
Derivation of Equations of Motion and Model-based Control

for 3D Rigid Body Approximation of LUVOIR

William Bentz∗, Lia Sacks†

June 2018

1 Introduction

The Large UV/Optical/IR Surveyor (LUVOIR) is a conceptual space observatory under develop-
ment by NASA Goddard Space Flight Center for the Astronomy and Astrophysics Decadal Survey.
As with similar space telescopes, e.g., James Webb, this spacecraft will have ultra-stringent point-
ing stability requirements, i.e., on the order of miliarcseconds. Thus, the design of the LUVOIR
attitude control system (ACS) may benefit from a model-based approach. In this document, we
present an approximate model of the LUVOIR composed of two 3D rigid bodies connected by a
1-DOF rotary joint. From this model, we derive the nonlinear equations of motion, following the
approach of Eric T. Stoneking [1], and linearize them about an arbitrary reference orientation. Us-
ing the subsequent state space representation, it is straightforward to compute a set of control gains
(e.g., via the ”lqr” or ”place” commands in MATLAB). We conclude this memo with a comparison
of our LQR approach with the existing PID slew controller designed by a former NASA intern.

2 System Model

We model the spacecraft as two rigid bodies connected by a 1-DOF rotary joint. The two bodies
are referred to as the spacecraft and the payload respectively. The spacecraft’s body-fixed frame
Fsc = [x̂sc ŷsc ẑsc] may be defined relative to an inertial frame FN = [x̂N ŷN ẑN] via FT

sc = Osc/NF
T
N

where Osc/N is the orientation matrix of Fsc relative to FN . In other texts, Osc/N is often referred
to as the direction cosine matrix of the spacecraft. However, it should be noted that this is
distinctly different than the rotation matrix from FN to Fsc, i.e., the transpose. For a truly rigorous
description of rotation formalisms, see [2]. We parameterize Osc/N as 3-2-1 sequence of intrinsic
Euler angle rotations by yaw angle ψ, pitch angle θ, and roll angle φ respectively:

Osc/N =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (1)

∗PhD Candidate, University of Michigan, Department of Aerospace Engineering
†Aerospace Engineer, NASA Goddard Space Flight Center (591)

1

Figure 1: The spacecraft and payload bodies and frames are illustrated above. The two bodies
interface at a 1-DOF rotary joint located a G that permits rotation about the ŷsc axis.

Noting that the rotary joint permits rotation about ŷsc, we may define the orientation of the

payload relative to the spacecraft as Opl/sc =

cos γ 0 − sin γ
0 1 0

sin γ 0 cos γ

 and it follows that Opl/N =

Opl/scOsc/N . We refer to γ as the payload angle and γ = γ̄ + γ́ where γ̄ and γ́ are the gimbal and
torsional joint angles respectively. Essentially, the motor articulating joint G contributes stiffness
and damping terms to the moment induced on the payload. These terms are functions of γ́ << 1
and ˙́γ << 1 respectively. We may define MG as the net torque induced on the payload by the
spacecraft about the ŷsc axis. MG is thus a virtual input from which one may construct the true
input: MG′ = MG+Kγ́+C ˙́γ where K and C are the stiffness and damping coefficients respectively.

The system has three additional inputs aside from MG, namely the three orthogonal components
of a moment ~Msc induced on the spacecraft by its ACS. The spacecraft and payload have moments
of inertia Isc and Ipl respectively as well as masses msc and mpl. The vectors ~rG/sc and ~rG/pl define
the positions of the rotary joint relative to each body’s center of mass. These vectors have constant
coefficients when resolved in the appropriate body frames: ~rG/sc|sc = b1x̂sc + b2ŷsc + b3ẑsc and
~rG/pl|pl = a1x̂pl + a2ŷpl + a3ẑpl. The system model as described above is illustrated in Fig. 1.

