolute value
occurs over a vertex in B.

Proof. If x is a steady-state solution, then Mx = 0. Suppose
v ∈ Y and xv is a component of x with maximal absolute
value; we must show this value is also attained by a vertex in
B. We have

0 = (Mx)v =
∑

w adjacent to v

av,w(xv − xw),

and since xv is the component with maximal absolute value,
we have either xv − xw ≥ 0 for all neighbors w or
xv − xw ≤ 0 for all neighbors w. Since av,w > 0, we must
in fact have xv − xw = 0 for all w, so v shares its value
with all of its neighbors. Since G is connected, applying this
fact repeatedly along a path from v to a node in B shows
the maximal absolute value will also be attained by a node in
B.

Next, we establish that the sequence {xn} defined by Equa-
tion (4) converges under certain assumptions on the weights
av,w and the constant α. We will assume that nonnegative
weights av,w have been fixed and show that choosing any
small enough α < 0 ensures convergence. Convergence
depends on the eigenvalues of A; to begin, note that if λ

5

is an eigenvalue of M , then 1 − hαλ is an eigenvalue of
A. More specifically, if x is a generalized eigenvector of M
with eigenvalue λ and rank k, then it is also a generalized
eigenvector of A with eigenvalue 1 − hαλ and rank k. We
thus have a shared canonical basis that can be used to put
M and A into Jordan canonical form, which we use in the
following theorem.

Theorem 2. In the notation above, suppose each av,w is
nonnegative and we have chosen α ∈

(
0, 1

hd

)
, where d is the

largest diagonal entry of M . Then given any x0, the sequence
{xn} converges to a vector in kerM at an exponential rate.
Specifically, the limit x∗ is given by projecting x0 onto kerM
in the canonical basis of M , and ∥xn − x∗∥ = O(ncµn−c

max),
where µmax is the magnitude of the largest eigenvalue of A
not equal to 1 and c ≤ rank(M)− 1.

The statement of the theorem holds for any norm, since all
norms on a finite-dimensional real vector space are equiva-
lent. In the sheaf Laplacian case, we can strengthen the rate
of convergence to ∥xn − x∗∥ = O(µn

max).

Proof. By the Gershgorin circle theorem, all eigenvalues of
M lie in a closed disk of radius d centered at d in the
complex plane. Thus, for any α < 1

hd , the eigenvalues of
A = I−hαM are either 1 or have magnitude strictly less than
1. Since xn = Anx0, we may write A in Jordan canonical
form to observe the limiting behavior of xn: in the direction
of any eigenvector or generalized eigenvector associated to an
eigenvalue with magnitude less than 1, the components of xn
approach 0. Specifically, by taking powers of Jordan blocks,
we find that the magnitude of each of these components
is O

(
nb−1µ

n−(b−1)
max

)
, where µmax is the magnitude of the

largest eigenvalue of A not equal to 1 and b is the size of the
largest Jordan block corresponding to µmax.

To complete the proof, we must examine the generalized
eigenspace of A corresponding to the eigenvalue 1. In the
Jordan canonical form of A, if there were a Jordan block for
eigenvalue 1 of size m > 1, then powers would be given by

1 1
1 1

. . .
1 1

1

n

=

1 n

(
n
2

)
. . .

(
n
m

)
1 n . . .

(
n

m−1

)
. . .

...
1 n

1

(where the rest of the entries are all zeroes) and hence xn
would grow arbitrarily large for certain choices of x0. To
show this cannot be the case, given an arbitrary x0, we show
that the norm of xn remains less than a fixed bound. Letting
C be an upper bound on the absolute values of the entries of
xn (in the original basis), for any v ∈ Y , the v component of
xn+1 = Axn is computed as

(Axn)v =

(
1− hα

∑
w

av,w

)
(xn)v + hα

∑
w

av,w(xn)w,

where the sums are taken over all w adjacent to v. By our
choice of α, we have 0 ≤ hα

∑
w av,w < 1, so

|(Axn)v| ≤

(
1− hα

∑
w

av,w

)
C + hα

∑
w

av,wC = C.

Therefore, the ∞-norm of xn does not increase as n in-
creases, so there cannot be a Jordan block for the eigenvalue
1 of size greater than 1.

This shows that in the canonical basis, An approaches a block
matrix of the form [

I 0
0 0

]
,

with the identity block corresponding to the eigenspace of A
associated to eigenvalue 1. This is exactly the kernel of M ,
so xn converges to the projection of x0 onto kerM in the
canonical basis of M . The size b of the largest Jordan block
corresponding to µmax is at most rank(M), giving the rate of
convergence.

From here on, we will assume α has been chosen so that each
eigenvalue of A is either equal to 1 or has magnitude strictly
less than 1. Any α meeting the requirements of Theorem 2
is sufficient, for instance. Note that once weights av,w are
chosen, α can be chosen to minimize µmax. There is in fact
a unique optimal α, since µmax can be shown to be a strictly
convex function of α.

Finally, we remark that the techniques used in the proof of
Theorem 2 can give us insight into the effect of time steps
with “faulty edges,” that is, time steps during which clock
data was not able to be exchanged across some edge as
expected. This scenario is modeled by an alternate matrix
M̃ , defined to be the same as M except with a certain
weight av,w changed to 0. This has the effect of shrinking
the corresponding Gershgorin disk, so all eigenvalues of M̃
remain in the largest Gershgorin disk of M . Choosing α
according to Theorem 2 thus gives a convergent sequence xn

using either M or M̃ , although the rate of convergence for M̃
may be less than optimal if α was chosen to optimize for M .
This suggests that a faulty edge at a single step will not result
in drastically different behavior, but will simply slow the rate
of convergence temporarily. The same reasoning holds if
there are multiple faulty edges in a single step. Possible future
work could examine the effect of faulty edges in more detail
(see Section 5).

Error Analysis

We now consider a more realistic scenario in which error is
added at every step. We provide various results showing that
bounds on the errors at each step yield bounds on the distance
between xn and the nearest steady state as n → ∞. These
results are more practical than the convergence results above,
as they imply that in a realistic network, we can maintain
synchronization within a certain, predictable error tolerance.
We carry out our error analysis in the general case of the
matrix M above with positive weights, but we find that often
the cleanest error bounds apply to the case of symmetric
weights, i.e. the sheaf Laplacian case. These results are just
examples of what can be said in general settings, and future
work could consider how they can be specialized or adapted
to specific networks.

Absolute Error Bounds—We first demonstrate a method for
bounding the error tolerance of our method using the standard
Euclidean norm. To begin, we introduce error terms en into
Equation (4) to produce

xn+1 = Axn + en+1. (7)

6

This gives an explicit solution for xn:

xn = Anx0 +An−1e1 + · · ·+Aen−1 + en. (8)

In some cases, it may be useful to add an error
term to xn: this reduces to the above by rewriting
A(xn + e′n) + en+1 = Axn + (Ae′n + en+1). In particular,
the inclusion of error terms en+1 and e′n provide flexible
modeling of errors inherent in clocks, errors in the values over
boundary vertices that are maintained by an outside method,
and errors arising from the asynchronous observation of
neighbors’ clock values.

For an initial error analysis, we will suppose a uniform bound
∥en∥ < ε for all n. We have seen that Anx0 converges
to a steady state, so we wish to bound the accumulated
error represented by the remaining terms. Since any vec-
tor in the eigenspace W associated to eigenvalue 1 is a
steady state, we wish to bound the distance between W and
xn −Anx0 = An−1e1 + · · ·+Aen−1 + en, which we find
by projecting to the orthogonal complement to W . We first
check that by applying an appropriate orthogonal change of
basis, we get a matrix Ã = UAUT that can be written as a
block matrix

Ã =

[
I Ã1,2

0 Ã2,2

]
,

where the upper left I represents the map on the eigenspace
W . Indeed, in the proof of Theorem 2, we saw that
the dimension of W is equal to the multiplicity of the
eigenvalue 1, so we may choose any orthonormal basis
for W and extend arbitrarily to an orthonormal basis for
all of C0(G). Letting U be the matrix with columns
consisting of these basis vectors, we get Ã of the form
above. The lower right block Ã2,2 describes how the map
behaves after projecting onto the orthogonal complement
W⊥, and thus its eigenvalues consist of the eigenvalues
of A with magnitude less than 1. The difference between
xn −Anx0 = An−1e1 + · · ·+Aen−1 + en and the nearest
point of W is thus equal to Ãn−1

2,2 ẽ1 + · · · + Ã2,2ẽn−1 + ẽn,
where each ẽi is the projection of ei onto W⊥, written in the
basis of Ã. In detail, if U is written in blocks corresponding

to those of Ã as U =

[
U1
U2

]
, then ẽi = U2ei. This further

implies ∥ẽi∥ < ε for all i, since U is unitary. The norm of this
difference is the distance to W , or equivalently the distance
to the nearest steady state, and we call this the steady-state
error at step n:

ssen = ∥Ãn−1
2,2 ẽ1 + · · ·+ Ã2,2ẽn−1 + ẽn∥

=

∥∥∥∥∥
n∑

i=1

Ãn−i
2,2 ẽi

∥∥∥∥∥.
We can find bounds on the steady-state error in terms of
the matrix Ã2,2. To begin, using the matrix operator norm
corresponding to the Euclidean norm, we have

ssen ≤ ∥Ãn−1
2,2 ∥∥ẽ1∥+ · · ·+ ∥Ã2,2∥∥ẽn−1∥+ ∥ẽn∥

≤
∞∑
i=0

∥Ãi
2,2∥ε. (9)

The sum converges because the eigenvalues of Ã2,2 are those
of A that have magnitude less than 1.

