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Abstract: Spectral remote sensing reflectance, Rrs(λ) (sr−1), is the fundamental quantity used
to derive a host of bio-optical and biogeochemical properties of the water column from satellite
ocean color measurements. Estimation of uncertainty in those derived geophysical products is
therefore dependent on knowledge of the uncertainty in satellite-retrieved Rrs. Furthermore, since
the associated algorithms require Rrs at multiple spectral bands, the spectral (i.e., band-to-band)
error covariance in Rrs is needed to accurately estimate the uncertainty in those derived properties.
This study establishes a derivative-based approach for propagating instrument random noise,
instrument systematic uncertainty, and forward model uncertainty into Rrs, as retrieved using
NASA’s multiple-scattering epsilon (MSEPS) atmospheric correction algorithm, to generate
pixel-level error covariance in Rrs. The approach is applied to measurements from Moderate
Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite and verified using Monte
Carlo (MC) analysis. We also make use of this full spectral error covariance in Rrs to calculate
uncertainty in phytoplankton pigment chlorophyll-a concentration (chla, mg/m3) and diffuse
attenuation coefficient of downwelling irradiance at 490 nm (Kd(490), m−1). Accounting for the
error covariance in Rrs generally reduces the estimated relative uncertainty in chla by ∼1-2%
(absolute value) in waters with chla < 0.25 mg/m3 where the color index (CI) algorithm is used.
The reduction is ∼5-10% in waters with chla > 0.35 mg/m3 where the blue-green ratio (OCX)
algorithm is used. Such reduction can be higher than 30% in some regions. For Kd(490),
the reduction by error covariance is generally ∼2%, but can be higher than 20% in some
regions. The error covariance in Rrs is further verified through forward-calculating chla from
MODIS-retrieved and in situ Rrs and comparing estimated uncertainty with observed differences.
An 8-day global composite of propagated uncertainty shows that the goal of 35% uncertainty
in chla can be achieved over deep ocean waters (chla ≤ 0.1 mg/m3). While the derivative-based
approach generates reasonable error covariance in Rrs, some assumptions should be updated as
our knowledge improves. These include the inter-band error correlation in top-of-atmosphere
reflectance, and uncertainties in the calibration of MODIS 869 nm band, in ancillary data, and in
the in situ data used for system vicarious calibration.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

While ocean color products have been widely used to monitor ocean environments and study global
change [1,2], they are generally distributed without detailed estimates of uncertainty (e.g., the
products distributed by NASA’s Ocean Biology Distributed Active Archive Center (OB.DAAC)).
Those products are incomplete without accurate uncertainty estimates, as it limits our ability to
interpret small changes observed in aquatic biogeochemical properties. Consequently, the Group
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on Earth Observations (GEO) and International Ocean-Colour Coordinating Group (IOCCG)
recommend uncertainty provision within the framework of quality assurance for earth observation
[3,4].

Historically, the ocean color community has relied on validation (i.e., comparison with
collocated in situ data) to estimate uncertainty in ocean color products. While such validation
generates reasonable confidence in those products, it has some limitations [5].Given these
limitations, in recent years efforts have been made towards calculating pixel-level uncertainty
in remote sensing reflectance (Rrs(λ), sr−1). This is a key first step, as Rrs is the fundamental
ocean color product from which a host of bio-optical and biogeochemical properties of the water
column can be derived. Bayesian inversion is used to quantify uncertainty in Rrs retrieved from
Ocean Color—Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART) [6]. An ensemble
of artificial neural networks is developed for the atmospheric correction over coastal waters,
along with the pixel-level uncertainty in Rrs [7]. The European Space Agency’s Ocean Color
Climate Change Initiative program (OC-CCI) provides pixel-level uncertainty in Level-3 Rrs
from MEdium Resolution Imaging Spectrometer (MERIS), Sea-viewing Wide Field-of-view
Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared
Imaging Radiometer Suite (VIIRS), and Ocean and Land Colour Instrument (OLCI) data [8].
This is done by associating each in situ validation match-up to a specific water type based on
spectral classification (optical water type, OWT), using that same classification scheme to assign
each satellite Rrs retrieval with a set of OWT weights and then computing a weighted average
of the validation-based match-up uncertainties to estimate pixel-level uncertainties. As the
uncertainty of each OWT is derived from validation against in situ data and OWT alone is not the
sole predictor of uncertainty in Rrs (as factors such as radiant-path geometry and aerosol loading
can strongly influence the uncertainty in satellite retrievals), this approach still suffers from the
same validation match-up limitations.

Uncertainty in R rs associated with random effects has also been produced through comparing
coincident daily R rs from two satellite missions, or matching satellite retrieved and in situ R rs
(i.e., validation) [9], and R rs uncertainty has been estimated by comparing with “ground truth” R
rs determined from a phytoplankton pigment chlorophyll-a (chla, mg/m3) algorithm [10]. As the
atmospheric correction (AC) algorithms used by those studies are based on Gordon and Wang
(1994) (hereafter GW94) [11], which uses two near-infrared bands (NIR) to calculate the aerosol
reflectance at visible bands, uncertainty in R rs is inherently spectrally dependent, which means
that a spectral (i.e., band-to-band) error covariance exists in R rs.