3 Equations of Motion

We derive our equations of motion following Kane’s method as described in [1]. The angular velocity
of the payload relative to the inertial frame ~ωpl/N may be written as the following sum of angular
velocities:

~ωpl/N = ~ωpl/sc + ~ωsc/N , (2)

2

where ~ωpl/sc and ~ωsc/N are the angular velocities of the payload relative to the spacecraft and
the spacecraft relative to the inertial frame respectively. ~ωpl/sc, when resolved in Fpl, can be
parameterized as follows:

~ωpl/sc|pl = Γσ, (3)

where σ is the generalized speed of the rotary joint. For 2-DOF or 3-DOF joints, σ may be defined
as the Euler angle rate vector (i.e., the time deriviatives of the sequential rotations defining Fpl

relative to Fsc) and Γ is the kinematic differential equation matrix associated with the rotation
sequence (see tabulations on left column of Appendix II in [3]). Note that the example Γ defined
in (23) of [1] contains errors which may provide a source of confusion to a first time reader. For

our 1-DOF joint, Γ = [0 1 0]
T

, Γ̇ = [0 0 0]
T

, and σ = γ̇.
Upon describing our payload’s angular velocity, we now define the linear velocity of its center

of mass:

~vpl/N = ~vsc/N + ~ωsc/N × ~rG/sc − ~ωpl/N × ~rG/pl. (4)

Combining (2-4), we can rewrite the angular and linear velocities of our system:[
~ωsc/N |sc
~ωpl/N |pl

]
=

[
U3×3 03×1 03×3

Opl/sc Γ 03×3

]
︸ ︷︷ ︸

Ω

~ωsc/N |sc
σ

~vsc/N |N

 , (5)

[
~vsc/N |N
~vpl/N |N

]
=

[
03×3 03×1 U3×3(

~rG/pl|N − ~rG/sc|N
)×ON/sc ~rG/pl|×NON/plΓ U3×3

]
︸ ︷︷ ︸

V

~ωsc/N |sc
σ

~vsc/N |N

 , (6)

in terms of our state vector u =
[
~ωsc/N |sc σ ~vsc/N |N

]T
where U3×3 denotes a 3×3 identity matrix

and 03×3 similarly denotes a matrix of zeros. Note that a × superscript in (6) refers to the skew-
symmetric cross product matrix and that Ω and V are referred to by Stoneking as the partial
velocity matrices. Taking an inertial frame derivative of (2) and resolving in Fpl yields:

~αpl/N |pl = ~αsc/N |pl +
(

Γσ̇ + Γ̇σ + ~ωpl/N |pl × Γσ
)
, (7)

while the inertial frame derivative of (4) is:

~apl/N = ~asc/N + ~wsc/N ×
(
~ωsc/N × ~rG/sc

)
+ ~αsc/N × ~rG/sc − ~ωpl/N ×

(
~ωpl/N × ~rG/pl

)
− ~αpl/N × ~rG/pl,

(8)

which when resolved in FN yields:

~apl/N |N =
(
~asc/N + ~wsc/N ×

(
~ωsc/N × ~rG/sc

)
+ ~αsc/N × ~rG/sc

)∣∣∣
N
−

(
~ωsc/N |N +ON/plΓσ

)
×((

~ωsc/N |N +ON/plΓσ
)
× ~rG/pl|N

)
−

(
~αsc/N |N +ON/pl

(
Γσ̇ + Γ̇σ + ~ωpl/N |pl × Γσ

))
× ~rG/pl|N . (9)

It should be noted that (7) and (8) contain terms that are not functions of u̇, these are referred to
as the remainder accelerations:

~αr
pl/N |pl = Γ̇σ + ~ωpl/N |pl × Γσ, (10)

~arpl/N = ~wsc/N ×
(
~ωsc/N × ~rG/sc

)
− ~ωpl/N ×

(
~ωpl/N × ~rG/pl

)
− ~αr

pl/N × ~rG/pl. (11)

3

We can now write our system accelerations compactly:[
~αsc/N |sc
~αpl/N |pl

]
= Ωu̇+

[
03×1

~αr
pl/N |pl

]
, (12)[

~asc/N |N
~apl/N |N

]
= V u̇+

[
03×1

~arpl/N |N

]
. (13)

From [1], we have that Kane’s equation for our system may be written in matrix form:

ΩT

([
~Msc|sc
~MG|pl

]
−
[
Isc 03×3

03×3 Ipl

] [
~αsc/N |sc
~αpl/N |pl

]
−
[
~ωsc/N |sc × Isc~ωsc/N |sc
~ωpl/N |pl × Ipl~ωpl/N |pl

])
+

V T

([
~Fsc|N
~Fpl|N

]
−
[
mscU3×3 03×3

03×3 mplU3×3

] [
~asc/N |N
~apl/NN

])
= 0, (14)

where one may recall that ~MG|pl = MGŷpl = MGŷsc. For our system, we assume that our external

forces obey ~Fsc = ~Fpl = 0. Substituting (12-13) into (14), we have:(
ΩT

[
Isc 03×3

03×3 Ipl

]
Ω + V T

[
mscU3×3 03×3

03×3 mplU3×3

]
V

)
︸ ︷︷ ︸

L

u̇ = ΩT

([
~Msc|sc
~MG|pl

]
−

[
Isc 03×3

03×3 Ipl

] [
03×1

~αr
pl/N |pl

]
−
[
~ωsc/N |sc × Isc~ωsc/N |sc
~ωpl/N |pl × Ipl~ωpl/N |pl

])
− V T

[
mscU3×3 03×3

03×3 mplU3×3

] [
03×1

~arpl/N |N

]
,

(15)

where we have introduced the definition L to simplify notation. Moving forward, we shall refer to
the entire right hand side of (15) as P .

For our system, L is a 7 × 7 invertible matrix. Thus, it is possible to compute an explicit
form of L−1 (though incredibly computationally expensive). We have constructed a generic 7 × 7
matrix in MATLAB composed of 49 symbolic variables ”A 1 1”, ”A 1 2” etc. generated using the
”syms” command. An analytic expression of the inverse of this matrix has been saved to the file
”SevenBySevenInverse.mat” which is available upon request. Thus, one may compute the desired
analytic expression for L−1 by substituting the algebraic expressions defining each element of L for
the variables ”A 1 1”, ”A 1 2” etc. using the symbolic substitution ”subs” command in MATLAB.
We have found that this approach saves considerable computational time over attempting to invert
L directly and can be computed in less than a day by a modern desktop computer.

Noting that the rotational dynamics decouple from the translational dynamics in this parame-
terization, we can discard the ~vsc/N |N component of our state vector u and redefine our system in
terms of fully explicit (i.e., ẋ = f(x)) nonlinear rotational equations of motion:

φ̇ = ~ωsc/N |sc · [1 sinφ tan θ cosφ tan θ]
T
, (16)

θ̇ = ~ωsc/N |sc · [0 cosφ− sinφ]
T
, (17)

ψ̇ = ~ωsc/N |sc · [0 sinφ sec θ cosφ sec θ]
T
, (18)

γ̇ = σ, (19)

~̇ωsc/N |sc =
[
U3×3 03×4

] (
L−1P

)
, (20)

σ̇ = [0 0 0 1 0 0 0]
(
L−1P

)
. (21)

4

4 Linearization and Control Design

We can now linearize our equations of motion (16-21) about an equilibrium state. We assume
that this state consists of an arbitrary spacecraft orientation and gimbal angle with zero associated
angular velocities, i.e. xd = [φd θd ψd γd 0 0 0 0]

T
. Let us define our system input vector

ū =
[
~Msc|sc MG

]T
Noting our implicitly defined rotational dynamics state variable x, the linearized

dynamics are:

ẋ =
∂f

∂x

∣∣∣∣∣x = xd,
ū = 0

(x− xd) +
∂f

∂ū

∣∣∣∣∣x = xd,
ū = 0

ū, (22)

where f is the vector concatenated from the right hand sides of (16-21). In the sequel, we shall
refer to the two matrices of partial derivatives in (22) as A and B respectively.

As alluded to above, our nonlinear equations of motion are intractable to deal with by hand.
Thus we resort to symbolic differentiation in MATLAB via the ”diff” command. For details on im-
plementation, please see lines 96-141 in the script ”ThreeDeeModeling Kane 3DCOM.m” included
in the Appendix.