The bound given in Equation (9) is computable and can serve
as a useful bound if Ã2,2 is built from a graph that is not
too large. However, in most cases, it is too computationally
expensive to be computed many times, and we would like a
more computationally practical bound to use in optimization
problems discussed below. The norm ∥Ã2,2∥ is equal to
the largest singular value σmax of Ã2,2. In cases where
σmax < 1, we further have an upper bound of

ssen ≤
∞∑
i=0

∥Ã2,2∥iε ≤
∞∑
i=0

σi
maxε,

so we get
ssen ≤ ε

1− σmax
. (10)

In the sheaf Laplacian case, we can do a similar error analysis
beginning with Equation (6) and using the fact that the matrix
AY,Y in the equation is symmetric and positive semi-definite.
In this case, a variation on the analysis above gives the
bound ssen ≤ ε

1−µmax
, where µmax is the magnitude of the

largest eigenvalue of A not equal to 1. This is a convenient
error bound and leads to a practical optimization problem,
described below.

In general, ∥σmax∥ can be greater than 1 in spite of the
eigenvalues having magnitude less than 1 and it can also
take a value close to 1 when the eigenvalues are compara-
tively small, so in some cases Equation (10) may not be an
effective bound. If we assume Ã2,2 is diagonalizable, we
can produce a bound in terms of the eigenvalues instead, at
the cost of introducing new terms: if Ã2,2 is diagonalized as
Ã2,2 = SDS−1, then the operator norm of Ãi

2,2 is bounded
by ∥Ãi

2,2∥ ≤ ∥S∥∥S−1∥µi
max. Note that this depends on the

choice of the matrix S used in the diagonalization. The term
∥S∥∥S−1∥ is familiar from computational linear algebra: it
is the condition number of the matrix S, denoted κ(S). We
can bound our error as follows:

ssen ≤ ∥Ãn−1
2,2 ∥∥ẽ1∥+ · · ·+ ∥Ã2,2∥∥ẽn−1∥+ ∥ẽn∥

≤ ∥S∥∥S−1∥
(
εµn−1

max + · · ·+ εµmax + ε
)

≤ κ(S)

∞∑
i=0

εµi
max.

This gives a final bound of

ssen ≤ κ(S)

1− µmax
ε. (11)

Statistical error analysis—Next we take a statistical approach
to understanding the errors: suppose that the errors en
are now independent identically distributed random vectors.
Then the projections ẽn are as well. Let var(x) denote the
variance/covariance matrix of a vector x, defined as usual
by var(x) = E

(
(x − E(x))(x − E(x))T

)
, where E denotes

the expected value of random vectors. Variance/covariance
matrices are symmetric and positive semi-definite. Set

7

V = var(en) and Ṽ = var(ẽn) = U2V UT
2 .

Again, we examine the sum Ãn−1
2,2 ẽ1 + · · ·+ Ã2,2ẽn−1 + ẽn.

The expected value is simply

Ãn−1
2,2 E(ẽ1) + · · ·+ Ã2,2E(ẽn−1) + E(ẽn);

in particular, the expected value is zero if E(ẽi) = 0 for all
i. The variance/covariance matrix is more interesting: it is
given by

var(Ãn−1
2,2 ẽ1 + · · ·+ Ã2,2ẽn−1 + ẽn)

= Ãn−1
2,2 var(ẽ1)(Ã

n−1
2,2)T + . . .

+ Ã2,2var(ẽn−1)Ã
T
2,2 + var(ẽn)

= Ãn−1
2,2 Ṽ (Ãn−1

2,2)T + · · ·+ Ã2,2Ṽ ÃT
2,2 + Ṽ .

As n approaches infinity, this variance/covariance matrix
converges since the eigenvalues of Ã2,2 have a magnitude less
than 1. The limit is the matrix below:

s̃sv =

∞∑
i=0

Ãi
2,2Ṽ (Ãi

2,2)
T .

This is expressed in the basis of Ã2,2. Recalling that we made
an orthogonal change of basis setting Ã = UAUT , we can
convert back to the original basis, and we call the resulting
matrix the steady-state variance:

ssv = UT

[
0 0
0 s̃sv

]
U.

Thus, we find that the variance/covariance matrix for the
difference between xn and the nearest steady-state solution
approaches ssv.

Fortunately, ssv can be computed explicitly as long as Ã2,2

can be diagonalized. Suppose Ã2,2 = SDS−1 as above and
let µ1, . . . , µr be the eigenvalues of Ã2,2 (the diagonal entries
of D). Then we have

S−1s̃sv(S−1)T

=

∞∑
i=0

S−1Ãi
2,2SS

−1Ṽ (S−1)TST (Ãi
2,2)

T (S−1)T

=

∞∑
i=0

Di
(
S−1Ṽ (S−1)T

)
Di,

so the entries are given by

(
S−1s̃sv(S−1)T

)
j,k

=

∞∑
i=0

µi
jµ

i
k

(
S−1Ṽ (S−1)T

)
j,k

=
1

1− µjµk

(
S−1Ṽ (S−1)T

)
j,k

.

(12)

This provides a practical way to compute s̃sv, requiring
just the diagonalization of Ã2,2, and from this ssv can be

computed.

In addition to finding this explicit means of computing ssv,
we can find bounds on its norm. Below we use the operator
norm on matrices corresponding to the Euclidean norm and
again let σmax be the largest singular value of Ã2,2. As long
as σmax < 1, we have

∥ssv∥ = ∥s̃sv∥

≤
∞∑
i=0

∥Ãi
2,2∥∥Ṽ ∥∥(Ãi

2,2)
T ∥

≤
∞∑

n=0

σi
max∥Ṽ ∥σi

max.

Since Ṽ is a block of UV UT , which has the same norm as V ,
we have ∥Ṽ ∥ ≤ ∥V ∥ and thus obtain the following bound:

∥ssv∥ ≤ 1

1− σ2
max

∥V ∥. (13)

As above, we can find a bound in terms of the eigenvalues if
we assume that Ã2,2 is diagonalizable: if Ã2,2 = SDS−1 as
above, then we have

∥ssv∥ = ∥s̃sv∥

≤
∞∑
i=0

∥Ãi
2,2∥∥Ṽ ∥∥(Ãi

2,2)
T ∥

≤
∞∑

n=0

(
∥S∥∥S−1∥µi

max

)
∥Ṽ ∥

(
∥S∥∥S−1∥µi

max

)
≤ κ(S)2

1− µ2
max

∥V ∥.

If we choose to ignore the covariances and focus entirely on
the variances, the trace provides a convenient summary of
ssv. Since Ṽ is symmetric and positive semi-definite, we
have a Cholesky factorization Ṽ = LLT . Letting ∥ · ∥F be
the Frobenius norm,

tr(ssv) = tr(s̃sv)

=

∞∑
i=0

tr
(
Ãi

2,2Ṽ (Ãi
2,2)

T
)

=

∞∑
i=0

tr
(
Ãi

2,2LL
T (Ãi

2,2)
T
)

=

∞∑
i=0

∥Ãi
2,2L∥2F

≤ ∥L∥2F
∞∑
i=0

∥Ãi
2,2∥2F

= tr(Ṽ)

∞∑
i=0

∥Ãi
2,2∥2F .

8

To bound tr(Ṽ) in this expression, again write U =

[
U1
U2

]
, so

that

tr(V) = tr
(
UV UT

)
= tr

([
U1V UT

1 U1V UT
2

U2V UT
1 U2V UT

2

])
.