While error variance (square of standard deviation) in Rrs has been estimated in previous studies,
few studies have estimated the error covariance. One example that did is [12], where the partial
derivative of Rrs with respect to top-of-atmosphere (TOA) radiance (Lt(λ), mW.cm−2.µm−1.sr−1)
was numerically approximated. That study considered only a radiometric uncertainty of 0.5%
in Lt and neglected other uncertainty sources (e.g., systematic uncertainty, forward model
uncertainty) that are known to be relevant [5]. A derivative approach was established to calculate
the error covariance in Rrs [13] retrieved from Ocean and Land Colour Instrument (OLCI)
onboard Sentinel-3 using an AC algorithm for clear water [14], although they also only included
sensor noise.

Although error covariance in Rrs is known to be important to uncertainty estimates in ocean
bio-optical and biogeochemical products [12,13], there is no operational uncertainty product
including this spectral error covariance yet, which is why it has been neglected when estimating
uncertainty in chla [15]. Neither error variance nor covariance in Rrs are considered when
calculating the uncertainty in inherent optical properties (IOPs) [16]. There is therefore a need
for an operational Rrs error covariance product for calculating the uncertainty in ocean color
products that are derived from bio-optical models using spectral Rrs, e.g., blue-green ratio (OCX)
[17] or color index (CI) model for chla [18], and diffuse attenuation coefficient of downwelling
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irradiance at 490 nm (Kd(490), m−1) [19]. Note that the OC-CCI program only provides root
mean square difference of Rrs but not error covariance.

The Ocean Biology Processing Group (OBPG) at NASA has been distributing global ocean
color products for more than two decades. While those products have been used widely, pixel-
level uncertainties in Rrs have not yet been provided. The OBPG has recently completed a
multi-mission ocean color reprocessing using the Multiple-Scattering EPSilon AC algorithm
(MSEPS) [20], which has been shown to perform better than GW94 [21]. Since pixel-level
error variance in Rrs retrieved from MSEPS has been generated by [5], this study will generate
the error covariance in Rrs using the same propagation method as that presented in [5]. By
propagating instrument random noise, instrument systematic uncertainty, and forward model
uncertainty through MSEPS, error covariance is generated for Rrs retrieved from MODIS, with
the goal of establishing a framework for computationally efficient generation of pixel-level error
covariance in Rrs that can be applied for all ocean color missions processed and distributed by
NASA. This study is organized as follows. Satellite data and in situ data used in this study are
described in Section 2, followed by a brief description of the MSEPS algorithm and uncertainty
propagation through the AC procedure to calculate error covariance in Rrs. Two approaches are
introduced in Section 2 to evaluate the error covariance in Rrs; one through Monte Carlo and
the other through closure analysis with results derived from evaluation of MODIS retrieved chla
against chla calculated using in situ Rrs. Section 3 presents the results from the evaluation of
error covariance in Rrs using these analyses, the evaluation of the effect from error covariance in
Rrs on uncertainty in chla and Kd(490), spectral correlation of the error covariance in Rrs, as well
as a global 8-day error covariance products. Conclusions are provided in Section 4.

2. Data and methodology

2.1. MODIS data

Using the SeaDAS software package [22] and latest instrument calibration coefficients, as
distributed by OB.DAAC [23], calibrated and geolocated (Level-1B) data are generated from
uncalibrated (Level-1A) data from MODIS aboard the Aqua satellite, which were also downloaded
from OB.DAAC. MODIS data used in this study includes the data over South Pacific Ocean on
Apr. 19, 2017, over North America’s east coast on Oct. 2, 2013, global data from Dec. 3-10,
2019, and scenes that are matched with in situ data over the Marine Optical Buoy (MOBY) [24]
during 2002-2019.

2.2. In situ data

Using the OB.DAAC’s in situ data archive and validation search utility tool (SeaBASS, [25]),
coincident matchups spanning the years 2002-2019 were collected between MODIS-Aqua
retrieved and in situ Rrs from MOBY. Chlorophyll-a concentration are calculated from in situ Rrs
using NASA’s standard algorithm, which combines the OCX band-ratio algorithm [17] with the
CI band-difference algorithm [18]. Such calculated chla is used to evaluate MODIS retrieved
chla, with the results applied to verify the error covariance in Rrs.

