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Abstract

Quantum computing has advanced in recent years to the point that there are now some

quantum computers and quantum simulators available to the public for use. In addition,

quantum computing is beginning to receive attention within the process systems engineering

community for directions such as machine learning and optimization. A logical next step for

its evaluation within process systems engineering is for control, speci�cally, for computing con-

trol actions to be applied to process systems. In this work, we provide some initial studies

regarding the implementation of control on quantum computers, including the implementation

of a single-input/single-output proportional control law on a quantum simulator with noise,

evaluation of potential impacts of non-determinism on theory for advanced control laws, and

discussion of consequences of the way that entanglement works for next-generation manufac-

turing communication objectives.
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1 Introduction

In modern and next-generation manufacturing processes, control systems are critical in maintaining

and improving operation. Advances in computers have allowed for implementation of increasingly

sophisticated algorithms to meet these needs; however, the limits of current computing strategies

continue to be an obstacle to the development of model or optimization-based control algorithms

for increasingly complicated processes. One might ask whether quantum computation could hold

any potential for outperforming classical computation methods for control, as there are some com-

putational problems where quantum computing has shown a potential for outperforming classical

algorithms according to metrics like function evaluations.1 However, it is currently unknown whether

quantum computing could provide any bene�ts for control systems. It is our premise, however, that

the answer to this question could bene�t from the development of a deeper understanding of how

control and quantum computing interact. Speci�cally, the unique nature of quantum computing

creates new complexities that need to be understood from a control-theoretic standpoint. This

includes �noise� (which can be considered to be deviations in qubit behavior compared to what is

intended) which on today's quantum computers can introduce errors into computations.2,3 Another

challenge is that some quantum computing algorithms (even if implemented on perfect/noiseless

circuits) do not provide an answer with certainty (but only in probability), with the result that the

algorithm may need to be run a number of times to see what the most likely answer is.1 These types

of challenges, foreign to the implementation of control today, lead us to suggest that examining re-

lationships between control and quantum computers could provide a deeper understanding of the

way that quantum computers interact with control objectives and could provide part of the path

toward answering the question of whether or not quantum computers hold any bene�ts for use in

control.

In the process systems engineering �eld, quantum computers (primarily the D-Wave quantum

annealer, though with some analysis of an IBM quantum computer in4) have been utilized for fault

detection and for optimization related to energy systems.4�7 Applications of quantum computers

for control to date have included, for example, the application of fuzzy logic control,8 reinforce-
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ment learning,9�11 and model predictive control or MPC (an optimization-based and model-based

control law12�16) implemented on a quantum annealer.17 However, this is a relatively limited set of

investigations that does not provide enough data for deeply understanding bene�ts and limitations

of control implemented on quantum computers.

This work marks our group's �rst step in the direction of �eshing out such relationships between

control theory and design and quantum computation in greater depth, and thus takes a preliminary

look at implementing control algorithms on quantum computers and at analyzing how related quan-

tum properties interact with control algorithms and theory. This work is organized as follows. The

�rst section gives an overview of some quantum computing topics which underlie the rest of the work.

Next, the impacts of several phenomena in quantum computing on control are examined. The �rst

is �noise� in the quantum computing hardware. The closed-loop simulation of a single input/single

output system controlled using a simple controller on a quantum simulator with noise utilizing a

quantum Fourier transform (QFT)-based addition algorithm is used to analyze the impacts of noise

in the hardware on the behavior of a closed-loop dynamic system. Next, we examine the e�ects of

non-determinism in an algorithm on a quantum computer for control using an advanced control law

known as Lyapunov-based economic model predictive control (LEMPC)18 represented by a lookup

table. A modi�ed version of Grover's search algorithm (a quantum computing algorithm for �nding

an element known to be present in an unordered list, with a certain probability) is then applied

(ine�ciently but still non-deterministically) to select control inputs from the lookup table, given a

sensor measurement. We are then able to draw control-theoretic conclusions for LEMPC applied via

this non-deterministic algorithm, providing a preliminary look at how non-determinism in quantum

computing algorithms can impact the associated control theory. Finally, we discuss implications of

the quantum phenomenon of entanglement for communication for next-generation manufacturing.
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2 Principles of Quantum Mechanics and Quantum Comput-

ing

Here we de�ne several important terms related to quantum mechanics and computing that will

be utilized throughout this work, adopted from notation and quantum mechanical frameworks

discussed in.1 Quantum computers are devices that take advantage of the principles of quantum

mechanics to perform operations on quantum particles in a manner that causes their measurement

at the end of a series of operations to reveal answers to questions which can be programmed. The

fundamental unit of quantum information is a qubit, which like traditional bits, can take values of

0 or 1 (written as |0⟩ and |1⟩ using �bra-ket� notation or [1 0]T and [0 1]T using vector notation).

However, a unique feature of qubits due to the manner in which they take advantage of quantum

mechanics is that qubits can also be in a �superposition� of the states, which is written as a linear

combination of the basis states |0⟩ and |1⟩ as c1 |0⟩ + c2 |1⟩. Alternately, the state of a qubit can

be written in vector notation as [c0 c1]
T . The values of |c1|2 and |c2|2 represent the probabilities

that the qubit will be in state |0⟩ or state |1⟩ upon measurement of its state, respectively, where

|c1|2 + |c2|2 = 1. With slight abuse of notation, |c| represents the modulus of a complex number if

the argument of | · | is a complex scalar.

An n × n matrix U is unitary if for its Hermitian transpose U+, UU+ = U+U = In. Matrices

describing the dynamics of quantum systems must be unitary. The tensor product of two vectors

a = [a0, . . . , am]
T and b = [b0, . . . , bn]

T is de�ned by a ⊗ b = [a0b0, a0b1, . . . , anbm]
T . The tensor

product of two matrices A and B is the matrix formed by multiplying each component of A by the

matrix B. Quantum mechanical systems can be assembled (in the sense that more than one particle

can be present in a distinct superposition of states which will each collapse with a certain probability

to a given state upon measurement as described above) by taking the tensor product of the state

vectors of each individual particle. The state of a multi-qubit system, |Ψ⟩, is represented via a

vector [c0, c1, . . . , cn−1]
T , where ci, i = 0, . . . , n− 1, are complex numbers for which

∑n−1
i=0 |ci|2 = 1,

where each of the coe�cients in the vector are related to the probability of observing the qubit
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system in one of n possible states upon measurement. Before the system state is measured, it is

in a superposition of some number of individual states represented by each of the nonzero entries

of the vector. When measured, the probability that it is found in the i-th state is given by |ci|2.

The state of the system can also be written as a linear combination of each of the basis states

|Ψ⟩ = c0 |x0⟩ + c1 |x1⟩ + ... + cn−1 |xn−1⟩, where |xi⟩ = [0, . . . , 1, . . . , 0]T , which represents a vector

with a 1 at the i-th position (indexed from i = 0 to i = n− 1). The matrix describing the evolution

of the assembled system is the tensor product of the matrices describing the transitions within each

individual system which comprises the assembly.

An �entangled� state is one which cannot be represented as the tensor product of individual

state vectors. Important examples of two-qubit entangled states are the Bell states or Einstein,

Podolsky, and Rosen (EPR) states, such as |β00⟩ and |β01⟩, which are de�ned by19 as:

|β00⟩ =
|00⟩+ |11⟩√

2
(1)

|β01⟩ =
|01⟩+ |10⟩√

2
(2)

An important aspect of these states is that, since the qubits are entangled, the measurement of one

qubit is tied to the state of the other qubit. For example, consider the state |β00⟩. If the �rst qubit

is measured in the |0⟩ state, the second qubit will be in the same state. Likewise, if the �rst qubit

is measured in the |1⟩ state, the second qubit will be in the same state.

Quantum logic gates are elements in a quantum circuit that transform qubit(s) between multiple

quantum states. Logic gates in a computer, like qubits, can also be represented using vectors and

matrices. For example, the NOT gate can be represented by the matrix [0 1; 1 0], because multiplying

this matrix by |0⟩ gives back |1⟩, and vice versa, which is similar to its action in classical circuits.

Gates in a quantum computer must be reversible, and therefore must be represented by unitary

matrices which act on qubits. An important unitary operation for placing qubits in a superposition
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of states is denoted by the �Hadamard matrix� H and is represented as follows:

H =
1√
2

1 1

1 −1

 (3)

An additional qubit can be used to determine when a gate is activated, forming a controlled gate.

In this case, if the input state of the control bit is |0⟩, the gate will not be executed so the output

will be identical to its input. Otherwise, when the control bit is in the |1⟩ state, the controlled gate

will operate on its qubits. It is also possible to apply multiple control qubits to a quantum gate. In

the case of applying three control qubits, for example, the quantum circuit can be designed in a way

where the controlled gate only activates for a particular combination of control bits (for example,

the controlled gate only activates when the control bits are in the state |111⟩).

3 Implementing Closed-loop Control on a Simulated Noisy

Quantum Computer

In this section, we provide the �rst of three studies relating control and quantum computing. Given

that today's quantum computers are still unable to achieve noiseless operation,20 it therefore would

be expected that on today's quantum computers, noise would also impact the computation of control

actions. Because of this, we look at a simple controlled system using a simulation of a controller on

a quantum simulator with noise. This simulation uses the quantum Fourier transform (QFT)-based

addition algorithm. This section is an extended version of work in.21

3.1 Implementing Closed-loop Control on a Simulated Noisy Quantum

Computer: Preliminaries

Here, we present the preliminaries required speci�cally for the discussion regarding simulating

closed-loop control on a noisy quantum computer; speci�cally, we discuss the Quantum Fourier

Transform (QFT) and QFT-Based Addition. The quantum Fourier transform (QFT) algorithm
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is used in a variety of quantum algorithms such as addition and Shor's factoring algorithm.1,19

It is the quantum analog of the discrete Fourier transform and when implemented on a quantum

state |Ψ⟩ =
∑N−1

j=0 âj |j⟩, for complex scalars âj, j = 0, . . . , N − 1, it returns
∑N−1

k=0 b̂k |k⟩ with

b̂k =
1√
N

∑N−1
j=0 âje

2πijk/N .22

The Quantum Fourier Transform has been used in performing addition on quantum computers,23

and the addition circuit is re�ected in Fig. 1. Speci�cally, the circuit in Fig. 1 adds two integers ā

and b̄. The binary representations of these integers are re�ected in the �gure; for example, the binary

representation of b̄ is considered to be n − 1 bits long with an additional 0 appended at the n-th

(most signi�cant) bit, and the resulting n qubits are labeled |bi⟩, i = 0, . . . , n− 1 in the �gure. The

circuit in Fig. 1 uses QFT (consisting of a combination of Hadamard and controlled rotation gates)

and inverse QFT (QFT †). The output of each qubit of this circuit represents one of the bits of the

sum of ā and b̄. To provide more speci�cs, consider a positive integer ā; the binary representation

of ā (denoted by a) consists of ai, i = 0, . . . , n − 2, and is placed in a set of n − 1 qubits (where

n − 1 is the number of bits in the binary representation of ā, with the most signi�cant bit being

an−2 and the least signi�cant being a0). An additional 0 is added as the most signi�cant bit so that

an−1 = 0, without changing the value of a when it is rewritten in the decimal system. The set of

gates labeled �QFT� in Fig. 1 are a series of controlled Zk gates (Zk = diag(1, e
2πi

2k ), where diag(x)

represents a diagonal matrix with the elements of the vector x on the diagonal) and Hadamard

gates, followed by swap gates (with H representing the Hadamard gate, swap gates represented by

cross-hairs, and the notation used for describing a series of controlled Zk gates de�ned in Fig. 2,

where the open circles on a circuit represent control qubits which dictate whether a gate which they

control is executed by taking values of |0⟩ (no execution) or |1⟩ (gate execution)).