Having generated our A and B matrices. It was straightforward to design a stabilizing feedback
law of the form ū = −Kx in MATLAB using the ”lqr” command. To inform the design, we
analyzed the impulse responses in MATLAB that resulted from various choices of the Q matrix
in the LQR cost function. We iterated through progressively larger and larger Q matrices while
keeping R fixed at identity until the settling time had reached an acceptable value of 842 seconds
for Q = 50, 000U . These iterations are presented in Figs. 2-7. The settling time approximately
halves with each order of magnitude increase in Q. Note that although this trend continues beyond
Q = 50, 000U , we selected Q = 50, 000U as the weight matrix for our initial nonlinear simulation
out of a concern that we would eventually saturate the actuators. We also tried increasing the
penalties on orientation error above those of rate error as presented in Figs. 8-9; however, this did
not make a noticeable difference.

Following our impulse response figures, we have also included a direct comparison of this con-
troller’s performance against the slew controller designed by Alejandro Hernandez as a part of his
former NASA Goddard internship work on LUVOIR. For this simulation, the initial spacecraft orien-
tation is [φ θ ψ] = [2◦ 2◦ 88◦] and the desired spacecraft orientation is [φd θd ψd] = [0◦ 0◦ 90◦].
The initial gimbal angle is 1.54 radians with desired angle of π/2 radians. The direct performance
comparisons are presented in Figs. 10-15. The takeaway points are that Alejandro’s PID slew con-
troller stabilizes faster (though at the expense of tremendous initial torque inputs) while the LQR
controlled spacecraft follows smoother trajectories with more conservative actuation requirements.
The LQR controller is generally free of high frequency oscillations with the exception of those of
the gimbal controller as presented in Fig. 13.

Moving forward, we plan to evaluate the performance of this controller in more complex space-
craft and payload models. The nonlinear simulations presented in this report were generated using
a multi-rigid body model for LUVOIR. In order to accurately predict the performance of this con-
trol strategy, we will need to simulate a flexible body spacecraft and flexible body payload subject
to disturbances. If the LQR strategy does not perform well when we add these layers of complexity
to the model, then perhaps we ought to consider a robust nonlinear control strategy e.g., sliding
mode control or Lyapunov based control.

5

Figure 2: The normalized impulse responses of the first four states of the closed loop linearized

dynamics are illustrated for Q =

[
U4×4 04×4

04×4 U4×4

]
. The maximum settling time of 12600 seconds is

associated with state φ subject to a disturbance impulse torque along ẑsc.

Figure 3: The normalized impulse responses of the first four states of the closed loop linearized

dynamics are illustrated for Q =

[
5U4×4 04×4

04×4 5U4×4

]
. The maximum settling time of 8420 seconds is

associated with state φ subject to a disturbance impulse torque along ẑsc.

6

Figure 4: The normalized impulse responses of the first four states of the closed loop linearized

dynamics are illustrated for Q =

[
50U4×4 04×4

04×4 50U4×4

]
. The maximum settling time of 4730 seconds

is associated with state φ subject to a disturbance impulse torque along ẑsc.

Figure 5: The normalized impulse responses of the first four states of the closed loop linearized

dynamics are illustrated for Q =

[
500U4×4 04×4

04×4 500U4×4

]
. The maximum settling time of 2660

seconds is associated with state φ subject to a disturbance impulse torque along ẑsc.

7

Figure 6: The normalized impulse responses of the first four states of the closed loop linearized

dynamics are illustrated for Q =

[
5000U4×4 04×4

04×4 5000U4×4

]
. The maximum settling time of 1500

seconds is associated with state φ subject to a disturbance impulse torque along ẑsc.

Figure 7: The normalized impulse responses of the first four states of the closed loop linearized

dynamics are illustrated for Q =

[
50000U4×4 04×4

04×4 50000U4×4

]
. The maximum settling time of 842

seconds is associated with state φ subject to a disturbance impulse torque along ẑsc.

8

Figure 8: The normalized impulse responses of the first four states of the closed loop linearized

dynamics are illustrated for Q =

[
500000U4×4 04×4

04×4 500000U4×4

]
. The maximum settling time of 473

seconds is associated with state φ subject to a disturbance impulse torque along ẑsc.

Figure 9: The normalized impulse responses of the first four states of the closed loop linearized

dynamics are illustrated for Q =

[
500000U4×4 04×4

04×4 50000U4×4

]
. The maximum settling time remains

unchanged from Fig. 8 despite the differing weight on angular velocity.