Then tr(Ṽ) = tr(U2V UT
2) and tr(U1V UT

1) ≥ 0 as it is
the trace of the variance/covariance matrix var(U1en), so
tr(Ṽ) = tr(V)− tr(U1V UT

1) ≤ tr(V).

Combining with the above gives a bound on the trace of ssv:

tr(ssv) ≤ tr(V)

∞∑
i=0

∥Ãi
2,2∥2F . (14)

This is analogous to Equation (9).

Alternately, we can work with the explicit expression of
Equation (12), beginning as follows:

tr
(
S−1s̃sv(S−1)T

)
=
∑
j

1

1− µ2
j

(
S−1Ṽ (S−1)T

)
j,j

≤ 1

1− µ2
max

tr
(
S−1Ṽ (S−1)T

)
.

Again using the Cholesky factorization Ṽ = LLT , we get a
bound

tr(S−1Ṽ (S−1)T) = ∥S−1L∥2F
≤ ∥S−1∥2F ∥L∥2F
= ∥S−1∥2F tr(Ṽ).

Similarly, we also have

tr(s̃sv) ≤ ∥S∥2F tr
(
S−1s̃sv(S−1)T

)
.

Combining with the previous step, we have

tr(ssv) = tr(s̃sv)

≤ ∥S∥2F tr
(
S−1s̃sv(S−1)T

)
≤ ∥S∥2F

1− µ2
max

tr
(
S−1Ṽ (S−1)T

)
≤ ∥S∥2F ∥S−1∥2F

1− µ2
max

tr(Ṽ).

As before, tr(Ṽ) ≤ tr(V), so we get a final bound on the
trace of ssv:

tr(ssv) ≤ ∥S∥2F ∥S−1∥2F
1− µ2

max

tr(V). (15)

As with the absolute error bounds, we get simpler bounds
on ssv in the sheaf Laplacian case, again resulting from
the matrix AY,Y in Equation (6) being diagonalizable by
orthogonal matrices. In the sheaf Laplacian case, we get
bounds ∥ssv∥ ≤ 1

1−µ2
max

∥V ∥ and tr(ssv) ≤ 1
1−µ2

max
tr(V)

analogous to the above, and it is also possible to show
∥ssv∥F ≤ 1

1−µ2
max

∥V ∥F .

Optimization

The results above have suggested the quantities appearing
in our error bounds could be optimized when choosing the
weights av,w and the constant α. Mathematically, we can
formulate a variety of optimization problems from choices of
objective functions and constraints on the weights av,w. With
these problems, there is a trade-off between how accurately
an objective function represents errors in the network and
how easily it can be computed. For small networks (where
we note that some space networks in the immediate future
may indeed be rather small), a computationally expensive ob-
jective function may be usable. For larger networks, we may
have to settle for a less accurate but more computationally
practical objective function. We list some of the options of
optimization problems here, roughly in order from the most
computationally expensive objective function to the least.

Problem 1. Choose weights av,w ≥ 0 and the constant α > 0

to minimize the steady-state error bound
∑∞

i=0 ∥Ãi
2,2∥ε given

in Equation (9).

Problem 2. Choose weights av,w ≥ 0 and the constant α > 0
to minimize one of the following expressions appearing in the
previous section: κ(S)

1−µmax
, κ(S)2

1−µ2
max

, or ∥S∥2
F ∥S−1∥2

F

1−µ2
max

.

Problem 2 is perhaps not very practical because there is a
choice involved in the matrix S. Additionally, since the
second and third expressions in this problem are bounds on
the norm and trace of ssv, these cases are subsumed by the
following option, which is likely more computable.

Problem 3. Choose weights av,w ≥ 0 and the constant α > 0
to minimize a matrix norm or the trace of ssv, computed as
described in Equation (12).

The remaining problems are the most practical, being based
on singular values and eigenvalues.

Problem 4. Choose weights av,w ≥ 0 and the constant α > 0

to minimize σmax, the largest singular value of Ã2,2, which
appears in the bounds in Equations (10) and (13).

We can also choose to optimize the eigenvalues of Ã2,2

instead of the singular values. The eigenvalues of Ã2,2
are those of A that are not equal to 1. Thus µmax, the
magnitude of the largest eigenvalue of Ã2,2, is equivalently
the magnitude of the largest eigenvalue of A not equal to 1.
While minimizing µmax does not directly minimize any of
the error bounds above, we include the following problem as
a possibly more practical option.

Problem 5. Choose weights av,w ≥ 0 and the constant α > 0
to minimize µmax, the largest magnitude of an eigenvalue of
A not equal to 1.

Finally, in the sheaf Laplacian case, minimizing the error
bounds does in fact reduce to minimizing µmax. Furthermore,
once constants av,w are chosen, we have seen that there is a
unique α that minimizes µmax, and we can assume that this
α is always chosen. We formulate a problem for this case as
follows:

Problem 6. Choose symmetric weights av,w = aw,v ≥ 0
to minimize µmax, the largest magnitude of an eigenvalue of
A not equal to 1. This is equivalent to minimizing λmax

λmin
,

9

where λmax and λmin are the largest and smallest nonzero
eigenvalues of M .

The ratio of eigenvalues λmax

λmin
in Problem 6 is in fact the

condition number of the restriction of the Y block of M
to the orthogonal complement of its kernel. The fact that
minimizing µmax is equivalent to minimizing this condition
number follows from finding µmax in terms of λmax and
λmin, which are necessarily real in the sheaf Laplacian case.
Note that the minimum and maximum nonzero eigenvalues
of A are 1 − hαλmax and 1 − hαλmin. We have assumed
the choice of α that minimizes the larger absolute value of
these two: this places them at equal distances from 0, giving
hαλmax − 1 = 1 − hαλmin and thus α = 2

h(λmax+λmin)
.

Substituting to find the maximal and minimal eigenvalues of
A gives

µmax =
λmax − λmin

λmax + λmin
=

λmax

λmin
− 1

λmax

λmin
+ 1

,

which is minimized when the condition number λmax

λmin
is

minimized.

Many of the objective functions in the problems above are
generally not differentiable due to the terms µmax and σmax.
Thus, the common technique of gradient descent is not
fully justified for these problems, although it could still be
attempted. A more principled approach would be to use a
subgradient method – we suggest this as a fruitful area for
future work. We will conclude this section by emphasizing
that the problems posed here are simply a first suggestion of
how to optimize the weights, as more useful error estimations
and approaches tailored to specific networks could be found
in the future.

4. TOWARDS A PROTOCOL
The previous section considered the mathematical theory
behind our proposed clock synchronization method. In this
section, we outline some steps necessary to turn this method
into a practical protocol that could be incorporated into DTN.
This section is divided into several subsections addressing
different aspects of implementing our method, and we con-
clude each with a list of what will need to be addressed by a
protocol.

Predetermined parameters sent to nodes

We have assumed throughout that certain data, which we
call the parameters of our method, are determined on Earth
and distributed to the network nodes. Here we outline what
decisions are made on Earth and list the parameters needed
by the network nodes. To begin, the structure of a network
needs to be determined up front, based on knowledge of the
nodes and the periods during which they can communicate,
which are assumed to be scheduled in current approaches to
DTN. The structure of the network includes the choice of
which edges to include – as we have described above, an edge
should only be included between two vertices when they have
sufficiently regular periods of communication. The parameter
h is chosen as a length of the time steps so that each pair of
vertices connected by an edge can exchange clock data once
per time step (where we may allow some exceptions if we
are willing to accept occasional faulty edges, as discussed
in Section 3). Thus, the choice of edges is intertwined

with the choice of h, and they provide competing goals: we
would like to minimize h, as more frequent updates should
improve performance, but we would also like to maximize
the number of edges, as more communication between nodes
should also improve performance. These choices are highly
dependent on the specific network and the scheduled periods
of communication between nodes.