3.2 Closed-loop Control using a Simulated Noisy Quantum Computer

We utilize a simulation study with a simple system (ẋ = x+u, which can be readily stabilized using

the control law u = −2x when that controller is implemented on a classical computer) to elucidate

relationships between quantum computing-implemented control and noise in quantum computers.
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Figure 1: Quantum addition circuit.

Figure 2: Zn−1
n circuit de�nition. On the left is simpli�ed notation for the full circuit on the right.
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The control loop considered is shown in Fig. 3. In this simulation study, the control action u = −2x

is computed on a quantum simulator from IBM (the qasm_simulator) using the quantum Fourier

transform code for addition of two binary numbers (x and x to form 2x), with the QFT-based

addition code largely based on.24 Since this simulation is performed using a quantum simulator

rather than an actual quantum computer, a noise model is required to simulate noise that would

be present when performing the calculations on a quantum computer. This model is added to the

quantum simulator to simulate noise in quantum circuitry, so that there is randomness in a single

computation of u (or �shot� as it is called in the IBM Quantum Experience) despite that QFT

transform-based addition is a deterministic algorithm if a quantum computer has no noise. We

then compare the case with a single �shot� used in a computation of 2x with the case that multiple

shots are used, and also compare with the result when a classical computer is utilized.

Controller Dynamic
ProcessActuator

Input

Measurement

State

Figure 3: Simple control law for a linear process

3.2.1 Noise Model for Quantum Computing-Implemented Controller

The 1-qubit and 5-qubit quantum computers available for free use on IBM's Quantum Experience

inherently have noise but do not have enough qubits to enable a meaningful computation of the

process input, u = −2x. For this reason, a quantum simulator (the IBM qasm_simulator in Qiskit)

is used to emulate the action of a quantum computer. The simulator used here is a 32 qubit system

and can be used to simulate quantum circuits both ideally (i.e., in the absence of noise) as well as

in the presence of noise by importing noise models into the simulation.

The noise model on the quantum simulator can be derived using the noise from an actual device

(such as the 5-qubit quantum computer ibmq_manila) or via custom noise modeling, where di�erent

types of error models and their parameters can be speci�ed by the user. Utilizing the approximated
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noise from an actual quantum device would be preferable for studying control on quantum comput-

ers. However, since the noise model is related to the actual quantum computer, it does not execute

on qasm_simulator when the number of qubits used on a circuit in the qasm_simulator exceeds

the number of qubits in the quantum computer. Therefore, a custom noise model was used in the

control simulations.

While there exist numerous types and sources of quantum errors,25�28 the custom noise model

in this work considers only a depolarizing error in the controlled phase gate used in the simulations.

When this is performed, the error parameter must be speci�ed. To select a reasonable error param-

eter, an actual quantum device (in this case, the 5-qubit ibmq_manila) was selected and a noise

model for this device was approximated using the NoiseModel.from_backend command in the open

source software development kit Qiskit.29 Then simulations of a controlled-Z gate (which represents

a controlled rotation of 180 degrees) with two qubits initially in the |0⟩ state were conducted using

the captured noise model and custom noise models, where the error parameter in the custom noise

model was tuned to ensure that the results approximately match.

A controlled-Z gate was used to �nd the error parameter because the basis gates in ibmq_manila

do not include the H or controlled rotation gates (which are the gates used in the QFT circuit).

However, the simulator includes a controlled-NOT (CNOT) gate, which in combination with 2

H gates is the equivalent of a controlled rotation of a speci�c amount (180 degrees) as shown in

Fig. 4.30 Therefore, because rotation operations are utilized in the QFT circuit, the controlled-Z

gate developed from a combination of a CNOT gate and 2 H gates was assumed to be a reasonable

benchmark for determining the depolarizing error parameter for other controlled rotation gates in

the QFT algorithm.

The depolarizing error parameter was set to 0.05 in the noise model based on a comparison in

August 2021 of the probabilities of seeing di�erent results after performing the controlled-Z repre-

sentation from Fig. 4 on the qasm_simulator using the noise model generated from ibmq_manila.

An example of the results from a run (consisting of multiple iterations or shots) of the two simu-

lators is shown in Fig. 5. As shown in Fig. 5, the results from the noisy simulations in both cases

are similar, so that setting the depolarizing error parameter to 0.05 for a controlled rotation gate
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in the QFT algorithm was assumed to be reasonable. However, as also shown in Fig. 5, the noise

model from the backend is not necessarily constant with time; therefore, we will later investigate

the impact of di�erent depolarizing error parameters.

0 1
:
::

Figure 4: Controlled-Z gate using 2 H gates and a CNOT gate. M stands for measurement of a
qubit.

Figure 5: Comparison of probabilities of di�erent results after 1024 shots when (A) the simulation
uses a depolarizing error parameter of 0.05, and (B) when it uses the noise simulation derived from
ibmq_manila (an example from August 21, 2021), and (C) when it uses the noise simulation derived
from ibmq_manila (an example from April 8, 2022).

3.2.2 Results from Quantum Computing-Implemented Control

A controller implemented using QFT-based addition on a quantum simulator requires state mea-

surements from the process in order to calculate control inputs. The process state measurements are

simulated on a classical computer, so they are decimal numbers with high precision (many decimal

places). Since the quantum algorithm works with binary numbers, the state measurements must

be modi�ed before being supplied to the quantum algorithm. The modi�cation procedure involves
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truncating the state measurement to 2 decimal places by multiplying the process state by 100 and

taking the �oor of the consequent value. The resulting binary number is supplied to the quantum

algorithm by representing each digit as a qubit in state |0⟩ or |1⟩. After the quantum algorithm is

performed and the qubits are measured, the resulting binary number represents the process input,

u = 2x = x + x, which must be converted back to an integer. To do this, the binary number is

converted to an integer and then divided by 100.

When multiple shots of the QFT-based addition algorithm are run, the full procedure for obtain-

ing the result of x+x is obtained by running the Result.get_counts function in Qiskit, and the num-

ber returned by performing �max� on the result with the operator.itemgetter() function in Python

is taken to be the control action. The negative sign in the full control law (i.e., u = −2x = −(x+x))

is accounted for by taking the negative of the value of 2x = x + x found by this procedure. Ten

hours of operation of the process were simulated, with the initial condition x(0) = 7.4, using the

Explicit Euler numerical integration method with an integration step of 0.001 time units and a

sampling period of 0.1 time units. Simulations described below were performed using one of two

systems (either a Mac running Python 3.8.8 with a 3.1 GHz Dual-Core Intel Core i5 and 8 GB

2133 MHz LPDDR3, or an Intel(R) Xeon(R) CPU E3-1240 v5 at 3.50GHz, 3.50 GHz with 32.0 GB

of RAM and running Windows 10, with Python 3.9.7) with the Python Integrated Development

Environment (IDE) Spyder.

To demonstrate the impact of noise in quantum computers on the results, simulations have been

executed on a quantum simulator using the depolarizing error noise model described above, and

the results are compared against those from a classical digital computer and QFT-based addition.

The results from computing x + x via classical addition and QFT-based addition in the absence

of noise are the same since QFT-based addition is a deterministic algorithm. The state and input

trajectories for the three simulations are compared in Fig. 6, with the noisy quantum simulation

being run with 254 shots, and in Fig. 7 with the noisy quantum simulation being run with 1 shot.

The �gures show that the results obtained using the classical computer and simulator for the noise-

free case match (the input trajectories computed were the same in both cases). In both the case

that 1 shot is used and when 254 shots are used, the state and input trajectories associated with

12



the noisy quantum computer are not overlaid with those in the absence of noise.
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Figure 6: Comparison between the input (left) and state (right) trajectories when the control input
is computed on a classical computer (�Classical system�), on a quantum simulator with 254 shots
and no noise (�Ideal quantum system�), and on a quantum simulator with 254 shots and noise
(�Noisy quantum system�), for x(0) = 7.4. The x-axis is time units.
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Figure 7: Comparison between the input (left) and state (right) trajectories when the control input
is computed on a classical computer (�Classical system�), on a quantum simulator with 1 shot and
no noise (�Ideal quantum system�), and on a quantum simulator with 1 shot and noise (�Noisy
quantum system�), for x(0) = 7.4. The x-axis is time units.

An important step toward the future development of more advanced quantum computing-

implemented control laws is understanding why the results for this simple system are what they are.

The following subsections will therefore seek to probe this simulation, analyzing what impacts the

following di�erent aspects of the simulation have on the results, in particular closed-loop stability

in the sense of driving the closed-loop state toward the origin: 1) the state measurement magnitude
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and number of shots; 2) the implementation of the QFT-based addition algorithm; and 3) the error

parameter in the depolarizing error model.

Remark 1. We note that though this section focuses only on control actions which can be written

as some multiple of the state of a system, this class of control actions also encompasses the results

of MPC for the linear unconstrained tracking (quadratic objective function) case, where an explicit

solution given in the form −Kx, where K is a matrix.31

Results from Quantum Computing-Implemented Control: Impacts of State Measure-

ment Magnitude and Number of Shots

In the QFT-based addition algorithm implemented, both operands have the same number of

digits in binary form. The algorithm used in this section checks this number of bits before performing

the addition algorithm and only performs addition for the required number of bits. For control

design, this has a special e�ect: as the closed-loop state moves toward the origin, the magnitude

of the measured value of x decreases, meaning that the size of the binary representation of x also

decreases. In computing x + x with QFT-based addition, this means that in the implementation

of the algorithm utilized, as the state is driven toward the origin, the QFT-based addition code is

based on smaller numbers of qubits.

An impact of this is suggested by Figs. 6-7, which suggest that the size of the state measurement

and the number of shots used may have an impact on how closely the results from the noisy computer

match those obtained deterministically (though because the impact of the noise is di�erent each time

that the simulation is run, this should be understood in terms of general trends and not necessarily

every speci�c simulation). Speci�cally, Figs. 6-7 suggest that, in accordance with the expectation

from Fig. 5 that control inputs might not be �correct� if determined via a single shot, but may be

more likely to be �correct� if more shots are performed and the control action is taken to be the

result from applying �max� on Result.get_counts (the use of this speci�c operation is emphasized

because there may be multiple binary strings which appeared the same number of times when the

simulation was run for a given number of shots), the state trajectory when 254 shots are used by the

quantum computer more closely matches the no noise and classical cases than the state trajectory
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when 1 shot is used. A contributing factor for not observing an exact overlay of all the plots in

Fig. 6 is that the initial condition is 7.4, which after scaling by 100 and truncation to two digits

as described above to prepare the number for QFT-based addition, is 740 (1011100100). In binary,

this number is 10 qubits long, and with an extra 0 added to the beginning of the number to account

for its potential growth by one more qubit during QFT-based addition (Section 3.1), it is a qubit

register of length 11. If every one of the 11 qubits could potentially be corrupted by noise, 2048

possible process inputs would exist, which is much larger than the 254 shots used. This suggests

that 254 shots may not be su�cient to cause a binary string with the maximum occurrences over

multiple shots to match the �correct� (or deterministic) result that would have been evaluated by a

classical computer.