9

Figure 10: The baseline slew controller stabilizes the orientation errors faster, though at the expen-
sive of initial high frequency oscillations.

Figure 11: Peak angular velocities are orders of magnitude smaller in the LQR controller.

10

Figure 12: High frequency oscillations present in the PID slew controller are not present in the
LQR based method.

Figure 13: The PID slew controller sends higher peak torque commands to the gimbal. The LQR
controller has higher frequency oscillations as the gimbal error stabilizes.

11

Figure 14: Peak CMG torques are orders of magnitude higher in the PID controller.

Figure 15: CMG angles are nearly zero in steady state for the LQR controller.

12

5 Appendix

ThreeDeeModeling Kane 3DCOM.m:

1 %Let ’ s take Kane ’ s approach as in Stoneking 2013
2 c l e a r
3 %I w i l l use the standard 3−2−1 Euler ang l e s p s i theta phi with gimbal

ang le
4 %gamma about s p a c e c r a f t Y a x i s .
5 syms p s i theta phi gamma gammadot a 1 a 2 a 3 b 1 b 2 b 3 w sc1 w sc2

w sc3 ;
6 Gamma= [0 ; 1 ; 0] ;
7 Gammadot = [0 ; 0 ; 0] ;
8 C 21=[cos (gamma) ,0 ,− s i n (gamma) ;
9 0 , 1 , 0 ;

10 s i n (gamma) ,0 , cos (gamma)] ;
11 Omega=[eye (3) , z e r o s (3 , 4) ;
12 C 21 ,Gamma, z e ro s (3 , 3)] ;
13 %p o s i t i o n ve c to r s expres sed in i n e r t i a l frames
14 O N SC=transpose ([1 , 0 , 0 ; 0 , cos (phi) , s i n (phi) ;0 ,− s i n (phi) , cos (phi)] ∗ [cos (

theta) ,0 ,− s i n (theta) ; 0 , 1 , 0 ; s i n (theta) ,0 , cos (theta)] ∗ [cos (p s i) , s i n (
p s i) ,0;− s i n (p s i) , cos (p s i) , 0 ; 0 , 0 , 1]) ;

15 O N PL=transpose ([cos (gamma) ,0 ,− s i n (gamma) ; 0 , 1 , 0 ; s i n (gamma) ,0 , cos (gamma
)] ∗ [1 , 0 , 0 ; 0 , cos (phi) , s i n (phi) ;0 ,− s i n (phi) , cos (phi)] ∗ [cos (theta) ,0 ,−
s i n (theta) ; 0 , 1 , 0 ; s i n (theta) ,0 , cos (theta)] ∗ [cos (p s i) , s i n (p s i) ,0;− s i n (
p s i) , cos (p s i) , 0 ; 0 , 0 , 1]) ;

16 O PL SC=[cos (gamma) ,0 ,− s i n (gamma) ; 0 , 1 , 0 ; s i n (gamma) ,0 , cos (gamma)] ;
17 r 21=O N PL∗ [a 1 ; a 2 ; a 3] ;
18 r 11=O N SC ∗ [b 1 ; b 2 ; b 3] ;
19 beta 2=r 21−r 11 ;
20 beta 2 skew =[0,− beta 2 (3) , beta 2 (2) ;
21 beta 2 (3) ,0 ,− beta 2 (1) ;
22 −beta 2 (2) , beta 2 (1) , 0] ;
23 r 21 skew =[0,− r 21 (3) , r 21 (2) ;
24 r 21 (3) ,0 ,− r 21 (1) ;
25 −r 21 (2) , r 21 (1) , 0] ;
26 V=[ze ro s (3 , 4) , eye (3) ;
27 beta 2 skew ∗O N SC , r 21 skew ∗O N PL∗Gamma, eye (3)] ;
28 wo=[0; gammadot ;0]+O PL SC ∗ [w sc1 ; w sc2 ; w sc3] ;
29 a lpha N o r=c r o s s (wo ,Gamma∗gammadot) ;
30 a N o r=c r o s s (O N SC ∗ [w sc1 ; w sc2 ; w sc3] , c r o s s (O N SC ∗ [w sc1 ; w sc2 ;

w sc3] , r 11))−c r o s s (O N PL∗wo , c r o s s (O N PL∗wo , r 21))−c r o s s (O N PL∗
alpha N o r , r 21) ;