2.3. MSEPS atmospheric correction

The purpose of AC is to retrieve water-leaving radiance, Lw(λ) (mW.cm−2.µm−1.sr−1), from Lt(λ),
which can be expressed as:

Lt/tg = Lr + La + tvrLf + TLg + tvLw (1)

where tg(λ) is two-way gas transmittance, Lr(λ) (mW.cm−2.µm−1.sr−1) is the radiance from
scattering by air molecules in the absence of aerosol, La(λ) (mW.cm−2.µm−1.sr−1) is the radiance
from scattering by aerosols that also accounts for interactions between air molecules and aerosol
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scattering, Lf(λ) (mW.cm−2.µm−1.sr−1) is the radiance from scattering by surface whitecaps,
Lg(λ) (mW.cm−2.µm−1.sr−1) is sun glint, tvr(λ) and tv(λ) are the diffuse transmittance from surface
to sensor with the former only including molecular scattering and the latter including molecular
and aerosol scattering. T(λ) is the beam transmittance for view path. As the composition of air
molecules is known and stable, Lr can be calculated using vector radiative transfer that accounts
for polarization, multiple scattering, and sea state to an uncertainty within 0.1% [26]. Lf is
calculated using wind speed based on an empirical model [27,28]. A sun glint coefficient is
calculated using a statistical model [29], from which Lg can be derived [30]. The calculation of
La is detailed by [5,21]. Please note that Lt is corrected for the polarization effects following the
approach presented by [31], which has an estimated residual uncertainty of 0.1%. After removing
Lr, La, Lf , and TLg from Lt, Lw can be derived and Rrs is then calculated by normalizing Lw to
downwelling irradiance:

Rrs = (Lt/tg − Lr − TLg − tvrLf − La)fb/(tvF0tscos(θs)) (2)

where f b(λ) is bidirectional reflectance correction calculated from the model presented by [32]
using chla, ts(λ) is diffuse transmittance from Sun to surface, θs is solar zenith angle, and F0(λ)
(mW.cm−2.µm−1) is extraterrestrial solar irradiance corrected for earth-Sun distance.

2.4. Uncertainty propagation into Rrs

To calculate error covariance in Rrs using the derivative approach, the partial derivative of Rrs
with respect to the relevant variables and the uncertainty in those variables are needed. These
are the same as for the calculation of error variance in Rrs presented by [5]. The difference
between error variance and covariance is the equations used to calculate them based on the partial
derivative of Rrs and uncertainty in uncertainty variables. In this section, we briefly recap the
uncertainty sources and propagation approach detailed in [5], and then describe the approach that
are used to calculate the error covariance in Rrs.

The uncertainty sources for Rrs are categorized into three types:

(1) Instrument random noise;

(2) Instrument systematic uncertainty;

(3) Forward model uncertainty, including contributions from the models for Lr, La, Lf , Lg, f b,
and Lw, and uncertainty in ancillary data inputs to those models.

In general, for two variables y1 and y2 that are a function of variables x, z expressed as:⎧⎪⎪⎨⎪⎪⎩
y1 = f1(x1, x2 , . . . , xn)

y2 = f2(z1, z2 , . . . , zn)
(3)

error covariance between y1 and y2, denoted by u(y1, y2) [33], can be calculated from:

u(y1, y2) =

(︃
∂f1
∂x1

,
∂f1
∂x2

, . . . ,
∂f1
∂xn

)︃ ⎡⎢⎢⎢⎢⎢⎢⎢⎣
u(x1, z1) · · · u(x1, zn)

...
. . .

...

u(xn, z1) · · · u(xn, zn)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(︃
∂f2
∂z1

,
∂f2
∂z2

, . . . ,
∂f2
∂zn

)︃T
(4)

where u(xi, zj) represents the error covariance between variables xi and zj, ∂f1
∂xi

and ∂f2
∂zj

are the
partial derivative of y1 with respect to xi and of y2 with respect to zj, T is the transpose operator.
Please note that Eq. (4) can also be used to calculate error variance of y1, denoted by u2(y1),
when f2= f1 and variable z is the same as x.
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Based on Eq. (4) to calculate error covariance between R rs(λi) and R rs(λj), denoted by
u(R rs(λi), R rs(λj)), the variables contributing to uncertainty in R rs(λi) and R rs(λj) need to be
identified. Note that when λi= λj, error covariance becomes error variance, denoted by u 2(R
rs(λi)) for simplicity. A vector for uncertainty variables for R rs(λi) is defined as:

Xi = [Lrfc(λi), Lrfc(NIR), chla, τ′a(869), rh ] (5)

where L rfc is:
Lrfc = Lt/tg − Lr − tvrLf (6)

Combining Eqs. (4) and (5), u(R rs(λi), R rs(λj)) can be calculated as:

u(Rrs(λi), Rrs(λj)) =
∂Rrs(λi)

∂Xi
CRrs

(︃
∂Rrs(λj)

∂Xj

)︃T
(7a)

where
∂Rrs(λi)

∂Xi
=

(︃
∂Rrs(λi)

∂Lrfc(λi)
,
∂Rrs(λi)

∂Lrfc(NIR)
,
∂Rrs(λi)

∂chla
,
∂Rrs(λi)

∂τ
′

a(869)
,
∂Rrs(λi)

∂rh

)︃
(7b)

CRrs =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(Lrfc(λi), Lrfc(λj)) u(Lrfc(i), Lrfc(NIR)) 0 0 0

u(Lrfc(NIR), Lrfc(j)) u2(Lrfc(NIR)) 0 0 0

0 0 u2(chla) 0 0

0 0 0 u2(τ
′

a(869)) 0

0 0 0 0 u2(rh)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7c)

While calculation of ∂Rrs(λ)
∂X is detailed by [5], CRrs is quantified as follows.