Two additional observations of interest are a consequence of randomness introduced to the

control action evaluated by the quantum computer after each run as a consequence of noise applied

via the controlled phase (�cp�) gates. This raises the question of how to verify safety of a controller

when it would be di�cult to know whether every potential case that might occur was visited in a

simulation case study on the computer. Another interesting observation is that as the closed-loop

state moves closer to the origin (steady-state), the size of the qubit register required to represent its

state decreases in the implementation of QFT-based addition used based on24 (for example, when

the closed-loop state is 0.01, the number 1 would be fed to the QFT-based algorithm, which requires

only one qubit to represent it and thus 2 qubits in the operation of computing x + x). When 254

shots are used and only 2 qubits are needed to represent each binary possibility, there exist only 4

possible values that the process control input can take, which implies that it may be more likely,

when the depolarizing error parameter is 0.05, that the input with the maximum occurrences over

the 254 shots matches the deterministic result. This suggests that control algorithms on quantum

computers may be able to adapt the number of shots required based on the state measurement (e.g.,

to require less shots when the state measurement is closer to the origin), depending on how they

are implemented/coded. It also indicates that the deviation variable form of the state and input

may be useful for implementation of control laws on quantum computers, as it may enable the state

measurements provided to a controller to approach smaller values as the system is stabilized that
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may require less bits to represent, and this may also enable less shots to be required to attempt to

likely obtain the desired control action.

To further investigate the impact of the size of the qubit register needed for addition on the

agreement between the state trajectories under the deterministic input policies and under the input

computation a�ected by noise, an additional set of simulations using a classical computer, noiseless

quantum simulator, and the quantum simulator with noise, where both quantum systems were

simulated with 1 shot, 60 shots, and 254 shots for x(0) = 0.74, was also analyzed. The reason

for this change in the initial condition is that we would like to test, in accordance with the above

paragraphs, whether increasing the number of shots compared to the number of possible inputs that

could be computed given the state measurement has an impact on whether the deterministic control

action is likely to be selected on the noisy computer. If we consider the prior initial condition of

7.4, it would be necessary to add additional shots beyond 254 to test this, which will increase the

computational load required for running the simulation. If instead the initial condition is changed

to 0.74 (so that the initial condition can be represented in binary as 1001010 after correcting for 2

decimal places), then only 7 + 1 qubits (which includes the extra 0 at the beginning of the binary

representation) are needed to perform the computations at the initial condition. This means that

there are less total possibilities (256) of inputs (if all qubits could be corrupted) for the same number

of shots, so that potentially the �correct� solution may distinguish itself more signi�cantly without

needing to increase the computational load. The results are shown in Figs. 8-10. As shown in the

�gures, the number of shots in this case, combined with the size of the state measurements in binary

and the speci�c implementation used based on that in,24 is able to eliminate the di�erence between

the inputs applied when the classical and no-noise quantum simulators are used compared to when

the noisy quantum simulator is used. The noise model a�ects the simulation di�erently each time

so that there is a potential for results to di�er between runs of the simulation, but the overall trend

suggests that tuning the number of shots may be a means for tuning the likelihood of �correctness�

of the inputs applied to the process, and might be a desirable tuning mechanism for attempting to

trade o� control output accuracy (and thereby potentially closed-loop stability) with computation

time for the control law execution.
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Figure 8: Comparison between the input (left) and state (right) trajectories when the control input
is computed on a classical computer (�Classical system�), on a quantum simulator with 1 shot and
no noise (�Ideal quantum system�), and on a quantum simulator with 1 shot and noise (�Noisy
quantum system (1 shot)�) for x(0) = 0.74. The x-axis is time units.
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Figure 9: Comparison between the input (left) and state (right) trajectories when the control input
is computed on a classical computer (�Classical system�), on a quantum simulator with 60 shots and
no noise (�Ideal quantum system�), and on a quantum simulator with 60 shots and noise (�Noisy
quantum system (60 shots)�) for x(0) = 0.74. The x-axis is time units.
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Figure 10: Comparison between the input (left) and right (right) trajectories when the control
input is computed on a classical computer (�Classical system�), on a quantum simulator with 254
shots and no noise (�Ideal quantum system�), and on a quantum simulator with 254 shots and noise
(�Noisy quantum system�), for x(0) = 0.74. The x-axis is time units.

In the process states of Fig. 8, an evaluation from a single shot of a quantum simulator does not

provide the same result as a deterministic input computation as a consequence of the depolarizing

noise model. We can attempt to tune the number of shots to see how many might be needed to

improve the chances of the quantum and classical input computations matching. This threshold can

be a certain percentage value greater than the number of possible outcomes based on the number

of qubits that represent the initial quantum state. It is important to note that we do not want the

number of shots to be very large, as it will a�ect the computational e�ort required to repeatedly

perform the same computation.

Results from Quantum Computing-Implemented Control: E�ects of Implementation

of QFT-based Addition Algorithm

In the prior section, it was noted that a speci�c implementation of QFT-based addition had been

used that, for control, shrinks the size of the qubit register required for performing the addition

with time. This algorithm appears to achieve this in a fashion that impacts the computation time

of the control laws and has implications for closed-loop stability with reduced computation time

toward the origin. However, one of the curiosities of the simulations in the prior sections is that

all simulations converged to a neighborhood of the origin, even when a single shot was used and

the closed-loop state was initialized at 7.4. This raises the question of why that might be, and how
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that should inform future exploration of closed-loop stability for control implemented on quantum

computers.

Analyzing Fig. 8 provides some insight into a potential reason that the closed-loop state trajec-

tory may converge to a neighborhood of the origin even with a single shot applied. For example, in

Fig. 8, it can be seen that the closed-loop state does not monotonically decrease toward the origin.

This suggests that at certain sampling periods an �incorrect� control action is applied that drives

the closed-loop state away from the origin. However, subsequent control actions eventually begin to

drive the state back toward the origin. This suggests that perhaps there is more than one control

action that might be stabilizing (i.e., there is a potential that even if the noise causes a control

action to be selected that is di�erent from that of the classical controller, does not necessarily mean

that it is unable to drive the closed-loop state closer toward the origin).

Hence, an analysis is performed assuming the worst case scenario where every bit could be

corrupted, so that all control actions that could be computed from a given implementation of

QFT-based addition are possible. The list of all possibilities is analyzed to determine which would

drive the closed-loop state toward the origin from a given state. This can aid in analyzing the

extent to which even �incorrect� inputs might drive the closed-loop state toward the origin, so that

computing an input �incorrectly� may not be catastrophic from a safety standpoint. This would

enable a controller implemented even on a noisy quantum computer to still stabilize the process as

seen in Figs. 6-10.

In performing this analysis, we will look at two implementations of QFT-based addition: the

�rst implementation of the QFT-based addition, as described above, considers a decrease in the size

of the qubit register as the closed-loop state measurement approaches the origin or steady-state and

is represented by fewer qubits in binary over time (Implementation 1). In the second scenario the

size of the qubit register does not decrease as the closed-loop state approaches the origin even when

the values are small by using 0's to maintain the number of bits in the binary representation of each

state constant (Implementation 2). For both cases, we will estimate the proportion of all possible

control actions for a given state (assuming all qubits could be corrupted and considering the size of

the quantum register in the given QFT-based addition implementation) which would cause ẋ to be
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negative. The speci�c manner in which these calculations are done is as follows: the process state

is initially evaluated from either x(0) = 7.4 or x(0) = 0.74, the initial state in integer form is �rst

scaled up by a factor of 100 i.e., 100x, following which the �oor of the number is determined and

�nally converted to binary form. The size of the resulting integer in binary (`Qubit Register Size'

in Table 1) is then recorded, and 1 is added to it to re�ect the total number of bits which could be

obtained in a computation of u according to x+ x. If Implementation 1 is used, the qubit register

size is taken to be the size just described. If Implementation 2 is used, the qubit register size is

taken to be the size just described at the initial condition (8 qubits if the initial state is 0.74, and

11 qubits if it is 7.4). Then, the number of possible inputs (`No. Possible Inputs' in Table 1) is

computed as 2n, where n is the number of qubits in the register.

For an input u = −2x to be stabilizing (i.e., to drive the process state, x, toward the steady-

state) when the state measurement is positive, ẋ = x + u, x + u must be negative. Therefore,

considering the scaling, if u is greater than (ceil(100x)) (`ceil(|100x|)' in Table 1), its negative will

be stabilizing. Thus, a rapid method for estimating the set of process inputs which could cause the

process state trajectory, ẋ, to be negative at a given state is obtained by noting all of the integers

between (ceil(100x)) and 2n (`Floor of No. Stabilizing Inputs' in Table 1). Once the total number

of inputs for a given state measurement that could result in ẋ being negative (or zero) is estimated

in this fashion, the percentage of the total number of inputs that are stabilizing, among all of those

which could be computed for the given qubit register size, is determined by dividing the number of

stabilizing process inputs by the total number of possible process inputs that can be applied and

multiplying by 100 (`% Stabilizing Inputs' in Table 1). If instead the state measurement is negative,

it is necessary to cause ẋ to be positive to drive the closed-loop state back toward the origin, and

so the same analysis would hold, except for the absolute value of x. This analysis is depicted in

Table 1. In this analysis, only the proportion of possible stabilizing inputs are estimated and not

the likelihood of these control actions. To further clarify how the analysis is performed in Table 1,

consider the case where the state of the system, x(0), is 0.74 (implying that the scaled value is 74)

and where 8-qubit registers are used to represent the process state to which QFT-based addition is

applied. Hence, the total number of possible process inputs that can be applied is 28 = 256. Since
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the scaled process state is 74, the number of stabilizing process inputs is 182 (i.e. the �oor of the

di�erence between the maximum number of potential process inputs and the absolute value of the

ceiling of the scaled process state).

Table 1: Estimate of the percentage of possible control actions that are stabilizing for the system
represented using quantum devices of di�erent qubit register sizes and initial states. The states
listed for 254 shots with a shrinking register are from a di�erent run of the simulation than is shown
in Fig. 6 and thus may provide di�erent results due to the noise model.