31 %Control inputs are T sc1 , T sc2 , T sc3 , and T pl2
32 syms T sc1 T sc2 T sc3 T pl2
33 T squig =[T sc1 ; T sc2 ; T sc3 ; 0 ; T pl2 ; 0] ;
34 %Independent moment o f i n e r t i a e lements are :

13

35 syms I s c 1 1 I s c 1 2 I s c 1 3 I s c 2 2 I s c 2 3 I s c 3 3
36 syms I p l 1 1 I p l 1 2 I p l 1 3 I p l 2 2 I p l 2 3 I p l 3 3
37 syms m sc m pl
38 I b rack =[I s c 1 1 , I s c 1 2 , I s c 1 3 , 0 , 0 , 0 ;
39 I s c 1 2 , I s c 2 2 , I s c 2 3 , 0 , 0 , 0 ;
40 I s c 1 3 , I s c 2 3 , I s c 3 3 , 0 , 0 , 0 ;
41 0 , 0 , 0 , I p l 1 1 , I p l 1 2 , I p l 1 3 ;
42 0 , 0 , 0 , I p l 1 2 , I p l 2 2 , I p l 2 3 ;
43 0 , 0 , 0 , I p l 1 3 , I p l 2 3 , I p l 3 3] ;
44 m brack=[m sc∗ eye (3) , z e r o s (3 , 3) ;
45 z e r o s (3 , 3) , m pl∗ eye (3)] ;
46 a l p h a r s q u i g = [0 ; 0 ; 0 ; a lpha N o r] ;
47 wcrossH squig =[c r o s s ([w sc1 ; w sc2 ; w sc3] , [I s c 1 1 , I s c 1 2 , I s c 1 3 ;

I s c 1 2 , I s c 2 2 , I s c 2 3 ; I s c 1 3 , I s c 2 3 , I s c 3 3] ∗ [w sc1 ;
w sc2 ; w sc3]) ;

48 c r o s s (wo , [I p l 1 1 , I p l 1 2 , I p l 1 3 ; I p l 1 2 ,
I p l 2 2 , I p l 2 3 ; I p l 1 3 , I p l 2 3 , I p l 3 3]∗wo)
] ;

49 F squig=ze ro s (6 , 1) ;
50 a r s q u i g = [0 ; 0 ; 0 ; a N o r] ;
51 %u dot=(t ranspose (Omega) ∗ I b rack ∗Omega+transpose (V) ∗m brack∗V) \(

t ranspose (Omega) ∗(T squig−I b rack ∗ a lpha r squ i g−wcrossH squig)+
transpose (V) ∗(F squig−m brack∗ a r s q u i g))

52

53 %%Line 51 i s tak ing an e t e r n i t y to run so l e t ’ s s u b s t i t u t e va lue s in to
a symbol ic r e p r e s e n t a t i o n

54 %%of a 7x7 inve r t ed matrix below . This symbol ic f i l e i s
SevenbySevenInverse . mat

55 %We w i l l sk ip running l i n e s 58−81 and j u s t load the r e s u l t in the
f o l l o w i n g

56 %l i n e .
57

58 LargeMat=transpose (Omega) ∗ I b rack ∗Omega+transpose (V) ∗m brack∗V; %
LargeMat

59 %i s the matrix we seek to i n v e r t .
60 load (’ SevenbySevenInverse . mat ’)
61 f o r j =1:7
62 f o r k=1:7
63 syms (s t r c a t (s t r c a t (s t r c a t (’A ’ , num2str (j)) , ’ ’) , num2str (k))) ;
64 end
65 end
66 LargeMatInv=sym(ze ro s (7 , 7)) ;
67

68 f o r j =1:7
69 f o r k=1:7
70 t i c

14

71 LargeMatInv (j , k)=subs (PLEASESAVE(j , k) , A 1 1 , LargeMat (1 , 1)) ;
72 f o r j j =1:7
73 f o r kk=1:7
74 A j j kk=s t r c a t (s t r c a t (s t r c a t (’A ’ , num2str (j j)) , ’ ’) , num2str (kk)) ;
75 LargeMatInv (j , k)=subs (LargeMatInv (j , k) , A j j kk , LargeMat (j j , kk))