(1) u(Lrfc(λi), Lrfc(λj)). u(Lrfc(λi), Lrfc(λj)) is calculated similarly to u(Rrs(λi), Rrs(λj)) but
with Xi expressed as follows:

Xi = [Lt(λi), tg(λi), Lr(λi), tvr(λi), Lf(λi)] (8)

u(L rfc(λi), L rfc(λj)) is derived from:

u(Lrfc(λi), Lrfc(λj)) =
∂Lrfc(λi)

∂Xi
CLrfc

(︃
∂Lrfc(λj)

∂Xj

)︃T
(9a)

where
∂Lrfc(λi)

∂Xi
=

(︃
∂Lrfc(λi)

∂Lt(λi)
,
∂Lrfc(λi)

∂tg(λi)
,
∂Lrfc(λi)

∂Lr(λi)
,
∂Lrfc(λi)

∂tvr(λi)
,
∂Lrfc(λi)

∂Lf(λi)

)︃
(9b)

CLrfc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(Lt(λi), Lt(λj)) 0 0 0 0

0 u(tg(λi), tg(λj)) 0 0 0

0 0 u(Lr(λi), Lr(λj)) u(Lr(λi), tvr(λj)) u(Lr(λi), Lf(λj))

0 0 u(tvr(λi), Lr(λj)) u(tvr(λi), tvr(λj)) 0

0 0 u(Lf(λi), Lr(λj)) 0 u(Lf(λi), Lr(λj))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9c)

∂Lrfc(λi)
∂Xi

and ∂Lrfc(λj)
∂Xj

can be calculated based on Eq. (6). For the elements of Eq. (9c), u(L t(λi), L
t(λj)) is derived from:

u(Lt(λi), Lt(λj)) = r(ρt(λi), ρt(λj)) u(Lt(λi)) u(Lt(λj)) (10)

where u(Lt) is the product of Lt and the sum of systematic uncertainty and forward model
uncertainty, which are derived from the system vicarious calibration assuming a 2% calibration
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uncertainty at 869-nm band and a 2.3%-4.4% uncertainty in the blue-red wavelengths for in
situ L w at MOBY, which are estimated using upwelling radiance (L u(λ), mW.cm−2.µm−1.sr−1)
uncertainty presented by [34] and the environmental uncertainty (personal communication with
Kenneth J Voss). Readers are referred to [5] for the detailed quantification of those two uncertainty
sources. The parameter r is the band-to-band correlations in uncertainty in TOA reflectance (ρt).
This is detailed in Appendix C of [5], with the values for MODIS listed in Table 1; a limitation is
that this was calculated as a spectral correlation in TOA reflectance, and it is assumed that these
correlation coefficients also hold for TOA reflectance uncertainty. The form of Eq. (10), however,
holds regardless of the calculation of r. Based on Eq. (11), u(tg(λi), tg(λi)) can be derived.

u(tg(λi), tg(λj)) =
n∑︂

k = 1

∂tg(λi)
∂Mk

∂tg(λj)
∂Mk

u2(Mk) (11)

where M k is concentration of gas species k (n= 3 species: ozone(oz), water vapor (wv), nitrogen
dioxide (NO2)). ∂tg

∂M is derived from the model to calculate the transmittance for a specific gas.
u(Mk) is the standard uncertainty in gas concentration from local temporal variability, taken as
the difference between the two temporal samples that bound the time of satellite observation. A
similar approach is used to calculate other components of Eq. (9c). Note that uncertainty in Lr
results from uncertainty in wind speed (ws) and surface pressure (pr). Uncertainty in tvr results
from uncertainty in pr. Uncertainty in L f results from uncertainty in ws.