Case Time (No.
Sampling
Periods
Com-
pleted)

Actual
State, x

ceil(|100x|) Qubit Reg-
ister Size

No.
Possible
Inputs

Floor
of No.
Stabi-
lizing
Inputs

% Sta-
bilizing
Inputs

1 0 0.74 74 8 256 182 71.09
2 17 0.1313 14 5 32 18 56.25
3 36 0.02487 3 3 8 5 62.50
4 79 0.01 1 2 4 3 75.00

5 0 0.74 74 8 256 182 71.09
6 17 0.1312 14 8 256 242 94.53
7 36 0.0249 3 8 256 253 98.83
8 79 0.01 1 8 256 255 99.61

9 0 7.4 740 11 2048 1308 63.87
10 17 1.53 153 9 512 359 70.12
11 36 0.02487 3 3 8 5 62.50
12 79 0.01 1 2 4 3 75.00

13 0 7.4 740 11 2048 1308 63.87
14 17 0.105 11 11 2048 2037 99.46
15 36 -0.416 42 11 2048 2006 97.95
16 79 0.145 15 11 2048 2033 99.27

Table 1 shows the manner in which the estimated percentage of stabilizing process inputs depends

on the initial process state (x(0)) and the size of the qubit registers used in evaluating the process

inputs (i.e., Implementation 1 or 2). It is notable from comparing, for example, Cases 1 and 2 with 9

and 10 in Table 1, that many possible process inputs are stabilizing regardless of the implementation

used and also regardless of the initial value of the process state (i.e., the absolute di�erence between

the initial process state and the steady-state/origin). In addition, the percentages of the inputs that

are estimated to be stabilizing according to the method used does not appear to be a monotonic
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function of the process state near the origin (e.g., Cases 9-11 in Table 1), though the method used

has some approximation that has potential to in�uence this conclusion. In addition, the analysis

assumes continuous control action implementation, but the results in the �gures come from sample-

and-hold implementation, so that this also indicates that the results in Table 1 have limitations for

fully describing the situation simulated. However in the continuous implementation context (which

can be considered to occur in the limit of an in�nitely small sampling period), Table 1 indicates that

by forcing the algorithm to consider a �xed number of potential process inputs that can be applied

to the process, as the process moves toward the steady-state the percentage of stabilizing inputs

signi�cantly increases according to the estimation method used because it becomes less challenging

for many values of u in the input range to exceed (ceil(100x)) for small x. As can be observed in

Cases 5-8 and 13-16 in Table 1, the percentage of stabilizing inputs increases to close to 100% as

the states near the steady-state of the process.

Table 1 provides an indication that there are a large number of control actions in the set of

all possible inputs at a given state measurement, regardless of the implementation method and

initial condition of the process state, that could drive the closed-loop state toward the origin at

a given sampling time. Though this provides some insight into why the closed-loop state may be

driven toward the origin even in the single-shot cases as in the input trajectory shown in Fig. 8, it

does not provide insights into the frequency with which the various possible inputs are computed

over multiple shots to determine the control input, u, at a certain instant in time. This forms

another important part of understanding how often a stabilizing input might be selected for a

given state measurement using the noisy computer simulation. To give an indication of frequency,

the quantum simulator with noise and a depolarizing error parameter set to 0.05 with the initial

condition x(0) = 0.74 was run with 254 shots and Implementation 1, and results for the frequency

of occurrence of each possible input over 254 shots obtained for a particular run are depicted in

Fig. 11 (frequencies can change between runs due to the random component of the noise simulation).

These pie charts re�ect the frequency with which di�erent possible inputs appear among the 254

shots at di�erent sampling periods throughout the simulation, where larger slices in the pie charts

re�ect that an input was computed more frequently. The largest sections of all three pie charts

22



correspond to the input selected at each sampling time, and also correspond to the process input

that would be evaluated by a classical or a quantum computer not subject to any noise (since

with 254 shots and an initial condition of 0.74, the results from the classical simulations and noisy

computer were overlaid). The frequency of each occurrence is shown in these charts to be more

than any other process input value and increases as the system moves closer to the steady-state.

However, due to the rounding of the state measurement, when the process state is su�ciently close

to the steady-state, the closed-loop state oscillates in a region near the origin.

To see the impact of the implementation strategy on the frequency with which an input appears,

Fig. 12 shows the same simulation, but in the case that a �xed qubit register size is used throughout

the simulation. The behavior of the frequencies in this case is starkly di�erent from that observed

with Implementation 1. For example, Fig. 12 re�ects that even as the closed-loop state approaches

the steady-state (Cases 6-8 in Table 1), none of the computed inputs �stands out� as much from

the rest as in Fig. 11.
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Figure 11: Distribution of process inputs evaluated at the 17th (left), 36th (middle), and 79th (right)
sampling periods over 254 shots for an initial state of x(0) = 0.74.

Results from Quantum Computing-Implemented Control: Impacts of the Error Pa-

rameter Value

In all of the above simulations, the value of the error parameter in the depolarizing noise model

was set to 0.05. In this section, we analyze the impacts of increasing this value. The depolarizing

error model was used as discussed previously, but here with di�erent error parameters. Fig. 13

depicts the closed-loop state under Implementation 1 for the 32-qubit quasm_simulator with de-

polarizing error parameters ranging from 0.05 to 1. For all of the error parameters shown in this
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Figure 12: Distribution of process inputs evaluated at the 17th (left), 36th (middle), 79th (right)
sampling periods over 254 shots for an initial state of x(0) = 0.74 and where the number of qubits
used to represent the process state, x, is constant. The slides of the pie that are emphasized show
that there are cases where some inputs are more probable than others, but the pieces of the pie
emphasized for being more probable are not signi�cantly larger than some of the other pieces in
some of the pies.

�gure, the closed-loop state is eventually driven toward a neighborhood of the origin. Part of the

reason for this is that though the frequency of selection of the deterministic input (as determined by

the classical computer) might be decreased when the depolarizing error parameter is increased, the

type of analysis from Table 1 continues to hold because it was independent of input frequencies, i.e.

many inputs are stabilizing. This contributes to the fact that as the closed-loop state approaches

the origin over time even if the inputs selected are not necessarily the ones that a classical computer

would have selected, the combined e�ects of the rate of stabilization to destabilization, percentage

of stabilizing control inputs and range of possible control inputs evaluated at any given time result

in the stabilizing behavior observed in Fig. 13. The sign handling also contributes to the stabiliza-

tion (i.e., that the sign is applied after the addition is performed and is not part of the quantum

algorithm), and the sample-and-hold implementation can also play a role. This indicates that the

dynamics, implementation strategy on a quantum computer, and physical parameters of the quan-

tum computer can work together to demonstrate behaviors of interest in a system under quantum

computing-implemented inputs, but that a further rigorous stability analysis should be performed

in future work to better clarify the mechanism by which the various simulated controllers with noise

assumed in the computing devices are stabilizing. Despite the need for this future work for further

clari�cation, these results suggest some promise for noisy quantum computers to be e�ectively used
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for next-generation control algorithms. Additionally, to validate that the process state can reach

the origin when the error parameter is 1 (which is not captured in the timeframe of the left image in

Fig. 13) the process was run for a longer duration (200 sampling periods) using the initial condition

of 7.4, 254 shots, and an error parameter of 1 on the quasm_simulator. The results of this analysis

are shown in the right image in Fig. 13, where the process state is seen to reach a neighborhood of

the steady-state.
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Figure 13: Comparison of process states for various error parameters (left). The �gure on the right
repeats the case with an error parameter of 1 on a longer timescale.

To show the di�erence in how inputs are selected when the error parameter is 1 compared to

when it is 0.05, the two histograms in Fig. 14 compare the distribution of all possible occurrences

of the process input when the process state is x = 0.01695 (close to the steady-state, such that

there are only four possible values of the �oor of the scaled value of this state measurement). These

�gures show a signi�cant di�erence in the frequency with which each potential input appeared with

254 shots. In both cases, a control input of −0.02 was applied, taking the state to 0.01663, but

Fig. 14 shows that this input, in the case where the error parameter is 1, was selected by only

a small margin as the most frequent input (because the various possibilities were close to being

equiprobable).
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Figure 14: Histogram showing the frequency with which each potential value of x+x was computed
at a state of 0.01695 with 254 shots and an error parameter of 0.05 (left) and 1 (right).

4 Algorithmic Non-Determinism Considerations for Control

on Quantum Computers

In this section, we provide the second of three studies relating control and quantum computing.

While the previous section focuses on understanding how noise inherent to quantum computing

hardware may a�ect control, this section is an initial examination of the consequences of non-

determinism introduced by algorithms. It is important to understand these e�ects from a control-

theoretic standpoint, as it must be ensured that a controller will keep a process in a safe region of

operation.

To provide control theory relating non-determinism in an algorithm to control laws, we consider

an advanced control algorithm known as Lyapunov-based model predictive control (LEMPC) that

has strong control-theoretic properties.18 To achieve our objective related to quantum computing,

we consider the control actions computed by the LEMPC to be represented as a lookup table

containing all of the possible measured states for a given sensor's precision and the corresponding

process inputs (rounded also with �nite precision). We will use an algorithm inspired by one of the

�agship algorithms for learning quantum computing (Grover's algorithm) to search the table for

an input when supplied a state. Because this algorithm is non-deterministic, even if the quantum

computer is noiseless, the input provided to the process will be the desired value from the lookup
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table with some probability and other inputs will also have a chance of being applied instead.

Since the lookup table needs to represent the states and inputs in binary form to enable dis-

cussion related to quantum computing, rounding needs to be applied to the states and the inputs.

The standard theory of LEMPC18 is developed such that the controller handles su�ciently small

plant/model mismatch. However, to leave no doubt as to how non-determinism (as opposed to

rounding) impacts control theory for the intersection of control and quantum computation, we de-

velop explicit relationships between closed-loop stability results under LEMPC and the rounding of

the states and inputs. This makes the impacts of the number of digits after the decimal that are

kept when rounding the states and inputs for placement in the lookup table explicit.

The goal of this is in preparation for the discussion of the theoretical results for LEMPC with

the non-deterministic lookup table search policy which will follow after the lookup table search

policy on the quantum computer is described. Speci�cally, our goal in this section is to provide

a preliminary look at what non-determinism in control input selection due to an algorithm on a

quantum computer used for implementing control might entail for control theory. To do this, it

is necessary that the control theory in the absence of the non-determinism due to the quantum

computing algorithm be clearly delineated. This section therefore �rst provides the control theory

for LEMPC implemented as a lookup table with rounded state measurements from the process,

where the optimization calculations impose no limits on precision but the calculated inputs are

rounded before being supplied to the process, when the lookup table is searched with a deterministic

algorithm as would be expected on, for example, a classical computer.

Following this, to provide initial indications of how control theory might intersect with quantum

computing algorithms that do not provide an answer with certainty even in the absence of noise, we

develop a non-deterministic policy for searching the lookup table where the LEMPC measurements

and control action pairs are placed, using a quantum computer. This algorithm is inspired by

the Grover's search policy that can improve the number of function evaluations for searching an

unordered list for the element that causes a function to evaluate to 1 when it is known that only a

single element from the list causes the function to evaluate to 1 instead of 0;1 however, because this

is not directly applicable to searching a lookup table, we implement a series of controlled Grover's
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search blocks in a quantum circuit. This algorithm then becomes no longer computationally nor

size-e�cient compared to using a classical computer for the search, but this is not problematic for

the intended goal of this study, which is to look at how non-determinism inherent in the calculation

of a control action would impact the associated control theory. We close the discussion with some

insights into that control theory, which are facilitated by the strong control-theoretic properties of

LEMPC when implemented on classical computers.

4.1 Preliminaries for LEMPC

We begin with preliminary information for formalizing the discussion in the following sections.

4.1.1 Notation

The notation |x| represents the Euclidean norm and xT represents the transpose of a vector x. The

function α : [0, a) → [0,∞) is a class K function if α(0) = 0, and if it is continuous and strictly

increasing. The symbol Ωρ represents a level set of a scalar-valued function V (x), where Ωρ := {x ∈

Rn : V (x) ≤ ρ}. Set subtraction is denoted using `/' (i.e., A/B := {x ∈ Rn : x ∈ A, x /∈ B}).