Additionally, the structure of the network should take into
account the relative accuracies of clocks in the network, since
in our method, each clock influences its neighbors. To handle
a large variety of accuracies of clocks, possibly multiple
orders of magnitude, we would like to prevent significantly
less accurate clocks from providing updates to more accurate
ones. The notion of boundary conditions that we have inves-
tigated above provides an approach. Above, we have thought
of the boundary B within the graph G as being synchronized
to a high degree of accuracy by an outside method. Lower
accuracy nodes outside B did not influence the nodes of
B, but the higher accuracy nodes within B were allowed
to influence nodes outside B. We can iterate this approach
as needed, organizing our network G into nested subgraphs
G0 ⊆ G1 ⊆ · · · ⊆ Gn, with more accurate clocks placed
in lower Gi. Then G0 can consist of true boundary nodes,
synchronized by an outside method, while nodes in G \ Gi
treat Gi as the boundary. Borrowing a term from NTP, we
refer to nodes in G0 as stratum 0, and nodes in Gi \ Gi−1
as stratum i, where roughly speaking, lower strata are more
accurate. We thus have a stratum number assigned to every
node, where nodes only receive updates from neighbors that
have lesser or equal stratum numbers. For instance, our
simple case of a graph G with boundary vertices in B has
two strata, where vertices in B have stratum number 0 and
vertices in G \B have stratum number 1.

After determining the structure of the network, the weights
av,w and the constant α must be determined upfront as well.
Note though that in practice, α is superfluous, since it simply
scales all of the weights. Additionally, the parameter h used
above does not need to be explicitly recorded, as it just
serves to specify the times at which an update in clocks takes
place. In practice, a schedule of times at which clocks are
updated should be sent to each node, with consecutive times
differing by h. Our method best describes a case where all
nodes update their clocks at the same time, although it would
certainly be possible to experiment with less rigid scheduling.
In addition to the times at which clocks will be updated, nodes
also need a schedule of when to exchange clock data with
the appropriate neighbors; this is dependent on the scheduled
periods of communication between nodes used for routing
in DTN. One simple approach to creating a schedule for
exchanging clock data is to have nodes that are connected
by an edge exchange clock data during their earliest period of
communication in each time step.

Once the structure of the network and the parameters above
have been determined, the information a node needs is simply
its row in the matrix A of Equation (4). Referring back to
Equations (2) and (3) and accounting for our partitioning of
the network into strata, the update for vertex v is given by

(xn+1)v = (xn)v − hα
∑
w

av,w((xn)v − (xn)w),

where the sum is taken over all vertices w adjacent to v that
have a stratum number less than or equal to that of v. As
described in Section 2, even though each (xn)v represents
the difference between the clock value of v and the true time,

10

the sum in the equation above can be computed from the
clock values, as it only requires knowledge of the differences.
To describe the update at the end of a given time step, let
Cv,w = Cv(t) − Cw(t) be the difference in clock values
observed at some time t during the time step. Then according
to the above, v updates its clock by subtracting∑

w

hα av,w Cv,w. (16)

It is the coefficients hαav,w that need to be communicated
to node v, since from these, the update to the clock can be
computed.

To summarize, the parameters that must be computed on
Earth and sent to a node v consist of:
• A list of nodes w adjacent to v that have a stratum number
less than or equal to that of v, along with the method of
receiving clock data from w. This list of nodes will need to
be compatible with the schedule used by DTN for routing.
• A schedule containing regularly spaced times at which the
node v will update its clock and the times at which v will
exchange clock values with its neighbors. This schedule will
also necessarily depend on the schedule used by DTN for
routing.
• The coefficients hαav,w used to compute updates, as given
in Equation (16).
• Additional parameters described in the subsections below:
tolerance levels for reality checks, other parameters needed
for future fault tolerance methods, expiration times for the
Cv,w if used, and any parameters required for initializing a
clock value based on neighbors’ data.

Data managed by nodes

Here we examine the types of data nodes will need to store
and use in the update process. We will not attempt to specify
formats for the data, as we leave this for a time in the future
when the needs of the protocol are better understood. The
data managed by a node of course includes the parameters
sent to the node as described above. This data will be
accessed as needed when adjusting the clock and updated
whenever a new set of parameters is received by the node.

The other data managed by a node include the clock data
received from its neighbors and, of course, its own clock
value. For the clock data node v receives from a neighbor
w, only the difference in clock values, written as Cv,w, needs
to be recorded. So node v will maintain a list of values of
Cv,w, one for each neighbor w that it is assigned to receive
clock data from (those with lesser or equal stratum number,
as above). The value of Cv,w should be initialized to 0 and
updated when a clock value is received from w. We have
assumed that w sends its clock value once per time step;
however, in practice, there may be time steps during which
w cannot send to v (we described such a scenario as a “faulty
edge” in Section 3). The simplest solution is to have Cv,w
reset to 0 if no clock value is received from w during a time
step. A more flexible solution involves a choice of “expiration
time” of the Cv,w values, that is, a number of time steps
without a clock value from w after which Cv,w is reset to 0.
This would allow a node v to use an old value of Cv,w until
it expires, if no new value has been received. More nuanced
variations of this approach in which old Cv,w values decay
over time are also possible.

The updating of a Cv,w value is a convenient place to include
a reality check. Before updating Cv,w, a node should check

that the new value is reasonable, i.e. has absolute value less
than some specified tolerance computed based on reasonable
errors to expect in the network. This tolerance becomes
another predetermined parameter that must be distributed to
the nodes.

We have recorded the following data each node v must
manage:
• The parameters sent to the node, as described in the previ-
ous subsection.
• Cv,w for each neighbor w from which clock data is re-
ceived.
• If the Cv,w come with an expiration time or a related
approach to faulty edges is taken, then we must include, for
each Cv,w, a counter of how many time steps have passed
since Cv,w was last updated.

Procedures performed by nodes

The nodes of the network need the ability to perform certain
procedures to make use of our method. To begin, we need
to be able to initialize a node v without any assumed data.
Upon receiving an initial set of parameters, v should store the
parameters and set values of all Cv,w to 0, and we can allow
for multiple options for how v initializes its clock value. It
may keep a preexisting clock value or can set a clock value
based on the first clock value received from a neighbor or
some type of average of the first few clock values received
from neighbors. Nodes should only be allowed to keep
preexisting clock values that are reasonably accurate, so that
they do not introduce large errors as they begin to send their
clock values to neighbors. After initialization, nodes must be
able to accept updates to parameters as they are received.

Next, nodes need to be able to exchange clock data, which
can occur across an edge in the graph when two nodes can
communicate. Existing techniques for exchanging clock data
across a link in space will need to be incorporated into the
protocol. As we have described, we need to allow for multiple
scenarios in which clock data is exchanged: this includes
cases where ranging techniques can be used to determine the
speed of light delay, as well as cases where long distances
force us to use a predetermined estimate of the speed of light
delay. We must allow the exchange of clock data between
nodes v and w to occur in only one direction, e.g. from v to
w, or in both directions. In the case of a two-way exchange
of clock values, there is the possibility to allow one node
to compute the difference and send it to its neighbor, which
ensures that Cv,w = −Cw,v (instead of having both nodes
perform the computation separately and introduce different
errors). Because of the complexity, the exchange of clock
data may be broken down into multiple cases and may require
the sending of multiple messages containing clock data.

Finally, each node must have a procedure to update its clock
value. This simply requires the computation of the expression
given in 16 and access to the node’s clock. This provides
another opportunity for a reality check: nodes can be limited
in how much they are able to adjust their clock in a single step
to improve fault tolerance.

In summary, a node must be able to perform the following
procedures:
• Initialization, with multiple options of how to set an initial
clock value.
• Update of predetermined parameters when new values are
received.
• Exchange of clock values with neighbors – this is the most
complicated and may be divided into multiple cases.

11

• Update of the node’s clock value.

Types of bundles used

We conclude this section with an outline of how nodes may
exchange data relevant to clock synchronization using bun-
dles, the packets of data used in DTN. As in our discussion
of data managed by nodes, we will not specify the formats
of the bundles to be used, as this should be chosen at a
later date when the interaction of clock synchronization with
other aspects of DTN is more clearly established. Once a
general format of clock synchronization bundles is chosen,
we can categorize these bundles by their function, and these
categories should include at least:
• Bundles for updates to parameters, including the option of
initializing a node’s data. A bundle initializing a node could
contain the choice of how to initialize the clock value.
• Bundles for the exchange of clock data. This should
include at least a type of bundle that simply carries a time
stamp. Other variations could include data used in a two-way
exchange of clock information.

5. CONCLUSION AND FUTURE WORK
In our current work, aiming to advance the idea of a DTN
clock synchronization method based on diffusion, we have
chosen to focus primarily on the mathematical motivation and
theoretical guarantees on performance. Having outlined the
work necessary to turn this method into a viable network pro-
tocol in the previous section, there remain many avenues for
future research, both to improve the theoretical understanding
of our method and to begin to validate it experimentally. We
conclude with some suggestions for such future work.