;
76 end
77 end
78 toc
79 end
80 end
81 %Okay That worked .
82 %load (’ LargeMatInv . mat ’)
83 u dot=LargeMatInv ∗(t ranspose (Omega) ∗(T squig−I b rack ∗ a lpha r squ i g−

wcrossH squig)+transpose (V) ∗(F squig−m brack∗ a r s q u i g)) ;
84 %Okay Here i s the d e s i r e d uncoupled EOMS
85 %u new=[phi ; theta ; p s i ; gamma; w sc1 ; w sc2 ; w sc3 ; gammadot] ;
86 u new dot (1)=w sc1+s i n (phi) ∗ tan (theta) ∗w sc2+cos (phi) ∗ tan (theta) ∗w sc3 ;
87 u new dot (2)=cos (phi) ∗w sc2−s i n (phi) ∗w sc3 ;
88 u new dot (3)=s i n (phi) ∗ s ec (theta) ∗w sc2+cos (phi) ∗ s ec (theta) ∗w sc3 ;
89 u new dot (4)=gammadot ;
90 u new dot (5)=u dot (1) ;
91 u new dot (6)=u dot (2) ;
92 u new dot (7)=u dot (3) ;
93 u new dot (8)=u dot (4) ;
94 %Now Let us l i n e a r i z e about our operat ing po int [phi d ; theta d ; p s i d ;
95 %gamma d ; 0 ; 0 ; 0 ; 0] ;
96 syms phi d theta d p s i d gamma d
97 f o r j =1:8
98 t i c
99 A(j , 1)=d i f f (u new dot (j) , phi) ;

100 A(j , 1)=subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (A(j
, 1) , phi , phi d) , theta , theta d) , ps i , p s i d) ,gamma, gamma d) , w sc1 , 0) ,
w sc2 , 0) , w sc3 , 0) ,gammadot , 0) , T sc1 , 0) , T sc2 , 0) , T sc3 , 0) , T pl2 , 0) ;

101

102 A(j , 2)=d i f f (u new dot (j) , theta) ;
103 A(j , 2)=subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (A(j

, 2) , phi , phi d) , theta , theta d) , ps i , p s i d) ,gamma, gamma d) , w sc1 , 0) ,
w sc2 , 0) , w sc3 , 0) ,gammadot , 0) , T sc1 , 0) , T sc2 , 0) , T sc3 , 0) , T pl2 , 0) ;

104

105 A(j , 3)=d i f f (u new dot (j) , p s i) ;
106 A(j , 3)=subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (A(j

, 3) , phi , phi d) , theta , theta d) , ps i , p s i d) ,gamma, gamma d) , w sc1 , 0) ,
w sc2 , 0) , w sc3 , 0) ,gammadot , 0) , T sc1 , 0) , T sc2 , 0) , T sc3 , 0) , T pl2 , 0) ;

107

108 A(j , 4)=d i f f (u new dot (j) ,gamma) ;

15

109 A(j , 4)=subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (A(j
, 4) , phi , phi d) , theta , theta d) , ps i , p s i d) ,gamma, gamma d) , w sc1 , 0) ,
w sc2 , 0) , w sc3 , 0) ,gammadot , 0) , T sc1 , 0) , T sc2 , 0) , T sc3 , 0) , T pl2 , 0) ;

110

111 A(j , 5)=d i f f (u new dot (j) , w sc1) ;
112 A(j , 5)=subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (A(j

, 5) , phi , phi d) , theta , theta d) , ps i , p s i d) ,gamma, gamma d) , w sc1 , 0) ,
w sc2 , 0) , w sc3 , 0) ,gammadot , 0) , T sc1 , 0) , T sc2 , 0) , T sc3 , 0) , T pl2 , 0) ;

113

114 A(j , 6)=d i f f (u new dot (j) , w sc2) ;
115 A(j , 6)=subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (A(j

, 6) , phi , phi d) , theta , theta d) , ps i , p s i d) ,gamma, gamma d) , w sc1 , 0) ,
w sc2 , 0) , w sc3 , 0) ,gammadot , 0) , T sc1 , 0) , T sc2 , 0) , T sc3 , 0) , T pl2 , 0) ;