A sampling time is represented as tk := k∆, k = 0, 1, 2, ..., where ∆ is called the sampling period.

Finally, R, I, N represent the set of all real, integer, and natural numbers, respectively.

4.1.2 Class of Systems and Lyapunov-based Controller

In this work, the following class of systems is considered:

ẋ = f(x(t), u(t), w(t)) (4)

where x ∈ X ⊂ Rn is the state vector, u ∈ U ⊂ Rm is the input vector, and w ∈ W ⊂ Rz

is the disturbance vector. f is a locally Lipschitz on X × U × W . W and U are de�ned as

W := {w ∈ Rz : |w| ≤ θ, θ > 0} and U := {u ∈ Um : |u| ≤ umax}. In this work, we consider

the nominal system (w ≡ 0) which is stabilizable through the application of an asymptotically

stabilizing feedback control law h(x), a su�ciently smooth Lyapunov function V (x), and class K
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functions αi(·), i = 1, 2, 3, 4, where, ∀x ∈ D ⊂ Rn (D is an open neighborhood of the origin):

α1(|x|) ≤ V (x) ≤ α2(|x|) (5a)

∂V (x)

∂x
f(x, h(x), 0) ≤ −α3(|x|) (5b)∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ α4(|x|) (5c)

h(x) ∈ U (5d)

Ωρ is de�ned as the stability region of the nominal closed-loop system under the Lyapunov-based

controller h(x) and is chosen so that x ∈ X, ∀x ∈ Ωρ. We require that h(x) satis�es the following

relation:

|h(x1)− h(x2)| ≤ Lh|x1 − x2|, ∀x1, x2 ∈ Ωρ (6)

where Lh is a positive constant. Because V is a su�ciently smooth function and f is locally

Lipschitz, we can say the following ∀x1, x2 ∈ Ωρ, u, u1, u2 ∈ U, and w ∈ W :

|f(x1, u1, w)− f(x2, u2, 0)| ≤ Lx|x1 − x2|+ Lu|u1 − u2|+ Lw|w| (7a)∣∣∣∣∂V (x1)

∂x
f(x1, u1, w)−

∂V (x2)

∂x
f(x2, u2, 0)

∣∣∣∣ ≤ L
′

x|x1 − x2|+ L
′

u|u1 − u2|+ L
′

w|w| (7b)

|f(x, u, w)| ≤M (8)

where Lx, L
′
x, Lu, L

′
u, Lw, L

′
w, and M are positive constants.

4.1.3 Lyapunov-based Economic Model Predictive Control

Lyapunov-based economic model predictive control was developed in32 with the following formula-

tion:

min
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ))dτ (9a)

s.t. ˙̃x(t) = f(x̃(t), u(t), 0) (9b)
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x̃(tk) = x(tk) (9c)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N) (9d)

u ∈ U, ∀ t ∈ [tk, tk+N) (9e)

V (x̃(t)) ≤ ρe, ∀ t ∈ [tk, tk+N)

if x̃(tk) ∈ Ωρe (9f)

∂V (x̃(tk))

∂x
(f(x̃(tk), u(tk), 0) ≤

∂V (x̃(tk))

∂x
f(x̃(tk), h(x̃(tk)), 0) (9g)

if x(tk) /∈ Ωρ/Ωρe

where x̃ represents the state prediction from Eq. 9b initialized from the state measurement (Eq. 9c).

Eqs. 9d and 9e are state and input constraints, respectively. The LEMPC formulation involves

optimization of a cost function (Eq. 9a), which is selected to represent some economic measure of

the process. u(t) ∈ S(∆) in Eq. 9a indicates that u(t) is a piecewise-constant input vector consisting

of N sections (where N is the length of the prediction horizon), each held for a single sampling

period ∆ (state measurements are available at every sampling time). The formulation is applied

in a receding horizon fashion (i.e., only the �rst of the calculated inputs is applied to the process,

and the optimization is performed again at each subsequent sampling time using updated state

measurements from the process).

Additionally, the LEMPC formulation contains two constraints that activate depending on the

location of the state within state space. The �rst (Eq. 9f) allows the controller to optimize the

cost function freely as long as the state prediction remains within a region Ωρe ⊂ Ωρ. The second

(Eq. 9g) activates when the state leaves this region and enters Ωρ/Ωρe and is designed to drive the

state back into Ωρe . The region Ωρe is de�ned based on an upper bound on disturbances (designated

as θ) in a way where the state cannot leave Ωρ under the controller of Eq. 9.
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4.1.4 Rounding Error

Rounding can be represented using a mapping from R to Qb,γ,δ, which represents the space of

rounded numbers, applied in the following way:33

Qb,γ,δ := {−bγ, − bγ + b−δ, − bγ + 2b−δ, ..., 0, ..., bγ − 2b−δ, bγ − b−δ} (10)

where b, γ, δ ∈ N, b ≥ 1 represent values that e�ectively represent the basis, magnitude, and resolu-

tion respectively. The values of b and γ must be selected such that the entire range of considered

numbers (states or inputs in this case) falls within [−bγ, bγ). In addition, smaller values of δ will

give a closer rounded approximation.

Given this approximation, the largest di�erence (e.g., obtained through rounding) between the

actual values and the rounded values is 1
2
b−δ. If values of bx, γx, and δx are selected to represent the

states and bu, γu, and δu are selected for the inputs, this applies bounds on the di�erences between

the actual state x(tk) and rounded state measurement (x̄(tk)) and between a value of an input

computed by a controller (ū(tk)) and its rounded value (¯̄u(tk)) as follows:

|x(tk)− x̄(tk)| ≤
1

2
b−δx
x := δ1 (11)

|¯̄u(tk)− ū(tk)| ≤
1

2
b−δu
u := δ2 (12)

where δ1 and δ2 are de�ned for convenience and are used in the following sections.

4.2 Lyapunov-based Economic Model Predictive Control with Rounded

States and Inputs

The objectives of this section are to: 1) develop a theory for LEMPC that explicitly accounts for

rounding of states and inputs so that the closed-loop stability properties of an LEMPC imple-

mented as a lookup table and searched deterministically are well-characterized; and 2) to provide

an indication of how the number of digits after the decimal place impacts the closed-loop stability
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results under LEMPC (which can be important for considering quantum computers due to the

limited number of qubits available today). This theory is a preliminary result needed for discussing

control-theoretic principles related to the non-deterministic search of the lookup table using a quan-

tum computing algorithm following the description of that algorithm. This section �rst presents

the formulation and implementation of the equivalent of a lookup table-based LEMPC (i.e., the

control actions computed via the implementation strategy to be described would be the same as

those that would be available from a lookup table implementation of LEMPC). Subsequently, the

control theory is clari�ed.

4.2.1 Formulation of LEMPC with Rounded States and Inputs

The traditional LEMPC implementation strategy (Eq. 9) can maintain the closed-loop state in Ωρ

when there is su�ciently small plant/model mismatch (θ), which means that it can account for

rounding errors if they are su�ciently small. However, for the purposes of this discussion regarding

the impacts of non-determinism in the control algorithm on closed-loop stability and feasibility of

LEMPC, this loose notion that the plant/model mismatch introduced by rounding can be accounted

for is not su�cient for clearly delineating how closed-loop stability results are related to the size

of the computer available for storing the lookup table (i.e., how small δ1 and δ2 must be), nor is

it su�cient for clarifying which aspects of the theory for the non-deterministic search policy are

related to the rounding compared to being related to the non-deterministic policy itself. In this

section, we seek to disentangle such considerations by providing a clear theory for the case with

rounding only.

We seek the control theory for an LEMPC that would be implemented as a lookup table in �nite

precision. This can be obtained through the following series of steps: �rst, the sensor measures the

actual process state at a sampling time (denoted by x(tk)) and rounds it to x̄(tk). This rounded

state measurement is then used in solving the following LEMPC on a classical computer, where we

assume no limits on precision in the computation of the control action ū(t) using this controller for
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simplicity of presentation:

min
ū(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ), ū(τ))dτ (13a)

s.t. ˙̃x = f(x̃, ū, 0) (13b)

x̃(tk) = x̄(tk) (13c)

x̃ ∈ X, ∀ t ∈ [tk, tk+N) (13d)

ū ∈ U, ∀ t ∈ [tk, tk+N) (13e)

V (x̃(t)) ≤ ρe, ∀ t ∈ [tk, tk+N)

if V (x̄(tk)) ≤ ρe (13f)

∂V (x̄(tk))

∂x
(f(x̄(tk), ū(tk), 0)

≤ ∂V (x̄(tk))

∂x
f(x̄(tk), h(x̄(tk)), 0) (13g)

if V (x̄(tk)) > ρe

where x̃(tk) represents predictions of the state based on x̄(tk) and Eq. 13b. After ū(tk) is obtained,

because it is assumed that there were no impacts of �nite precision in the LEMPC of Eq. 13, ū(tk)

may need to be represented using in�nite precision. Therefore, to enable it to be implemented in a

lookup table using �nite precision, it is rounded to ¯̄u(tk) before being implemented on the process.

4.2.2 Implementation Strategy for LEMPC with Rounded States and Inputs

The following implementation strategy (see Fig. 15) summarizes the procedure described in the

prior section for using LEMPC with rounded states and inputs:

1. At time tk, the process state x(tk) is measured using a sensing device.

2. The rounded measured process state x̄(tk) is obtained from x(tk) and provided to the LEMPC.

3. The LEMPC calculations are performed with in�nite precision. If x(tk) ∈ Ωρe , go to Step 3a.

Otherwise, go to Step 3b.
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(a) The controller solves an optimization problem using x̄(tk) to determine the control action

ū(tk) that would maximize a cost function while maintaining state predictions in Ωρe .

(b) The controller calculates the control action ū(tk) that would drive the closed-loop state

towards the origin.

4. The calculated control action ū(tk) is rounded and designated as ¯̄u(tk) and then provided to

the process.

5. tk ← tk+1. Go to Step 1.

This implementation strategy can be used to develop every rounded state measurement and rounded

control action pair in a lookup table and is equivalent then to searching this lookup table with a

deterministic algorithm.

Figure 15: Implementation strategy for LEMPC with rounded states and inputs.

4.2.3 Stability and Feasibility Analysis for LEMPC with Rounded States and Inputs

In this section, we demonstrate that the closed-loop state of the system of Eq. 4 is maintained

within Ωρ at all times under the implementation strategy in Section 4.2.2. We start by stating two

propositions. The purpose of Proposition 1 is to give an upper bound on the di�erence between

the state xa of the actual process (under the rounded input ¯̄u and in the presence of plant/model

mismatch represented by w(t), but initialized from the non-rounded state measurement x(t0)) and
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the state xb of the nominal system in Eq. 13b under the non-rounded input ū computed using the

rounded state measurement x̄(t0).