• Fault tolerance and security
– In Section 3, after the proof of Theorem 2, we gave a

heuristic argument for why our method should be able to
tolerate occasional faulty edges. Future work could look into
making this argument more precise or testing experimentally
the effect of faulty edges.
– In Section 4, we suggested that certain reality checks

should be incorporated into a protocol in order to handle
faulty data. Future work could look into the best approaches
to these reality checks, along with other ways of detecting
faulty data. One possible objective for this work would be to
make a protocol that is robust to Byzantine faults, along the
lines of [37]. Currently, our protocol offers no adversarial
fault tolerance; it assumes that a trusted institution (e.g.,
NASA) acts as a centralized certificate authority, that every
user with a certificate is honest, and that the network is
secure. The interaction of a clock synchronization protocol
and security protocols for DTN will be important, especially
in determining how much fault tolerance should be built into
a clock synchronization protocol.
– To our knowledge, the only standardized security protocol

designed and aimed for DTN currently is Bundle Protocol
Security (BPSec) [38–41]. However, BPSec alone could be
insufficient for providing the fault tolerance of our desired
level, as BPSec provides only confidentiality and integrity of
bundles, and assumes the existence of a key management ser-
vice. The use of identity-based encryption (IBE) [42] could
reduce the necessity of public key infrastructure and key
distribution and can be used as a way to combine a public key
and certificate (identity) into one. The use of IBE or related
schemes for DTN is actively being studied already [43–46].
However, IBE still requires a central authority, known as the
private key generator (PKG), and in fact requires more trust in
them than traditional public-key encryption schemes as they

have the authority to store and generate secret keys [47].
– Some anonymous credential schemes based on non-

interactive zero-knowledge proofs (e.g., zkSNARKs [48])
such as the one presented in [49] hence could be desired as
they can be used to verify a user’s identity asynchronously
while preserving the anonymity. They can also potentially
prevent DoS attacks, which are proven to be effective against
DTNs due to their store-and-carry architecture [4, 50–53]. In
particular, the scheme presented in [49] allows the issuance
list to be auditable publicly (while the attributes of credentials
remain private) as a form of Merkle trees.
• Layer of responsibility
– In the last few subsections of Section 4, we have mostly

assumed that it would be the responsibility of the bun-
dle layer/protocol (BP) to handle the clock synchronization
across SSI. It is imperative that which agent within the BP
should primarily be responsible for it. For example, if the
application element (AE) of the application agent (AA) is
the one that handles the clock synchronization, creating a
new bundle format for clock synchronization requests may
not be necessary, because then the clock synchronization
request bundle can be just a bundle that encapsulates an
admin record that contains clock information. On the other
hand, given that computer clocks and their synchronization
protocols (e.g., NTP) usually reside in the application layer
of the network, and that DTN is an overlay architecture and
hence can be heterogeneous, deploying our protocol in the
application layer may offer more efficiency and robustness
than in the bundle layer.
• Automated exchange of clock data
– Any automated clock synchronization protocol requires

an automated exchange of clock data between network nodes.
Future work on a clock synchronization protocol for DTN
will need to incorporate existing techniques for exchange of
clock data in space as automated capabilities of DTN so that
the schedule of these exchanges can be created in advance.
– The sending of clock data in bundles will need to not

interfere with the techniques of exchanging clock data –
for precise timing, this may require careful consideration of
time stamps and the time required to read and write bundles.
Alternately, a protocol could allow certain techniques of
exchanging clock data to take place outside of DTN, without
formatting data as bundles.
• Error bounds in specific settings
– The error analysis given in Section 3 applies to general

networks and general error vectors. The techniques could
potentially be improved if we assume more knowledge of
the errors or the structure of the network. Future work
could examine error tolerance if specific distributions of the
error vectors en are known or could analyze error bounds for
specific simulated networks.
• Optimization problems
– Future work can consider developing techniques to solve

the optimization problems we have formulated, including
investigating subgradient methods.
– Related to the future work on error bounds, different op-

timization problems could be formulated for a given network
if we are able to find objective functions that better reflect the
error tolerance of the network.
– An important, but less specific optimization problem is

that of choosing the edges to be included in the graph and the
length of the time step h given a network and a schedule of
when nodes are able to communicate – see the discussion in
Section 4.
– Another interesting problem would be to explore different

‘diffusion’ equations to diffuse the clock values and see
which method converges the fastest and is the most stable. In
this paper, only the (variant of) heat equation (Equation (1))

12

was considered. The use of mean curvature flow (or curve-
shortening flow) can be seen as an immediate generalization
of our protocol as it is a geometric heat equation. This direc-
tion of studies would also initiate a new study of numerical
analysis of differential equations on cellular sheaves.
• Tests in simulated networks
– Once h, α, and all weights av,w have been chosen, a

straightforward simulation of our method is uninteresting: it
is essentially repeated multiplication by the matrix A. A more
interesting simulation would build on some of the proposed
future work on fault tolerance. This could include simulation
of faulty edges as mentioned above and the inclusion of
reality checks or other methods to detect faulty data. Simula-
tion of Byzantine faults could be useful once sufficient fault
tolerance methods have been introduced.
– We have suggested certain optimization problems as

methods for choosing the weights av,w, and future work may
suggest other methods as well. Various candidate methods for
choosing weights should be tested and compared in simulated
networks.
• An approach without scheduling
– Our approach has been based on the assumption that

exchanges of clock data can be scheduled – this is appropriate
with the schedule-based approach to routing in DTN that is
currently standard. However, as DTN expands to include
more techniques, it may be beneficial to have a method of
clock synchronization that does not depend on (or depends
less heavily on) scheduled exchanges of clock data. For
instance, one of the prominent alternatives to the schedule-
based approaches is PRoPHET [54, 55], which takes a prob-
abilistic approach to routing. Certain aspects of our method,
especially the linear models of diffusion in a graph and the
minimal computations required, could be applied to methods
that do not assume regular time steps or scheduled times for
updates. While the mathematical analysis of such a method
would likely be more difficult, the principles behind it would
remain the same, and such a method would be a useful option
to have for the future.

REFERENCES
[1] K. Fall, “A delay-tolerant network architecture for

challenged internets,” in Proceedings of the 2003 Con-
ference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, ser.
SIGCOMM ’03. New York, NY, USA: Association
for Computing Machinery, 2003, p. 27–34. [Online].
Available: https://doi.org/10.1145/863955.863960

[2] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf,
B. Durst, K. Scott, and H. Weiss, “Delay-tolerant net-
working: an approach to interplanetary internet,” IEEE
Communications Magazine, vol. 41, no. 6, pp. 128–136,
2003.

[3] I. F. Akyildiz, O. B. Akan, C. Chen, J. Fang,
and W. Su, “Interplanetary internet: state-of-the-
art and research challenges,” Computer Networks,
vol. 43, no. 2, pp. 75–112, 2003. [Online].
Available: https://www.sciencedirect.com/science/
article/pii/S1389128603003451

[4] K. Fall and S. Farrell, “Dtn: an architectural retrospec-
tive,” IEEE Journal on Selected Areas in Communica-
tions, vol. 26, no. 5, pp. 828–836, 2008.

[5] A. Hylton and D. E. Raible, High Data Rate Archi-
tecture (HiDRA). AIAA, 2016. [Online]. Available:
https://arc.aiaa.org/doi/abs/10.2514/6.2016-5756

[6] A. Hylton, D. Raible, and G. Clark, “A delay
tolerant networking-based approach to a high data
rate architecture for spacecraft,” 2019 IEEE Aerospace
Conference, pp. 1–10, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:85511897

[7] A. Hylton, D. Raible, G. Clark, R. Dudukovich,
B. Tomko, and L. Burke, “Rising above the cloud:
Toward high-rate delay-tolerant networking in low earth
orbit,” in Advances in Communications Satellite Sys-
tems. Proceedings of the 37th International Commu-
nications Satellite Systems Conference (ICSSC-2019),
2019, pp. 1–17.

[8] M. Moy, R. Kassouf-Short, N. Kortas, J. Cleveland,
B. Tomko, D. Conricode, Y. Kirkpatrick, R. Cardona,
B. Heller, and J. Curry, “Contact multigraph rout-
ing: Overview and implementation,” in 2023 IEEE
Aerospace Conference, 2023, pp. 1–9.

[9] R. Dudukovich, B. LaFuente, A. Hylton, B. Tomko,
and J. Follo, “A distributed approach to high-rate delay
tolerant networking within a virtualized environment,”
in 2021 IEEE Cognitive Communications for Aerospace
Applications Workshop (CCAAW), 2021, pp. 1–5.