(2) u(τ′a(869)) and u(chla). For the first iteration that is used to account for the non-zero
L w(NIR), τ′a(869) and chla are assumed constant with zero uncertainty. For the ith iteration,
u(τa(869)) is derived from:

u2(τa(869)) =
5∑︂

i = 1

(︃
∂τa(869)
∂xi

)︃2
u2(xi) + 2

4∑︂
i = 1

5∑︂
j = i + 1

∂τa(869)
∂xi

∂τa(869)
∂xj

u(xi, xj) (12)

where x i are the elements of the vector in Eq.(5) but replacing λi with the 869 nm band. u 2(chla)
is derived from:

u2(chla) =
4∑︂

i = 1

(︃
∂chla
∂Rrs(λi)

)︃2
u2(Rrs(λi)) + 2

3∑︂
i = 1

4∑︂
j = i + 1

∂chla
∂Rrs(λi)

∂chla
∂Rrs(λj)

u(Rrs(λi), Rrs(λj)) + u2
m (13)

where λ includes bands at 443, 488, 547, and 667 nm for NASA’s standard algorithm. u(R rs(λi),
R rs(λj)) is from each iteration. u m is the model fitting uncertainty, calculated from multiplying
the mean relative uncertainty by chla. The mean relative uncertainty of 13% is derived by
averaging the relative difference between model fitted and in situ chla over all the data points
that are used to fit the model coefficients in [18], although it is worth noting that the relative
uncertainty is for the CI algorithm and may not be applicable to OCX. u(chla) and u(τa(869))
derived from the ith iteration are used for the (i+ 1)th iteration.

(3) u(rh). This is calculated as the local temporal variability, i.e., difference between the two
temporal samples that bound the time of satellite observation.

2.5. Verification of error covariance using Monte Carlo analysis

u(Rrs(λi), Rrs(λj)) from the derivative approach is verified using Monte Carlo analysis when
all uncertainty sources are included. A Gaussian random noise is generated to represent the
instrument random noise:

Lnoise = G
(︃
0,
χ

Lt

)︃
Lt (14a)

where χ is sensor noise calculated using the model described by [5], G
(︂
0, χ

Lt

)︂
is a random

number generated based on a Gaussian distribution with mean of 0 and standard deviation of χLt
.
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As the systematic and forward model uncertainty are spectrally dependent, the correlated random
uncertainty at those 12 bands in Table 1 is generated from:

Lsys+model = L G(0, 1) (14b)

where L12× 12 represents the lower triangular matrix derived from the Cholesky decomposition
of error covariance matrix of Lt, u(Lt(λi), Lt(λj)) calculated from Eq. (10) [35]. G(0,1)12× 1 is
the random number generated based on a Gaussian distribution with mean of 0 and standard
deviation of 1. This preserves the spectral structure of the correlation in systematic and forward
model uncertainty. Lnoise and Lsys+model are added to Lt, providing L′

t:

L
′

t = Lt + Lnoise + Lsys+model (15)

MSEPS is applied to L′

t with the resulting Rrs denoted by R′
rs. If a total of N (in this study, 2000)

samples of R′

rs are generated, the error covariance between Rrs at bands λi and λj can be derived
from:

u(Rrs(λi), Rrs(λj)) =

∑︁N
n=1(R

′

rsn(λi) − Rrs(λi))(R
′

rsn(λj) − Rrs(λj))

N
(16)

where R′

rsn represents Rrs derived from L′
t . Rrs is derived from Lt without sensor noise, systematic

and forward model uncertainty.

Table 1. Correlation coefficients (r ) between ρt.

412 443 469 488 531 547 555 645 667 678 748

412 1.0

443 0.88 1.0

469 0.8 0.87 1.0

488 0.78 0.88 0.89 1.0

531 0.66 0.76 0.82 0.91 1.0

547 0.65 0.75 0.81 0.90 0.96 1.0

555 0.60 0.70 0.76 0.84 0.88 0.89 1.0

645 0.53 0.62 0.69 0.77 0.85 0.86 0.8 1.0

667 0.56 0.65 0.72 0.81 0.90 0.92 0.85 0.89 1.0

678 0.55 0.65 0.72 0.77 0.90 0.92 0.85 0.9 0.98 1.0

748 0.51 0.59 0.68 0.74 0.85 0.87 0.81 0.88 0.97 0.97 1.0

869 0.45 0.53 0.63 0.68 0.80 0.82 0.76 0.86 0.94 0.95 0.97

2.6. Verification of error covariance using validation results from chla
As Rrs at multiple bands is used to calculate chla in NASA’s standard algorithm, error covariance
in Rrs between those bands is needed to calculate u(chla), and thus can be verified by evaluating
u(chla). In other words, if the uncertainty in chla is reasonable, so is the error covariance in Rrs.
A similar approach to that used by [36] for evaluating uncertainty in normalized water-leaving
radiance and by [37] for evaluating uncertainty in τa is used here to evaluate the uncertainty
in chla. Specifically, an expected discrepancy (∆D) between MODIS-retrieved chla and chla
calculated from in situ Rrs (named derived chla) can be calculated by adding in quadrature the
uncertainty in satellite retrieved and derived chla and the amount of discrepancy expected due
to spatiotemporal variations in the underlying chla field (sampling mismatch uncertainty). The
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normalized difference ∆N is defined as the ratio of actual retrieval difference to ∆D, i.e.,

∆N =
chlma − chlda
∆D

(17)

where chlma and chlda. represent MODIS retrieved and derived chla respectively. If the uncertainties
in these quantities and the spatiotemporal mismatch effects are calculated appropriately, and the
sample size is sufficient, the ensemble of ∆N should be close to a Gaussian distribution with
mean 0 and variance 1. We can first qualitatively evaluate u(chla) by checking the probability
density function (PDF) of ∆N against that of a Gaussian distribution. Taking this a step further,
a total of N matchups is divided into n equally populated bins based on ∆D indexed from low
to high. For each bin, the 68th percentile of absolute retrieval difference, which is close to the
standard deviation (1σ) for a Gaussian distribution, is plotted against the mean ∆D. If ∆D is
reasonable, the points should lie along the 1:1 line [37].