Proposition 1. Consider the systems:

ẋa = f(xa(t), ¯̄u(t0), w(t)) (14a)

ẋb = f(xb(t), ū(t0), 0) (14b)

with initial states of |xa(t0) − xb(t0)| ≤ δ1, xa(t0), xb(t0) ∈ Ωρ, where |¯̄u(t0) − ū(t0)| ≤ δ2. There

exists a class K function fW (·) that satis�es the following equations ∀xa, xb ∈ Ωρ and ∀w ∈ W :

|xa(t)− xb(t)| ≤ fW (t− t0, δ1, δ2) (15)

where

fW (τ, δ1, δ2) :=

(
δ1 +

Lwθ + Luδ2
Lx

)
eLxτ − Lwθ + Luδ2

Lx

(16)

Proof 1. To prove Proposition 1, we begin by integrating Eqs. 14a and 14b. The di�erence between

the resulting equations is:

xa(t)− xb(t) = xa(t0)− xb(t0) +
∫ t

t0

[f(xa(s), ¯̄u(t0), w(s))− f(xb(s), ū(t0), 0)]ds (17)

Applying the triangle inequality and Eq. 11 gives:

|xa(t)− xb(t)| ≤ δ1 +

∫ t

t0

|f(xa(s), ¯̄u(t0), w(s))− f(xb(s), ū(t0), 0)|ds (18)

Within the integral, by adding and subtracting f(xb(s), ¯̄u(t0), 0) and using Eq. 7a, we obtain:

|xa(t)− xb(t)| ≤ δ1 +

∫ t

t0

Lx|xa(s)− xb(s)|+
∫ t

t0

Lw|w(s)|ds+
∫ t

t0

Lu|¯̄u(tk)− ū(tk)|ds (19)
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Applying Eq. 12 and |w| ≤ θ and integrating the corresponding terms, gives:

|xa(t)− xb(t)| ≤ δ1 +

∫ t

t0

Lx|xa(s)− xb(s)|ds+ Lwθ(t− t0) + Luδ2(t− t0) (20)

Applying the Gronwall-Bellman inequality34 gives:

|xa(t)− xb(t)| ≤ δ1 + (Lwθ + Luδ2)t+

∫ t

t0

[δ1 + (Lwθ + Luδ2)s](Lx)e
∫ t
s Lxdτds (21)

Simplifying this gives Eq. 16.

Proposition 2 is gives a bound on the di�erence between the Lyapunov function of two di�erent

states (V (x) and V (x̂)), given that the states are in Ωρ.

Proposition 2. 32 For the Lyapunov function V (·) of Eq. 4, we can �nd a quadratic function fV (·)

such that:

V (x) ≤ V (x̂) + fV (|x− x̂|) (22)

∀x, x̂ ∈ Ωρ with

fV (s) = α4(α
−1
2 (ρ))s+Mvs

2 (23)

where Mv is a positive constant.

Theorem 1 is formulated to provide conditions for closed-loop stability of the system given in

Eq. 4 under the implementation strategy in Section 4.2.2.

Theorem 1. Consider the system in Eq. 4 under the LEMPC implementation strategy in Sec-

tion 4.2.2 based on a controller h(x) that satis�es the conditions in Eq. 5, and where δ1 > 0 and

δ2 > 0 are de�ned by Eqs. 11-12. Let ρs < ρmin < ρe < ρ, ρ′ < ρ′′ < ρ, N ≥ 1, ∆ > 0, ϵw > 0,

ρsamp2 < ρ(ρsamp2 := max{V (x(t)) : x̄(tk) ∈ Ωρe , t ∈ [tk, tk+1), u ∈ U, w ∈ W}), and ϵ′x > 0 satisfy

ρe + fV (fW (∆, δ1, δ2)) ≤ ρ′ (24)

max{ρ′, ρe}+ fV (δ1) ≤ ρ′′ (25)
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L′
uδ2 + 3L′

xM∆+ L′
xδ1 + L′

wθ − α3(α
−1
2 (ρs)) ≤ −ϵw/∆ (26)

L′
xM∆− α3(α

−1
2 (ρs)) ≤ −ϵ′x/∆ (27)

ρsamp2 +max{fV (δ1), fV (fW (∆, δ1, δ2))} ≤ ρ (28)

If x(t0) ∈ Ωρe, x̄(t0) ∈ Ωρe, and N ≥ 1 where

ρmin = max{V (x(t)) : x(tk) ∈ Ωρs , t ∈ [tk, tk+1), u ∈ U, w ∈ W} (29)

then x(t) ∈ Ωρ for t ≥ 0 and x̄(tk) ∈ Ωρ at every sampling time tk ≥ 0.

Proof. This proof consists of two parts. In Part 1, we demonstrate the recursive feasibility of a

solution to Eq. 13. In Part 2, we prove that x(t) and x̄(t) are maintained within Ωρ for t, tk ≥ 0

under the implementation outlined in Section 4.2.2.

Part 1. To demonstrate feasibility at t0, we show that h(·) implemented in sample-and-hold

satis�es all constraints in the LEMPC formulation (Eq. 13). Since h(·) is de�ned with the condition

that h(·) ∈ U (Eq. 5), Eq. 13e holds. Eq. 13g trivially holds under h(x̃(tp)), t ∈ [tp, tp+1), p =

k, . . . , k + N − 1. Eq. 13f is feasible under h(·) in sample-and-hold if: (1) x̃(tp) ∈ Ωρs and (2)

x̃(tp) ∈ Ωρ/Ωρs . To demonstrate (1), if x̃(tp) ∈ Ωρs , then by the de�nition of ρmin (Eq. 29),

x̃(t) ∈ Ωρmin
⊂ Ωρe , t ∈ [tp, tp+1). To demonstrate (2), the trajectory of the Lyapunov function

along the predicted state trajectory x̃(t) under h(x̃(tp)) is:

∂V (x̃(t))

∂x
f(x̃(t), h(x̃(tp), 0) =

∂V (x̃(t))

∂x
f(x̃(t), h(x̃(tp)), 0) +

∂V (x̃(tp))

∂x
f(x̃(tp), h(x̃(tp)), 0)

− ∂V (x̃(tp))

∂x
f(x̃(tp), h(x̃(tp)), 0)

(30)

for t ∈ [tp, tp+1), where the equality follows from adding and subtracting ∂V (x̃(tp))

∂x
f(x̃(tp), h(x̃(tp)), 0)

to/from ∂V (x̃(t))
∂x

f(x̃(t), h(x̃(tp)), 0). Applying Eqs. 5b and 7b, we obtain:

∂V (x̃(t))

∂x
f(x̃(t), h(x̃(tp)), 0) ≤ L

′

x|x̃(t)− x̃(tp)| − α3(|x̃(tp)|) (31)

37



Next, Eqs. 5a and 8 can be applied to give:

∂V (x̃(t))

∂x
f(x̃(t), h(x̃(tp)), 0) ≤ L

′

xM∆− α3(α
−1
2 (ρs)) (32)

If Eq. 27 holds and if x̃(tp) ∈ Ωρ/Ωρs , then
∂V (x̃(t))

∂x
f(x̃(t), h(x̃(tp)), 0) ≤ −ϵ′x/∆ for t ∈ [tp, tp+1).

This implies that V (x̃(t)) ≤ V (x̃(tp)) for all t ∈ [tp, tp+1) under h(x̃(tp)) so that x̃(t) ∈ Ωρe for

t ∈ [tp, tp+1) if x̃(tp) ∈ Ωρe/Ωρs . Therefore, if x̃(tp) ∈ Ωρe/Ωρs , Eq. 13f is feasible using h(x̃(tp)),

t ∈ [tp, tp+1), p = k, . . . , k + N − 1. Furthermore, since X ⊂ Ωρ and h(x̃(tp)), t ∈ [tp, tp+1),

p = k, . . . , k + N − 1 maintains x̃(t) in Ωρ by the proof just provided, Eq. 13d is also satis�ed

such that the LEMPC of Eq. 13 is feasible at every sampling time if x̄(tk) ∈ Ωρ, which will be

demonstrated in Part 2.

Part 2. To demonstrate that x(t) ∈ Ωρ and x̄(tk) ∈ Ωρ for t, tk ≥ 0 when x(t0) and x̄(t0) ∈ Ωρe , it

is necessary to consider the potential mismatch between x(tk) and x̄(tk) in four cases as follows: Case

1) x(tk) ∈ Ωρe and x̄(tk) ∈ Ωρe ; Case 2) x(tk) ∈ Ωρe and x̄(tk) ∈ Ωρ/Ωρe ; Case 3) x(tk) ∈ Ωρ/Ωρe

and x̄(tk) ∈ Ωρe ; and Case 4) x(tk) ∈ Ωρ/Ωρe and x̄(tk) ∈ Ωρ/Ωρe .

Case 1: When x̄(tk) ∈ Ωρe , Eq. 13f is activated. From Proposition 1 (Eq. 15), the following

bound can be placed on the norm of the di�erence between the predicted state in the LEMPC and

the actual state:

|x̃(t)− x(t)| ≤ fW (∆, δ1, δ2) (33)

for t ∈ [tk, tk+1). Proposition 2 (Eq. 22) can be used to bound V (x(t)) and V (x̃(t)) for t ∈ [tk, tk+1)

as follows:

V (x(t)) ≤ V (x̃(t)) + fV (|x̃(t)− x(t)|) (34)

Using Eqs. 11 and 12 and the fact that V (x̃(t)) ≤ ρe, Eqs. 33 and 34 can be combined to give:

V (x(t)) ≤ ρe + fV (fW (∆, δ1, δ2)) (35)

If Eq. 24 holds, Eq. 35 gives that V (x(t)) ≤ ρ′ < ρ, ∀t ∈ [tk, tk+1). To demonstrate that this implies
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that the next rounded state measurement is also in Ωρ, Proposition 2 (Eq. 22) can be used to write:

V (x̄(tk+1)) ≤ V (x(tk+1)) + fV (δ1) (36)

Combining Eqs. 35 and 36 gives:

V (x̄(tk+1)) ≤ ρe + fV (fW (∆, δ1, δ2)) + fV (δ1) ≤ ρ′ + fV (δ1) (37)

from Eq. 24. When Eq. 25 holds, Eq. 37 gives that V (x̄(tk+1)) ≤ ρ′′ < ρ. This implies that x(t) ∈ Ωρ

for t ∈ [tk, tk+1) and x̄(tk+1) ∈ Ωρ if x(tk) ∈ Ωρe and x̄(tk) ∈ Ωρe .