116

117 A(j , 7)=d i f f (u new dot (j) , w sc3) ;
118 A(j , 7)=subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (A(j

, 7) , phi , phi d) , theta , theta d) , ps i , p s i d) ,gamma, gamma d) , w sc1 , 0) ,
w sc2 , 0) , w sc3 , 0) ,gammadot , 0) , T sc1 , 0) , T sc2 , 0) , T sc3 , 0) , T pl2 , 0) ;

119

120 A(j , 8)=d i f f (u new dot (j) , gammadot) ;
121 A(j , 8)=subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (A(j

, 8) , phi , phi d) , theta , theta d) , ps i , p s i d) ,gamma, gamma d) , w sc1 , 0) ,
w sc2 , 0) , w sc3 , 0) ,gammadot , 0) , T sc1 , 0) , T sc2 , 0) , T sc3 , 0) , T pl2 , 0) ;

122 toc
123 end
124 %Guess what T pl 2 i s a VIRTUAL INPUT. I ’m working now in terms o f

T pl2
125 % DON’T FORGET THAT True Input M G f o l l o w s s t a t e feedback law
126 % M G=T pl2+k∗gamma+c∗gammadot
127 f o r j =1:8
128 t i c
129 B(j , 1)=d i f f (u new dot (j) , T sc1) ;
130 B(j , 1)=subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (B(j

, 1) , phi , phi d) , theta , theta d) , ps i , p s i d) ,gamma, gamma d) , w sc1 , 0) ,
w sc2 , 0) , w sc3 , 0) ,gammadot , 0) , T sc1 , 0) , T sc2 , 0) , T sc3 , 0) , T pl2 , 0) ;

131

132 B(j , 2)=d i f f (u new dot (j) , T sc2) ;
133 B(j , 2)=subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (B(j

, 2) , phi , phi d) , theta , theta d) , ps i , p s i d) ,gamma, gamma d) , w sc1 , 0) ,
w sc2 , 0) , w sc3 , 0) ,gammadot , 0) , T sc1 , 0) , T sc2 , 0) , T sc3 , 0) , T pl2 , 0) ;

134

135 B(j , 3)=d i f f (u new dot (j) , T sc3) ;
136 B(j , 3)=subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (B(j

, 3) , phi , phi d) , theta , theta d) , ps i , p s i d) ,gamma, gamma d) , w sc1 , 0) ,
w sc2 , 0) , w sc3 , 0) ,gammadot , 0) , T sc1 , 0) , T sc2 , 0) , T sc3 , 0) , T pl2 , 0) ;

137

16

138 B(j , 4)=d i f f (u new dot (j) , T pl2) ;
139 B(j , 4)=subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (subs (B(j

, 4) , phi , phi d) , theta , theta d) , ps i , p s i d) ,gamma, gamma d) , w sc1 , 0) ,
w sc2 , 0) , w sc3 , 0) ,gammadot , 0) , T sc1 , 0) , T sc2 , 0) , T sc3 , 0) , T pl2 , 0) ;

140 toc
141 end
142 save (’ State Space 3DCOM . mat ’ , ’A ’ , ’B ’ , ’−v7 . 3 ’)
143 f p r i n t f (’ Save Complete\n ’)
144 A=s i m p l i f y (A) ;
145 B=s i m p l i f y (B) ;

References

[1] Eric Stoneking. Implementation of Kane’s Method for a Spacecraft Composed of Multiple Rigid
Bodies. In AIAA Guidance, Navigation, and Control (GNC) Conference, page 4649, 2013.

[2] Dennis Bernstein. GEOMETRY, KINEMATICS, STATICS, AND DYNAM-
ICS. 2012. University of Michigan Graduate Dynamics Course Notes,
http://ruina.tam.cornell.edu/Courses/ME4730 Fall 2013/BernsteinDynamicsVDec282012.pdf.

[3] Thomas R. Kane, Peter W. Likins, and David A. Levinson. Spacecraft dynamics. McGraw-Hill
Book Co., 1983.

17