3. Results

3.1. Evaluation of u(Rrs(λi), Rrs(λj)) against Monte Carlo analysis

u(Rrs(λi), Rrs(λj)) from the derivative method is compared with that from MC for a 5-minute
MODIS/Aqua granule collected over the South Pacific Ocean (a region of very clear waters,
chla < 0.1 mg/m3) on Apr.19, 2017. We can see from Fig. 1 that the error covariance derived
from the two methods show a similar spatial pattern, with values higher at the edge than at the
center of the swath. The higher value arises from the high TOA signal due to the longer path
length, which leads to higher sensor noise, systematic, and forward model uncertainty [5]. The
two compare quantitatively very well, with the median ratio of the derivative method to MC
for u(Rrs(443), Rrs(547)) and u(Rrs(443), Rrs(667)) of 0.87 and 1.10, respectively. Considering
the negative value of u(Rrs(443), Rrs(667)), a ratio of 1.10 means a smaller numerator than
denominator. The PDFs of the ratio shows that u(Rrs(443), Rrs(547)) and u(Rrs(443), Rrs(667))
from the derivative method tend to be underestimated. The underestimation probably results
from unknown uncertainty sources, e.g., structured errors [38]. The comparison with MC results
demonstrates that the derivative method established to propagate sensor noise, systematic, and
forward model uncertainty into Rrs is reliable.

3.2. Closure analysis with results from validation against in situ chla
As described in section 2.6, uncertainty in derived chla is needed for the evaluation of u(chla)
using results derived from evaluation of MODIS retrieved chla against derived chla. Uncertainty
in Rrs at VIS bands of MOBY are approximately 5% [5]. Propagating uncertainty in in situ Rrs
and the model fitting uncertainty in Eq. (13) gives the uncertainty in derived chla. The spatial
variation is taken as the standard deviation of MODIS retrieved chla over a window of 5× 5 pixels
centered on the in situ Rrs measurement. Figure 2(a) shows the PDF of normalized difference
(∆N from Eq. (17)) and the theoretical Gaussian distribution. Those two distributions should
ideally match if all the uncertainty estimates used to calculate the expected discrepancy (∆D) are
reliable. 472 matching pairs are used to calculate the PDF. chla tends to be biased, with PDF not
centered around zero. Figure 2(b) shows binned ∆D vs. 1σ of the absolute difference between
MODIS retrieved and derived chla within each bin. Requiring at least 100 matchups per bin for
better statistical robustness gives four bins each with 118 matchups here. Overall, ∆D agrees
reasonably well with 1σ points of absolute difference, which shows that error covariance/variance
in Rrs used to calculate u(chla) has skill in distinguishing relatively high-uncertainty cases from
low-uncertainty cases. ∆D tends to be underestimated in low values but overestimated in high
values. This could be partly due to the model fitting uncertainty, which is assumed constant at
13%. Ideally, the model fitting uncertainty should be quantified through the uncertainty in fitting
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Fig. 1. u(Rrs(443), Rrs(547)) (upper row) and u(Rrs(443), Rrs(667)) (lower row) derived
from applying derivative method and MC to MODIS data over South Pacific ocean on Apr.
19, 2017. Instrument random noise, systematic uncertainty, and forward model uncertainty
are included. The ratio is calculated from dividing the error covariance from derivative
method by that from MC. PDF is for the ratio.

coefficients. That requires the uncertainty in in situ Rrs and chla that are used to do the fitting,
although this is not easy to quantify as the in situ data were collected over 3-4 decades with a
variety of instruments and measurement techniques.

(a) (b)

Fig. 2. (a) PDF for the normalized difference (∆N) between MODIS retrieved chla and chla
calculated from in situ Rrs at MOBY. (b) Expected discrepancy (∆D) versus 1σ of absolute
difference between MODIS retrieved chla and chla calculated from in situ Rrs at MOBY.
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3.3. Effect from error covariance in Rrs on uncertainty in chla and Kd(490)