Case 2: When x̄(tk) ∈ Ωρ/Ωρe , Eq. 13g is activated. When Eq. 13g is activated and x̄(tk) ∈

Ωρ/Ωρe , Eq. 5b gives:

∂V (x̄(tk))

∂x
f(x̄(tk), ū(tk), 0) ≤

∂V (x̄(tk))

∂x
f(x̄(tk), h(x̄(tk)), 0) ≤ −α3(|x̄(tk)|) (38)

The trajectory of the Lyapunov function along the actual closed-loop state trajectory under ū(tk)

(the input before rounding) in the presence of disturbances (denoted by x1) would be:

∂V (x1(t))

∂x
f(x1(t), ū(tk), w(t)) =

∂V (x1(t))

∂x
f(x1(t), ū(tk), w(t))−

∂V (x̄(tk))

∂x
f(x̄(tk), ū(tk), 0)

+
∂V (x̄(tk))

∂x
f(x̄(tk), ū(tk), 0)

(39)

where the equality follows from adding and subtracting ∂V (x̄(tk))
∂x

f(x̄(tk), ū(tk), 0) to/from

∂V (x1(t))
∂x

f(x1(t), ū(tk), w(t)). Combining this with Eqs. 38, 5a, 7b, 8, and 11 and the bound on

w and rearranging yields:

∂V (x1(t))

∂x
f(x1(t), ū(tk), w(t)) ≤ L′

xM∆+ L′
xδ1 + L′

wθ − α3(α
−1
2 (ρs)) (40)

if x1 remains in Ωρ. Finally, the trajectory of the Lyapunov function along the closed-loop state
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trajectory under ¯̄u(tk) in the presence of disturbances is:

∂V (x(t))

∂x
f(x(t), ¯̄u(tk), w(t)) =

∂V (x(t))

∂x
f(x(t), ¯̄u(tk), w(t))−

∂V (x1(t))

∂x
f(x1(t), ū(tk), w(t))

+
∂V (x1(t))

∂x
f(x1(t), ū(tk), w(t))

(41)

for t ∈ [tk, tk+1), where the equality comes from adding and subtracting ∂V (x1(t))
∂x

f(x1(t), ū(tk), w(t))

to/from ∂V (x(t))
∂x

f(x(t), ¯̄u(tk), w(t)). Applying Eqs. 7b and 40:

∂V (x(t))

∂x
f(x(t), ¯̄u(tk), w(t)) ≤ L′

uδ2 + 3L′
xM∆+ L′

xδ1 + L′
wθ − α3(α

−1
2 (ρs)) (42)

for t ∈ [tk, tk+1) and x1 ∈ Ωρ. If Eq. 26 holds, then ∂V (x(t))
∂x

f(x(t), ¯̄u(tk), w(t)) ≤ −ϵw/∆. This

indicates that V (x(t)) ≤ V (x(tk)) for t ∈ [tk, tk+1) when x̄(tk) ∈ Ωρ/Ωρs and x(tk) ∈ Ωρe . To

demonstrate that x̄(tk+1) ∈ Ωρ in this case, Proposition 2 gives:

V (x̄(tk+1)) ≤ V (x(tk+1)) + fV (δ1) ≤ ρe + fV (δ1) (43)

If Eq. 25 holds, then x̄(tk+1) ∈ Ωρ. For x1 to have been in Ωρ, V (x1(t)) ≤ V (x(t)) + fV (|x1(t) −

x(t)|) ≤ ρe+fV (fW (∆, δ1, δ2)) (since |x1(t)−x(t)| will also meet Eq. 15, x(tk) ∈ Ωρe , and V (x(t)) ≤

V (x(tk)) for t ∈ [tk, tk+1)); Eq. 24 then guarantees that x1(t) ∈ Ωρ, ∈ [tk, tk+1).

If instead x(tk) ∈ Ωρs , then Eq. 29 demonstrates that x(t) ∈ Ωρmin
⊂ Ωρe ⊂ Ωρ for t ∈ [tk, tk+1).

Then if Eq. 43 and Eq. 29 hold, x̄(tk+1) ∈ Ωρ also. This demonstrates that x̄(tk+1) ∈ Ωρ and

x(t) ∈ Ωρ, t ∈ [tk, tk+1), if x(tk) ∈ Ωρe and x̄(tk) ∈ Ωρ/Ωρe .

Case 3: If x(tk) ∈ Ωρ/Ωρe and x̄(tk) ∈ Ωρe , the same proof as for Case 1 holds and x(tk+1) ∈ Ωρ

and x̄(tk+1) ∈ Ωρ.

Case 4: If x(tk) ∈ Ωρ/Ωρe and x̄(tk) ∈ Ωρ/Ωρe , the same proof as for Case 2 holds

through Eq. 42, which indicates that x(tk+1) ∈ Ωρ except that V (x(tk)) ∈ Ωρsamp1 (because ei-

ther V (x(tk−1)) ∈ Ωρe , with V (x(tk−1)) ∈ Ωρsamp2/Ωρe or V (x(tk)) ≤ V (x(tk−1)), so V (x1(t)) ≤

V (x(t)) + fV (fW (∆, δ1, δ2)) ≤ ρsamp2 + fV (fW (∆, δ1, δ2)) ≤ ρ from Eq. 28). Since V (x̄(tk)) ≤

V (x(tk)) + fV (δ1) ≤ ρsamp2 + fV (δ1) ≤ ρ when Eq. 28 holds, and V (x(tk+1)) ≤ V (x(tk)), then
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V (x̄(tk+1)) ≤ V (x(tk+1)) + fV (δ1) ≤ V (x(tk)) + fV (δ1) < ρ also, which indicates that x̄(tk+1) ∈ Ωρ.

At every sampling time, one of the four cases is true. Because each of the four cases kept

x(t) ∈ Ωρ, t ∈ [tk, tk+1), and x̄(tk+1) ∈ Ωρ, applying this recursively shows that this is true for all

t ≥ 0.

Remark 2. The role of ρ′ and ρ′′ in Theorem 1 is to account for the fact that the rounded value of

x(t) could be in a larger level set of V than the actual value of x(t).

Remark 3. Eqs. 24-26 place requirements on δ1 and δ2, in particular the requirement that they

must be su�ciently small, which implies that more digits after the decimal are needed. This would

imply that more bits/qubits would be needed to represent a number.

4.3 Non-deterministic Quantum Computing Algorithm: Grover's Algo-

rithm Inspired Circuit

In this section, a control algorithm is encoded in a quantum circuit to demonstrate how a quantum-

encoded control algorithm can yield results with some probability. The circuit consists of a series

of Grover algorithm gates controlled by a set of n qubits as shown in Fig. 16. The output of one

Grover's algorithm block is fed into the next Grover block. The process state measurement will

be supplied as the control qubits and the corresponding control action is outputted from the �nal

Grover's algorithm block in the circuit.

This circuit assumes that a complete lookup table has been found a priori, which consists of all

possible states and control actions. Each input and state is an n length binary number. During

operation, the measured process state would be supplied (as binary numbers) to the circuit as the

control bits. Each Grover's algorithm block is designed to pair with one (and only one) of the

process states in the table. If a Grover's algorithm block is activated by the set of control qubits,

the output of the Grover's algorithm block will be in a quantum state that will most likely collapse

to the desired process input. All of the other Grover's algorithm blocks will not be activated by a

set of control qubits, meaning that the quantum state leaving the gate will be unchanged from the

quantum state entering the block. This means that the state leaving the last Grover's algorithm
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block can then be measured, and it will most likely collapse to the binary number containing the

desired control actions. The correct control action is found by extracting the middle n qubits.

Overall, this algorithm is not e�cient or practical for several reasons. Given that most pro-

cesses will have many possible states, creating a full lookup table of states and inputs would be

cumbersome. Additionally, this means that the circuit will become large because its size is tied

to the number states and control actions. The resulting controller, given its size and complexity,

would likely be slower than traditional search algorithms. Despite these �aws, this control structure

is still useful for studying and understanding how non-deterministic inputs can be generated by a

quantum computing algorithm will a�ect controller performance.

Figure 16: Circuit of a series of quantum gate blocks that represent Grover's algorithm controlled
by a set of n qubits.

4.3.1 Grover's Search Algorithm

In general, Grover's search algorithm1 is a quantum computing algorithm that searches the space

consisting of n−length binary digits denoted as x = {x1, x2, ..., xi, ...xn} for a unique string x∗. The

function f is a black-box function that is de�ned as:

f(xi) =

 1 xi = x∗

0 xi ̸= x∗

The algorithm outputs the location of x∗ within x that yields f(x) = 1. By letting each element

of an unstructured database be associated with an element in x, it is possible to use this algorithm
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to search for the location of an element within the database.

The quantum circuit representing Grover's algorithm is shown on the left in Fig. 17 and contains

a set of n top qubits, each initialized in state |0⟩, and a bottom control bit initialized in state |1⟩.

After �rst placing the qubits in a superposition using Hadamard gates, unitary gates known as �phase

inversions� (denoted as Uf ) and �inversion about the mean� (denoted as −I + 2A) are performed

repeatedly in succession to the result in a state that, once measured, has a high probability of

collapsing to the location of the bit string that is being searched for.

The Uf phase inversion unitary operation that is performed on the qubits can be represented as

a modi�ed identity matrix, where the 2× 2 matrix formed by the two rows and columns associated

with the bit string being searched for are �ipped (i.e., the 1's along the diagonal are displaced to be

located above and below the diagonal). The −I + 2A inversion about the mean unitary operation

is constructed from the identity matrix I and a matrix A, which contains all elements with values

of (2n)−1. Both of these matrices can be applied up to
√
2n times to result in a system state that,

once measured, has the highest probability of collapsing to reveal the location of which of the 2n

binary strings is the one for which the function f evaluates to 1.

Figure 17: Grover's search algorithm circuit layout (left) and the simpli�ed notation used in this
work (right).

For the circuits presented later in this work, the standard Grover's algorithm circuit is repre-

sented as a single block as shown on the right in Fig. 17. Fig. 18 demonstrates a Grover's search

algorithm gate controlled by n qubits, which are supplied to the circuit in state |x⟩.
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Figure 18: A controlled Grover's algorithm block, where the top qubits |x⟩ represent the control
qubits.

4.3.2 Simulation of Modi�ed Grover's Search Algorithm

This section describes our modi�cation of Grover's algorithm that will be used to relate quantum

computing and control theory. A MATLAB simulation was created to simulate the Grover's algo-

rithm inspired circuit for a 3-qubit (n = 3) case using matrix and vector multiplication and tensor

products. It is assumed that a lookup table of all possible measured process states and correspond-

ing control inputs has been generated and converted to binary numbers. For the 3-bit simulation,

Table 2 has been assumed for illustration (not related to an LEMPC). Since there are 2n = 23 = 8

possible states, Table 2 consists of 8 items, which means that 8 controlled Grover's algorithm blocks

are required to implement the circuit as shown in �gure 16. In these simulations, the −I + 2A

inversion about the mean unitary operation was applied once in each Grover's algorithm block,

though more could be applied to increase the probability of measuring the desired control input.

Table 2: Table of measured states and the corresponding appropriate control actions, converted to
binary numbers.

Measured State Control Input

000 001
001 100
010 111
011 010
100 110
101 011
110 000
111 101
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Since n = 3, seven total qubits are fed into the circuit. The top 3 qubits are supplied the

measured state and the bottom 4 qubits are given the state |0001⟩. Each of the 2n controlled

Grover's algorithm blocks then tests for one of the possible measured states in sequence. Only

one of these blocks activates with the supplied combination of control bits to alter the state of the

bottom qubits to (with a probability) give the desired control action when measured. The other

gates do not modify the state of the qubits. At the end of the circuit, the states of the qubits

leaving the system can then be measured, and the state of qubits 4, 5, and 6 can be taken as the

appropriate control input to apply to the process.