[10] NASA Glenn Research Center (B. Tomko, E.
Schweinsberg, N. Kotas, B. LaFuente, R. Dudukovich,
K. J. Vernyi et al.), “HDTN,” 2019, GitHub Repository.
[Online]. Available: https://github.com/nasa/hdtn

[11] S. B. Cooper, “From mercury to pluto: A common
approach to mission timekeeping,” IEEE Aerospace and
Electronic Systems Magazine, vol. 21, no. 10, pp. 18–
23, 2006.

[12] T. Ely, J. Seubert, and J. Bell, “Advancing navigation,
timing, and science with the deep space atomic clock,”
in 13th International Conference on Space Operations,
ser. SpaceOps 2014, 05 2014, p. 1856.

[13] T. A. Ely, J. Seubert, J. Prestage, R. Tjoelker, E. Burt,
A. Dorsey, D. Enzer, R. Herrera, D. Kuang, D. Murphy
et al., “Deep space atomic clock mission overview,” in
Proceedings of the AAS/AIAA Astrodynamics Specialist
Conference, Portland, ME, USA, 2019, pp. 11–13.

[14] T. A. Ely, E. A. Burt, J. D. Prestage, J. M. Seubert, and
R. L. Tjoelker, “Using the deep space atomic clock for
navigation and science,” IEEE transactions on ultrason-
ics, ferroelectrics, and frequency control, vol. 65, no. 6,
pp. 950–961, 2018.

[15] E. O. Ilo-Okeke, L. Tessler, J. P. Dowling, and
T. Byrnes, “Remote quantum clock synchronization
without synchronized clocks,” npj Quantum Informa-
tion, vol. 4, no. 1, p. 40, 2018.

[16] J. S. Sidhu, S. K. Joshi, M. Gündoğan, T. Brougham,
D. Lowndes, L. Mazzarella, M. Krutzik, S. Mohapatra,
D. Dequal, G. Vallone et al., “Advances in space quan-
tum communications,” IET Quantum Communication,
vol. 2, no. 4, pp. 182–217, 2021.

[17] J. Troupe, S. Haldar, I. Agullo, and P. Kwiat, “Quan-
tum clock synchronization for future nasa deep space
quantum links and fundamental science,” arXiv preprint
arXiv:2209.15122, 2022.

[18] D. Mills, “Internet time synchronization: the network
time protocol,” IEEE Transactions on Communications,
vol. 39, no. 10, pp. 1482–1493, 1991.

[19] J. Martin, J. Burbank, W. Kasch, and P. D. L.
Mills, “Network Time Protocol Version 4: Protocol
and Algorithms Specification,” RFC 5905, Jun. 2010.

13

https://doi.org/10.1145/863955.863960
https://www.sciencedirect.com/science/article/pii/S1389128603003451
https://www.sciencedirect.com/science/article/pii/S1389128603003451
https://arc.aiaa.org/doi/abs/10.2514/6.2016-5756
https://api.semanticscholar.org/CorpusID:85511897
https://github.com/nasa/hdtn

[Online]. Available: https://www.rfc-editor.org/info/
rfc5905

[20] Q. Ye and L. Cheng, “Dtp: Double-pairwise time pro-
tocol for disruption tolerant networks,” in 2008 The
28th International Conference on Distributed Comput-
ing Systems, 2008, pp. 345–352.

[21] J. Rash, R. Parise, K. Hogie, E. Criscuolo, J. Langston,
C. Jackson, H. Price, and E. I. Powers, “Internet ac-
cess to spacecraft,” in 14th Annual/USU Conference on
Small Satellites, no. SSC00-IX-1, 2000.

[22] L. Felton, L. Pitts, and F. VanLandingham, “Nasa ar-
chitecture for solar system time synchronization and
dissemination: Concept of operations,” in SpaceOps
2008 Conference. AIAA, 2008.

[23] S. Woo, J. Gao, and D. Mills, “Space network time
distribution and synchronization protocol development
for mars proximity link,” in SpaceOps 2010 Conference,
no. 2010-2360. Huntsville, AL: AIAA, 04 2010.

[24] D. L. Mills, Computer network time synchronization:
the network time protocol. CRC press, 2006.

[25] A. Hylton, N. Tsuei, M. Ronnenberg, J. Hwang,
B. Mallery, J. Quartin, C. Levaunt, J. Quail, and
J. Curry, “Toward time synchronization in delay tolerant
network based solar system internetworking,” in 2023
IEEE Aerospace Conference, 2023, pp. 1–20.

[26] B. J. Choi and X. Shen, “Distributed clock synchroniza-
tion in delay tolerant networks,” in 2010 IEEE Interna-
tional Conference on Communications, 2010, pp. 1–6.

[27] B. J. Choi, H. Liang, X. Shen, and W. Zhuang, “Dcs:
Distributed asynchronous clock synchronization in de-
lay tolerant networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 23, no. 3, pp. 491–504,
2012.

[28] M. Sasabe and T. Takine, “A simple scheme for relative
time synchronization in delay tolerant manets,” in 2009
International Conference on Intelligent Networking and
Collaborative Systems, 2009, pp. 395–396.

[29] Q. Li and D. Rus, “Global clock synchronization in
sensor networks,” in IEEE INFOCOM 2004, vol. 1,
2004, p. 574.

[30] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and
W. E. Weihl, “Reaching approximate agreement in the
presence of faults,” in Third Symposium on Reliability in
Distributed Software and Database Systems, ser. SRDS
1983. Clearwater Beach, FL, USA: IEEE Computer
Society, 10 1983, pp. 145–154.

[31] J. Lundelius and N. Lynch, “A new fault-tolerant
algorithm for clock synchronization,” in Proceedings
of the Third Annual ACM Symposium on Principles of
Distributed Computing, ser. PODC ’84. New York,
NY, USA: Association for Computing Machinery,
1984, p. 75–88. [Online]. Available: https://doi.org/
10.1145/800222.806738

[32] L. Lamport and P. M. Melliar-Smith, “Synchronizing
clocks in the presence of faults,” Journal of ACM,
vol. 32, no. 1, p. 52–78, 01 1985. [Online]. Available:
https://doi.org/10.1145/2455.2457

[33] D. J. Israel, K. D. Mauldin, C. J. Roberts, J. W. Mitchell,
A. A. Pulkkinen, L. V. D. Cooper, M. A. Johnson,
S. D. Christe, and C. J. Gramling, “Lunanet: a flex-
ible and extensible lunar exploration communications
and navigation infrastructure,” in 2020 IEEE Aerospace
Conference, 2020, pp. 1–14.

[34] J. A. Fraire, O. De Jonckère, and S. C. Burleigh, “Rout-
ing in the space internet: A contact graph routing tuto-
rial,” Journal of Network and Computer Applications,
vol. 174, January 2021.

[35] J. Hansen and R. Ghrist, “Toward a spectral
theory of cellular sheaves,” Journal of Applied
and Computational Topology, vol. 3, no. 4,
pp. 315–358, Dec 2019. [Online]. Available:
https://doi.org/10.1007/s41468-019-00038-7

[36] ——, “Opinion dynamics on discourse sheaves,”
SIAM Journal on Applied Mathematics, vol. 81,
no. 5, pp. 2033–2060, 2021. [Online]. Available:
https://doi.org/10.1137/20M1341088

[37] M. R. Malekpour, “A byzantine-fault tolerant self-
stabilizing protocol for distributed clock synchroniza-
tion systems,” in Symposium on Self-Stabilizing Sys-
tems. Springer, 2006, pp. 411–427.

[38] S. Farrell, H. Weiss, S. Symington, and P. Lovell,
“Bundle Security Protocol Specification,” RFC 6257, 05
2011. [Online]. Available: https://www.rfc-editor.org/
info/rfc6257

[39] E. J. Birrane and K. McKeever, “Bundle Protocol
Security (BPSec),” RFC 9172, 01 2022. [Online].
Available: https://www.rfc-editor.org/info/rfc9172

[40] E. J. Birrane, A. White, and S. Heiner, “Default Security
Contexts for Bundle Protocol Security (BPSec),”
RFC 9173, 01 2022. [Online]. Available: https:
//www.rfc-editor.org/info/rfc9173

[41] E. J. Birrane, S. Heiner, and K. McKeever, Securing
Delay-Tolerant Networks with BPSec. Wiley, 12 2022.

[42] A. Shamir, “Identity-based cryptosystems and signature
schemes,” in Advances in Cryptology, G. R. Blakley and
D. Chaum, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1985, pp. 47–53.