As spectral Rrs is used to calculate chla and Kd(490), uncertainty in those products can be used to
evaluate error covariance in Rrs between those bands. Specifically, u(Rrs(λi), Rrs(λj)) is assessed
through the spatial variation in relative uncertainty in chla, denoted by δ(chla) (i.e., u(chla)*100/
chla). chla is retrieved using NASA’s standard algorithm as described above. Figure 3 shows
one example using MODIS data over a transitional zone from turbid (chla >10 mg/m3) to clear
waters (chla < 0.1 mg/m3). As u(Rrs(λi), Rrs(λj)) has until now been neglected when calculating
u(chla) [15,16], the effect is evaluated by comparing δ(chla) including u(Rrs(λi), Rrs(λj)) with
δ(chla) without u(Rrs(λi), Rrs(λj)) (see Eq.(13)). While in general the difference derived by
subtracting δ(chla) including u(Rrs(λi), Rrs(λj)) from that excluding u(Rrs(λi), Rrs(λj)) ranges from
∼1-2% in waters with chla < 0.25 mg/m3 where the CI algorithm is used to ∼5-10% in waters
with chla > 0.35 mg/m3 where the OCX algorithm is used, it can reach >30% in some regions
(Fig. 3(c)). The error covariance reduces u(chla) more for OCX than for CI, due to the relatively
smaller contribution from model fitting uncertainty in waters where OCX is used, as indicated in
Fig. 4.

Fig. 3. Uncertainty in chla calculated using the error covariance in Rrs derived by applying
the derivative method to a MODIS scene on Oct. 2, 2013. (a) chla, (b) δ(chla) calculated
by including error covariance in Rrs, (c) the difference derived by subtracting δ(chla) in (b)
from that calculated without error covariance in Rrs, and (d) PDF of the difference in (c).

The effect of including error covariance in Rrs on the uncertainty in Kd(490) is shown in Fig. 5.
Here Kd(490) is calculated using NASA’s standard algorithm for MODIS [39]. Details of the
uncertainty propagation from Rrs to Kd(490) are provided by [12]. It should be noted that a
relative model fitting uncertainty of 10% is also included in the uncertainty budget of Kd(490).
While error covariance in Rrs reduces the relative uncertainty in Kd(490) by ∼2%, it can be >20%
in some regions with smaller contribution of model fitting uncertainty. It should be noted that
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Fig. 4. Ratio between u2(chla) resulting from model fitting uncertainty only to that from
both Rrs uncertainty and model fitting uncertainty, for the same MODIS granule as in Fig. 3.

Fig. 5. (a) Difference between relative uncertainty in Kd(490), denoted by δ(Kd(490)),
calculated by including u(Rrs(488), Rrs(547)) and that calculated excluding u(Rrs(488),
Rrs(547)). (b) PDF of the difference. Data are for the same MODIS granule in Fig. 3.

those numbers of the relative uncertainty in chla and Kd(490) reduced by error covariance in Rrs
is absolute, e.g., 2% in Kd(490) means the relative uncertainty decreases from X% to (X-2)%.



Research Article Vol. 32, No. 2 / 15 Jan 2024 / Optics Express 2501

3.4. Examination of pixel-level spectral r(Rrs(λi), Rrs(λj))

While u(Rrs(λi), Rrs(λj)) is needed for calculating uncertainty in bio-optical and biogeochemical
properties, the correlation coefficient between uncertainty in Rrs at different bands, denoted
by r(Rrs(λi), Rrs(λj)), is more directly interpretable. Figure 6 shows two examples of r(Rrs(λi),
Rrs(λj)) over coastal and open ocean waters. r generally decreases with the increase of wavelength
difference between the two bands. This is because the aerosol reflectance is extrapolated from
the 869 nm band, which means larger uncertainty at bands farther from 869 nm, and stronger
correlation between uncertainty in bands at small wavelength separation. Figure 7 shows
the corresponding spectral correlation coefficients r(Rrs(443), Rrs(λ)) and r(Rrs(547), Rrs(λ)).
r(Rrs(443), Rrs(blue)) and r(Rrs(443), Rrs(red)) are higher in open ocean waters than that in coastal
waters. The higher correlation is probably due to the simplicity of water optical properties in
open ocean, dominated by phytoplankton, which affects Rrs in blue and red wavelengths in a
similar way. r(Rrs(547), Rrs(λ)) is lower in open ocean waters than that in coastal waters, due to
the small variation of Rrs(547) with phytoplankton in open ocean waters. r(Rrs(547), Rrs(NIR)),
r(Rrs(443), Rrs(NIR)) and r(Rrs(547), Rrs(red)) are close to 0.

Fig. 6. r(Rrs(λi), Rrs(λj)) over two pixels denoted by “A” (left) and “B” (right) in Fig. 3.

3.5. Global maps

Figure 8 shows one example of 8-day global error covariance in Rrs derived by applying the
derivative method to MODIS/Aqua data from Dec. 3-10, 2019. The 8-day products do not
represent the error covariance in an 8-day (Level-3) mean as they are simply the average in each
bin over that period. At this level of compositing, error covariance in Rrs doesn’t show many
obvious spatial patterns, except higher at the edge than at the center of the swath. Figure 9 shows
δ(chla) calculated with and without error covariance in Rrs as well as the difference of these two.
In open ocean waters, δ(chla) is relatively higher in the edge of swath due to the high uncertainty
in Rrs. The much lower δ(chla) in some coastal waters (e.g., East Asia, Australia) results from
high chla. Higher δ(chla) is found in east Mediterranean Sea, Arabian sea, and Sea of Japan.
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Fig. 7. Spectral r(Rrs(443), Rrs(λj)) and r(Rrs(547), Rrs(λj)) over pixels denoted by “A” and
“B” in Fig. 3. Self-correlations which equal to 1 are dropped for better plot visibility.

Fig. 8. 8-day (a) u(Rrs(443), Rrs(547)), (b) u(Rrs(443), Rrs(667)), (c) u(Rrs(488), Rrs(547)),
(d) u(Rrs(547), Rrs(667)) calculated from the derivative method using MODIS data from
Dec. 3-10, 2019.

While error covariance in Rrs reduces δ(chla) by ∼3.5% on average (Fig. 9(d)), it is bigger in high
altitude region and coastal waters than other regions. Figure 10 shows the cumulative distribution
function (CDF) of δ(chla) over clear water pixels (chla ≤ 0.1 mg/m3) with valid data in Fig. 9.
Around 28.4% and 95.7% of clear water pixels have δ(chla)< 20% and 25% respectively. But
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Fig. 9. 8-day δ(chla) calculated using Rrs retrieved from MODIS data from Dec. 3-10, 2019.
(a) δ(chla) calculated by including error covariance in Rrs (b) δ(chla) calculated without
error covariance in Rrs. (c) The difference derived by subtracting (a) from (b). (d) PDF of
the difference in (c).

Fig. 10. Cumulative distribution function (CDF) of δ(chla) for all the pixels with valid data
and with chla ≤ 0.1 mg/m3 in Fig. 9. Here “with” and “without” mean δ(chla) calculated
with and without error covariance in Rrs.

without error covariance in Rrs, those numbers decrease to 3.8% and 80.7% for δ(chla)< 20%
and 25% respectively. This suggests that the goal of 35% for δ(chla) can be achieved over deep
ocean waters with the assumption of a model fitting uncertainty of 13%.
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4. Conclusions

A derivative-based approach was established by [5] to calculate the uncertainty in Rrs retrieved
from NASA’s MSEPS atmospheric correction algorithm. This study extends the approach
to calculate the spectral error covariance in Rrs. Quantification of this spectral covariance is
necessary to accurately calculate the uncertainty in a host of bio-optical and biogeochemical
properties of the water column that rely on spectral Rrs, because the band-to-band correlations are
not negligible. The error covariance in Rrs obtained by our derivative method is found to compare
reasonably well with that derived from Monte Carlo analysis, with the median ratio of the former
to the latter about 0.87 for the error covariance between Rrs at 443 and 547 nm and about 1.10
between Rrs at 443 and 667 nm. This indicates the reliability of the derivative-based approach
established to propagate uncertainty sources including instrument random noise, systematic
uncertainty, and forward model uncertainty into Rrs. We also utilize the spectral error covariance
in Rrs to calculate uncertainty in chla and Kd(490). Compared to assuming no spectral correlation
in Rrs uncertainty, accounting for correlation reduces the relative uncertainty in chla by ∼1-2% in
waters with chla < 0.25 mg/m3 and by ∼5-10% in waters with chla > 0.35 mg/m3, with reduction
>30% in some regions. Similarly, the reduction for Kd(490) is typically ∼2%, but it can be
>20% in some regions. We further evaluate the error covariance using the results derived from
evaluation of MODIS retrieved chla against chla calculated from in situ Rrs at MOBY, which also
clearly demonstrates the ability of our approach to distinguish relatively low-uncertainty cases
from high-uncertainty cases.

While the above analyses indicate that the derivative-based approach can provide reasonable
spectral error covariance in Rrs, there are some limitations. Some other uncertainty sources
(e.g., structured errors) could be relevant, and some assumptions should be updated as our
knowledge improves. Examples include the correlation between uncertainty in TOA reflectance;
the absolute calibration uncertainty of the 869 nm reference band; and the uncertainty in ancillary
data. Despite these limitations, the approach makes significant progress towards providing useful
pixel-level error covariance in Rrs. While demonstrated using MODIS data, it can be adapted to
all the other ocean color missions processed and distributed by NASA. One practical question is
how to include the error covariance matrix in Rrs products without increasing data file sizes by an
order of magnitude or more; options may include calculating spectral correlation in the error
covariance or parameterizing error covariance as a function of aerosol, chla and geometry. This
issue will need to be addressed as it becomes more pertinent as we move forward to hyperspectral
sensors with hundreds of bands such as Ocean Color Instrument (OCI) on NASA’s upcoming
Plankton, Aerosol, Cloud, ocean Ecosystem mission (PACE) [40].
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