[43] A. Kate, G. M. Zaverucha, and U. Hengartner,
“Anonymity and security in delay tolerant networks,” in
2007 Third International Conference on Security and
Privacy in Communications Networks and the Work-
shops (SecureComm 2007), 2007, pp. 504–513.

[44] N. Asokan, K. Kostiainen, P. Ginzboorg, J. Ott, and
C. Luo, “Applicability of identity-based cryptography
for disruption-tolerant networking,” in Proceedings of
the 1st International MobiSys Workshop on Mobile
Opportunistic Networking, ser. MobiOpp ’07. New
York, NY, USA: Association for Computing Machinery,
2007, p. 52–56. [Online]. Available: https://doi.org/
10.1145/1247694.1247705

[45] R. Patra, S. Surana, and S. Nedevschi, “Hierarchical
identity based cryptography for end-to-end security in
dtns,” in 2008 4th International Conference on Intelli-
gent Computer Communication and Processing, 2008,
pp. 223–230.

[46] S. A. Menesidou, V. Katos, and G. Kambourakis,
“Cryptographic key management in delay tolerant net-
works: A survey,” Future Internet, vol. 9, no. 3, p. 26,
2017.

[47] A. Boldyreva, V. Goyal, and V. Kumar, “Identity-based
encryption with efficient revocation,” in Proceedings of
the 15th ACM conference on Computer and communi-
cations security, 2008, pp. 417–426.

[48] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza,
“Succinct non-interactive zero knowledge for a von

14

https://www.rfc-editor.org/info/rfc5905
https://www.rfc-editor.org/info/rfc5905
https://doi.org/10.1145/800222.806738
https://doi.org/10.1145/800222.806738
https://doi.org/10.1145/2455.2457
https://doi.org/10.1007/s41468-019-00038-7
https://doi.org/10.1137/20M1341088
https://www.rfc-editor.org/info/rfc6257
https://www.rfc-editor.org/info/rfc6257
https://www.rfc-editor.org/info/rfc9172
https://www.rfc-editor.org/info/rfc9173
https://www.rfc-editor.org/info/rfc9173
https://doi.org/10.1145/1247694.1247705
https://doi.org/10.1145/1247694.1247705

neumann architecture,” in 23rd USENIX Security Sym-
posium (USENIX Security ’14), 2014, pp. 781–796.

[49] M. Rosenberg, J. White, C. Garman, and I. Miers, “zk-
creds: Flexible anonymous credentials from zksnarks
and existing identity infrastructure,” in 2023 IEEE Sym-
posium on Security and Privacy (S & P). IEEE, 2023,
pp. 790–808.

[50] S. Farrell and V. Cahill, “Security considerations in
space and delay tolerant networks,” in 2nd IEEE Inter-
national Conference on Space Mission Challenges for
Information Technology (SMC-IT’06), 2006, pp. 8 pp.–
38.

[51] W. D. Ivancic, “Security analysis of dtn architecture
and bundle protocol specification for space-based net-
works,” in 2010 IEEE Aerospace Conference, 2010, pp.
1–12.

[52] P. Asuquo, H. Cruickshank, Z. Sun, and G. Chan-
drasekaran, “Analysis of dos attacks in delay tolerant
networks for emergency evacuation,” in 2015 9th Inter-
national Conference on Next Generation Mobile Appli-
cations, Services and Technologies, 2015, pp. 228–233.

[53] S. Saha, S. Nandi, R. Verma, S. Sengupta, K. Singh,
V. Sinha, and S. K. Das, “Design of efficient lightweight
strategies to combat dos attack in delay tolerant net-
work routing,” Wireless Networks, vol. 24, pp. 173–194,
2018.

[54] S. Grasic, E. Davies, A. Lindgren, and A. Doria, “The
evolution of a dtn routing protocol - prophetv2,” in
Proceedings of the 6th ACM Workshop on Challenged
Networks, ser. CHANTS ’11. New York, NY,
USA: Association for Computing Machinery, 2011,
p. 27–30. [Online]. Available: https://doi.org/10.1145/
2030652.2030661

[55] A. Lindgren, A. Doria, E. Davies, and S. Grasic,
“RFC 6693: Probabilistic Routing Protocol for
Intermittently Connected Networks,” IETF Network
Working Group, 2012. [Online]. Available: https:
//tools.ietf.org/html/rfc6693

[56] J. Curry, “Sheaves, cosheaves and applications,” Ph.D.
dissertation, University of Pennsylvania, 2013.

APPENDIX

1. OVERVIEW OF SHEAF LAPLACIANS
Here we provide a brief overview of sheaf Laplacians and
describe how they relate to our techniques. The material on
sheaf Laplacians is based on [35,36], and general information
on sheaves (cellular sheaves, the approach we use here) can
be found in [56]. We will work exclusively with finite graphs
and finite-dimensional vector spaces, treated as Rn with the
standard inner product ⟨·, ·⟩; however, many of the ideas
here can be generalized to infinite cases and general inner
products.

Let G be a graph and write v ≤ e to indicate that vertex
v is connected to edge e. For our purposes, a sheaf F on G
consists of real vector spaces F(v) and F(e) for all vertices v
and edges e, as well as a linear map F(v ≤ e) : F(v) → F(e)
called a restriction map whenever v ≤ e. We treat elements

of these spaces as column vectors. Define

C0(G;F) =
⊕
v

F(v)

C1(G;F) =
⊕
e

F(e),

called the spaces of 0-cochains and 1-cochains respectively.
We indicate components of elements in the direct sums
with subscripts: for instance, the v component of a vector
x ∈ C0(G;F) is denoted xv .

We will need to assign an arbitrary orientation to all edges:
for any edge e connecting vertices v1 and v2, we set
[v1; e] = ±1 and [v2; e] = ∓1 so that [v1; e] = −[v2; e]. We
define the coboundary map δ : C0(G;F) → C1(G;F) in
terms of its components: if e connects v1 and v2, then

(δx)e = [v1; e]F(v1 ≤ e)(xv1) + [v2; e]F(v2 ≤ e)(xv2).

Thus, δ can be viewed as a block matrix, with the
nonzero blocks given by the matrices representing the
linear maps [v; e]F(v ≤ e). The sheaf Laplacian
L : C0(G;F) → C0(G;F) for the sheaf F is defined by
L = δT δ. It is given explicitly by

(Lx)v =
∑

v,w≤e

F(v ≤ e)T
(
F(v ≤ e)(xv)−F(w ≤ e)(xw)

)
,

where w ranges over all vertices connected to v by some edge
e. Note that the terms [v; e] do not appear in this expression,
so the sheaf Laplacian does not depend on the choice of
orientation of edges. The graph Laplacian occurs as a special
case of the sheaf Laplacian when all vector spaces F(v) and
F(e) are R and all maps F(v ≤ e) are identity maps. The
sheaf Laplacians we have worked with in this paper have
also had F(v) and F(e) be one-dimensional but have allowed
F(v ≤ e) to be more general linear maps.

The sheaf Laplacian is indeed related to the usual Laplacian.
This is easiest to see using the graph Laplacian: in this case,
components of Lx are given by

(Lx)v =
∑

w adjacent to v

(xv − xw)

= deg(v) xv −
∑

w adjacent to v

xw.

This is reminiscent of numerical approximations of second
derivatives; approximating the usual Laplacian on a lattice in
Rn will produce a similar formula, but with a change of sign.
As with the regular Laplacian, the graph Laplacian provides a
measure of curvature of a function on a graph (technically a 0-
cochain). It is positive at local maxima and negative at local
minima in the graph – reversed from the usual Laplacian’s
signs at extrema. While the sheaf Laplacian generalizes the
graph Laplacian, it serves a similar purpose as it compares
the values over two adjacent vertices. Further connections
are explored in Hodge theory.

The sheaf Laplacian is used to define an analog of the heat
equation on the space C0(G;F), and in this paper we have

15

https://doi.org/10.1145/2030652.2030661
https://doi.org/10.1145/2030652.2030661
https://tools.ietf.org/html/rfc6693
https://tools.ietf.org/html/rfc6693

examined a discrete-time version given by

xn+1 = xn − hαLxn. (17)

Certain properties of the sheaf Laplacian make analysis
of this system particularly simple. Since it is defined by
L = δT δ, it is symmetric and positive semi-definite. This
implies it is diagonalizable by orthogonal matrices and has
all nonnegative real eigenvalues.

As in the main body of the paper, we will decompose
C0(G,F) as C0(G,F) = C0(B,F|B)⊕C0(Y,FY), where
B is a subgraph of G and and Y = G \ B. The coboundary
map δ can then be written as a block matrix:

δ = [DY DB]

This allows us to write the sheaf Laplacian L = δT δ in block
matrices as

L =

[
DT

Y DY DT
Y DB

DT
BDY DT

BDB

]
=

[
LY,Y LY,B

LT
Y,B LB,B

]
,

where we let LY,Y = DT
Y DY , and similarly for LY,B and

LB,B . Setting

M =

[
LY,Y LY,B
0 0

]
gives a special case of the matrix M considered in Section 3,
which treats values over B as boundary conditions. In this
case, the discrete-time version of the heat equation becomes

xn+1 = xn − hαMxn. (18)

One reason for interest in the sheaf Laplacian is the
fact that kerL = ker δ (which follows from noting that
⟨δx, δx⟩ = xTLx is equal to 0 if and only if δx = 0).
This kernel is called the space of global sections or the
0th cohomology of F , denoted H0(G,F). An element of
H0(G,F) = kerL = ker δ is called a global section or sim-
ply a section of F . The definition of δ then shows a section is
a vector x ∈ C0(G;F) such that for any edge e with vertices
v and w, we have F(v ≤ e)(xv) = F(w ≤ e)(xw). Sections
thus represent collections of information over vertices that
agree over edges when viewed through the restriction maps.

Elements of H0(G,F) are steady-state solutions of Equa-
tion (17), as they are exactly the x such that Lx = 0. Steady-
state solutions of Equation (18) can also be interpreted in

similar terms. First, if x =

[
y
b

]
is a steady-state solution,

then Equation (18) shows

y = y − hαLY,Y y − hαLY,Bb,

and adding an element of kerLY,Y to y produces another
steady-state solution. The space kerLY,Y is a 0th relative co-
homology space, denoted H0(G,B;F): it can be interpreted
as the space of sections of F that are zero over B. Thus,
as long as a steady-state solution exists (which Theorem 2
guarantees if hα is small enough), then the space of Y
components of steady-state solutions is y + H0(G,B;F),
where y is the Y component of any particular steady-state

solution.

Convergence

The results of Theorem 2 apply to Equations (17) and (18),
but in these cases we can give more explicit descriptions
of convergence. Suppose we have an initial value x0 and
a sequence {xn} defined by Equation (17). Since L is
orthogonally diagonalizable, Theorem 2 and the description
of H0(G;F) above show that for all sufficiently small α, the
sequence {xn} in fact converges to the orthogonal projection
of x0 onto H0(G;F).

Similarly, now suppose we have an initial value x0 and a se-
quence {xn} defined by Equation (18). If yn is the Y compo-
nent of xn, then yn+1 = yn − hαLY,Y yn − hαLY,Bb, where
b = bn is the unchanging B component of xn. Setting
AY,Y = I − hαLY,Y and z = −hαLY,Bb, this becomes

yn+1 = AY,Y yn + z, (19)

so we have the explicit solution

yn = An
Y,Y y0 + (I +AY,Y + · · ·+An−1

Y,Y)z. (20)

Note that AY,Y has the same orthogonal basis of eigenvectors
as LY,Y . Furthermore, since LY,Y has all real nonnegative
eigenvalues, as long as α is sufficiently small, the eigenvalues
of AY,Y all lie in (−1, 1]; from here on we will assume such
an α has been chosen. We have

z ∈ imLY,B ⊆ imDT
Y ⊆ (kerLY,Y)

⊥,

which means z has zero component in the eigenspace of
LY,Y associated with eigenvalue 0, which is equivalently the
eigenspace of AY,Y associated with eigenvalue 1. Rewriting
Equation (19) in the basis of eigenvectors gives[

un+1
vn+1

]
=

[
Λ 0
0 I

][
un
vn

]
+

[
w
0

]
, (21)

where Λ is the diagonal matrix consisting of the eigenvalues
of AY,Y not equal to 1. This gives an explicit solution: for all
n, we have vn = v0 and

un = Λnu0 + (I + Λ+ · · ·+ Λn−1)w.

Since Λ is diagonal with entries in (−1, 1), the first term
Λnu0 approaches 0, and the second term

(I + Λ+ · · ·+ Λn−1)w

approaches (I − Λ)−1w. Thus,
[
un
vn

]
converges to[

(I − Λ)−1w
v0

]
. This describes the convergence of yn in the

basis of the eigenvectors: the top component depends only on
the boundary condition, while the bottom component depends

only on the initial condition. In fact,
[
0
v0

]
is the projection of

the initial y0 onto kerLY,Y = H0(G,B;F), written in the
basis of eigenvectors.

16

BIOGRAPHY[

Michael Moy is pursuing a PhD in
mathematics at Colorado State Univer-
sity, having completed his master’s there
in 2021. His research is focused on
applied topology. During the summers
of 2020 through 2023, he worked as an
intern at NASA through the SCaN In-
ternship Project. His research at NASA
has focused on mathematical modeling
of networks and approaches to delay

tolerant networking in space.

Alan Hylton should probably be design-
ing tube audio circuits, but instead di-
rects Delay Tolerant Networking (DTN)
research and development at the NASA
Goddard Space Flight Center, where he
is humbled to work with his powerful
and multidisciplinary team. His formal
education is in mathematics from Cleve-
land State University and Lehigh Uni-
versity, and he considers it his mission

to advocate for students. Where possible, he creates venues
for mathematicians to work on applied problems, who add an
essential diversity to the group.

Robert Kassouf-Short earned his PhD
in mathematics from Lehigh University
in 2018. He worked as a Visiting As-
sistant Professor of Mathematics at John
Carroll University until he joined the Se-
cure Networks, System Integration and
Test Branch at NASA Glenn Research
Center in 2020. His research interests
lie in the intersection of abstract mathe-
matics and real world applications. Cur-

rently, his focus is on the foundations of networking theory
and how to efficiently route data through a network using
local information.

Jacob Cleveland is a PhD student
studying mathematics at Colorado State
University. They have a bachelors de-
gree in mathematics from the University
of Nebraska at Omaha and a bachelors
degree in computer engineering from the
University of Nebraska - Lincoln. They
joined the Secure Networks, System In-
tegration and Test Branch as a Pathways
Intern at NASA Glenn Research Center

in 2020. Since joining, they have contributed to several
research projects applying pure mathematics to engineering
problems in space networking, star tracking, and artificial
neural networks.

Jihun Hwang (Jimmy) is a third-year
Ph.D. student in computer science at
Purdue University. He is primarily inter-
ested in information-theoretic cryptog-
raphy and secure (multi-party) computa-
tions, but he ultimately likes to talk about
any topics in or related to theoretical
computer science and computer security.
Before Purdue, he studied mathematics

and computer science at the University
of Massachusetts Amherst.

Justin Curry is an Associate Professor
of Mathematics and Statistics at the Uni-
versity at Albany, SUNY. Before arriving
at Albany in 2017, he was a Visiting
Assistant Professor at Duke. Profes-
sor Curry earned his PhD in mathemat-
ics from the University of Pennsylvania
in 2014, under the direction of Robert
Ghrist. His research interests include
the use of category theory in applied

mathematics, with particular emphasis on applied sheaf
theory, and inverse problems in topological data analysis
(TDA).

Mark Ronnenberg earned a Ph.D. in
mathematics from Indiana University in
2023, where he was trained in gauge
theory and low dimensional topology.
He is now an assistant professor of
math at Anne Arundel Community Col-
lege. Outside of math, Mark loves music,
books, and video games.

Miguel Lopez received his bachelor’s
degree in mathematics at Boston Univer-
sity and is currently a fourth-year Ph.D.
student in applied math at the Univer-
sity of Pennsylvania. Under the super-
vision of Robert Ghrist, he is studying
how algebraic topology can inform net-
work science and machine learning al-
gorithms. Outside of research Miguel is
an avid board gamer and rock climber.

Oliver Chiriac received his B.Sc. in
mathematics from the University of
Toronto and is currently a M.Sc. student
studying mathematics at the University
of Oxford. Prior to this, he has done re-
search in symplectic geometry and quan-
tum field theory. He is a first-time NASA
intern and is interested in applying dif-
ferential geometry and topology to the
world of physics, deep learning, and

space networks. Outside the realm of mathematics, Oliver
devotes his time to soccer, music, and travel.

17

	Introduction
	Preliminaries and conventions
	The method and analysis
	Towards a Protocol
	Conclusion and Future Work
	References
	Appendix
	Overview of sheaf Laplacians
	Biography