The results of a simulation for the state measurement of |000⟩ is shown in Fig. 19. The plot

consists of a distribution of the percent probabilities of the resulting state from the circuit collapsing

to a particular state when measured. It can be seen that the highest probabilities occur for the

|0000010⟩ and |0000011⟩ states, which both have the desired control input string of 001 in positions

4 through 6 (which matches the control input listed for a state of 000 in Table 2). The percent

probabilities of these outcomes are both 39.06%, which means that the total probability of ending

up with the desired control input string is 78.13%. The other input strings also have a possibility

of being measured, each with a percent probability of 1.56%, for a total probability of calculating

an incorrect process input of 21.88%.
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Figure 19: Probability distribution of the quantum register based on the output of the circuit shown
in Fig. 16.
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4.4 Implications of Non-determinism on Closed-loop Stability

The previous discussions have shown that the LEMPC formulation can account for rounding e�ects

introduced by applying the control formulation on quantum computers. This section begins to

examine how the theory would extend to account for non-determinism, as the stability of the system

also depends on the probability of obtaining the �desired� solution (i.e., the solution that would be

obtained on classical computers). Here, we de�ne the probability of obtaining the expected control

action from the modi�ed Grover's algorithm circuit as λ. It is possible to relate this probability

to stability of a sampling period (i.e., the probability that the process states remain in Ωρ for the

duration of at least one sampling period).

First, consider the case where x(t) ∈ Ωρe and x̄(t) ∈ Ωρe . In this case, the theory outlined in the

previous section would guarantee that, for LEMPC being performed on a classical computer (where

the expected inputs are always applied), x(t) ∈ Ωρ and x̄(tk+1) in Ωρ for t ∈ [tk, tk+1). If, instead,

LEMPC in the form of a look-up table were performed on a quantum computer, the algorithm

would return the same control action as the classical computer with probability λ. Given this, the

probability of maintaining stability for a sampling period is related to the non-determinism in the

following way:

P(x(t), x̄(tk+1) ∈ Ωρ ∀ t ∈ [tk, tk+1)) ≥ λ (44)

Secondly, consider the case where x(tk) ∈ Ωρ/Ωρe and x̄(tk) ∈ Ωρ/Ωρe . Control actions computed

by the LEMPC on a classical computer would maintain x(t) ∈ Ωρ and x̄(tk+1) ∈ Ωρ for t ∈ [tk, tk+1)

when utilizing LEMPC formulated as a look-up table using the modi�ed Grover algorithm would

return the same control action as the classical computer with probability λ. Thus, Eq. 44 still

applies for a sampling period.
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5 Next-generation manufacturing Communication and Con-

trol Related to Quantum Technology

This section discusses the concept of quantum entanglement, which is an important part of quantum

mechanics and computing, and its relationship to communication. Quantum entanglement relates

the outcomes of measurements on two particles separated at a distance. After being paired, the

measurement of one particle has an instant e�ect on the other particle, no matter the distance.

For example, Eq. 1 represents one way in which two particles can be entangled. In this case, when

the �rst qubit is measured collapses to state |0⟩, it can be assured that the state of the second

qubit will also be |0⟩ once measured (and, similarly, if the �rst qubit collapses to |1⟩, so will the

second).1 Given that the state of one particle is transferred instantly at at any range, it could be

asked whether this can be utilized in communication applications. If it was possible, it would have

signi�cant implications for next generation manufacturing, which involve increased connectivity and

integration between many components and involving the transport of large amounts of data.

Having the ability to instantly send information would transform the communication and man-

ufacturing by e�ectively allowing for greatly increased rates of wireless information transfer (i.e.,

the number of bits per second), being limited only by the number of qubits implemented. Addition-

ally, such capabilities would allow for the application of extremely distant computational resources

for closed-loop control applications. For example, Earth-based computational resources could be

utilized for closed-loop control of space-based manufacturing processes, even when communication

delays become excessive (the time it takes to relay signals between the earth and Mars, for instance,

can represent a time-delay of up to 21 minutes (for a round trip of up to 42 minutes)35).

However, it is generally accepted by the no-communication theorem36�39 that information cannot

be transferred in this way, and thus cannot be used for communication purposes. In this section,

we review some of the more classical discussions regarding this point and also showcase that several

strategies which attempt to add control theory to the strategy to �get around� the limitations do

not �x the issue.
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5.1 Preliminaries for the Analysis of Communication Delay

First, we outline some preliminaries used in this section.

5.1.1 Deutsch's Algorithm

The Deutsch's algorithm circuit1 is shown in Fig. 20. This circuit represents a quantum computing

algorithm for solving the following problem: given a function f that maps {0, 1} → {0, 1}, determine

whether this function has the property that f(0) = f(1) (termed a �constant� function) or that

f(0) ̸= f(1) (termed a �balanced� function). Whereas in a classical computer, the way to determine

this would be to compute both f(0) and f(1) and compare them, in a quantum computer using

Deutsch's algorithm, an operation can be performed using two qubits with only one evaluation of

the function. The mapping f can be represented via a unitary matrix, denoted here by Uf , that

will di�er depending on the speci�c input/output relationship that f has. As shown in Fig. 20,

Deutsch's algorithm for an example balanced function receives a top qubit of |0⟩ and a bottom

qubit of |1⟩, and it then performs several transformations on the qubits through the matrices H

and Uf that cause the top qubit, after the matrix manipulations, to be in state |0⟩ if f is constant,

and in state |1⟩ if f is balanced.

Figure 20: Deutsch's algorithm, redrawn with modi�cations from.1
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5.1.2 CHSH game

While it is not believed to be possible to transmit information faster than the speed of light, �non-

local games� have been developed which demonstrate means by which entanglement can be used

to form a relationship between the actions of two parties who operate independently, at a distance.

The CHSH game40�42 is an example of a game which falls in this category. In the CHSH game

(Fig. 21), there are two �players� (traditionally referred to as Alice and Bob) and a �referee.� The

referee's job is to generate two random numbers x̄ and ȳ (each either 0 or 1) and send one to

Alice and one to Bob. Without communicating with one another, Alice and Bob then need to

generate two more numbers (a and b respectively; each a 0 or a 1) and return them to the referee.

If (a+b) mod 2 = x̄∗ ȳ (where mod signi�es the modulo operation), Alice and Bob �win� this game.

Their goal is to set a strategy by which each will select a or b based on the value of x̄ or ȳ that each

receives that allows them to win as often as possible. When each is allowed to have half of a Bell

pair (which is two entangled qubits), they can develop a strategy for manipulating their qubit and

sending their measurement of it to the referee as a and b to win a higher percentage of the time

than they would win without the Bell pair.

Alice Bob

Referee

: 0 or 1

: 0 or 1

: 0 or 1

: 0 or 1

+ 2 vs. 

Figure 21: CHSH game �ow diagram.

5.2 Deutsch Algorithm-Inspired Strategy

The �rst strategy considered attempts to manipulate an entangled qubit to force it to communicate

information from Alice to Bob. This might be envisioned as a control loop with a remote cloud-based
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quantum computer based controller (see Fig. 22), where the process (denoted as the �autonomous

agent� in the �gure) contains a Sensor Circuit and an Actuator Circuit which aid in manipulating

the process state. A Quantum Computing Circuit (presumably located on a Cloud) is used to

o�-load the computations from the autonomous agent.

ProcessActuator 
Circuit

Sensor 
Circuit

Quantum 
Computing Circuit

Autonomous Agent

Off boarded Computations

Figure 22: Ideal situation for an autonomous agent.

The speci�c strategy under consideration in this case is inspired by Deutsch's algorithm (Fig. 20).

Speci�cally, Deutsch's algorithm has the interesting property that it forces the value of a top qubit

in a circuit to always take the state |0⟩ for certain structures of Uf (i.e., certain Uf structures are

guaranteed to result in a measurement of |0⟩ in the top qubit). We therefore pose the following

question: Instead of placing the top qubit in Fig. 20 in state |0⟩, can we instead entangle that top

qubit with another qubit, place this other qubit in a remote location, and then force the �rst qubit

value to a known state with Deutsch's algorithm so that we also force the entangled qubit to a

certain state? If this was possible, it would transfer information from one qubit to another in a

remote location, and potentially provide a framework for fast information transfer for enabling the

implementation shown in Fig. 22. However, given that this would involve communication faster
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than the speed of light, we can postulate that this should be impossible.

To demonstrate that indeed this does not work, we analyze the circuit concept just described

(shown in Fig. 23). This circuit is like that in Fig. 20, with the middle qubit corresponding to the

top qubit in Fig. 20 and the bottom qubit corresponding to the bottom qubit in Fig. 20. As in

Fig. 20, the qubit corresponding to the top qubit in Fig. 20 has a 50% chance of being measured

in state |0⟩ and a 50% chance of being measured in state |1⟩ in State 2. The primary di�erence

compared to Fig. 20 is that the qubit corresponding to the top qubit in Fig. 20 is entangled with

the top qubit in Fig. 23. Speci�cally, these two qubits are entangled as the Bell state |01⟩+|10⟩√
2

. As

in Fig. 20, the bottom qubit is assigned a state of |1⟩. The matrix Uf is derived from Deutsch's

algorithm; speci�cally, it represents the case of a balanced function for which f(0) = 1 and f(1) = 0:

Uf =



0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1


(45)

State 1 State 4State 2 State 3

Figure 23: Circuit concept.
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The quantum circuit as a whole can be represented using the following matrix:

M = (I ⊗H ⊗ I)(I ⊗ Uf )(I ⊗ I ⊗H) =
1

2



1 −1 1 1 0 0 0 0

1 1 1 −1 0 0 0 0

1 −1 −1 −1 0 0 0 0

1 1 −1 1 0 0 0 0

0 0 0 0 1 −1 1 1

0 0 0 0 1 1 1 −1

0 0 0 0 1 −1 −1 −1

0 0 0 0 1 1 −1 1



(46)

The starting state (state 1) is represented as |Ψ1⟩ = [0 1√
2

1√
2
0]T⊗[0 1]T = [ 0 0 0 1√

2
0 1√

2
0 0 ]T .

MultiplyingM and |Ψ1⟩ will then yield the state at the end of the circuit before measurement (state

4): |Ψ4⟩ =M |Ψ1⟩ = 1
2
√
2
[ 1 − 1 − 1 1 − 1 1 − 1 1 ]T .

Each coe�cient of |Ψ4⟩, when squared, represents the probability of measuring a particular state

for all three qubits after measurement (either |000⟩, |001⟩, |010⟩, |011⟩, |100⟩, |101⟩, |110⟩, or |111⟩,

respectively). For example, the probability of obtaining |000⟩ is obtained by squaring the �rst term

(
(

1
2
√
2

)2

= 1
8
). Performing this calculation on all options reveals that there is an equal chance of

ending up with any of the 8 possibilities. This means that no information can be sent from the

bottom two qubits to the top qubit, and that the resulting measurement of the top qubit cannot

be determined any better than a random guess. Therefore, this strategy does not transmit any

information and is useless for communication settings.

5.3 Quantum Teleportation Strategy

Though the strategy in Fig. 23 is unsuccessful, a strategy known as quantum teleportation is able to

send a quantum state from one individual to another with two bits of classical information transfer,

and therefore could be considered for this case. Speci�cally, the objective of quantum teleportation

is to transmit the state of a qubit |ψ⟩ = α |0⟩+ β |1⟩ from Alice (the sender) to Bob (the receiver)
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using the aid of a classical information channel.1,19 The steps to accomplish this are as follows:

1. Two qubits are entangled to become a Bell state. One qubit is given to Alice and the other

qubit is given to Bob.

2. Alice interacts a third qubit |ψ⟩ with her entangled qubit.

3. Alice measures her two qubits, causing their states to collapse to |0⟩ or |1⟩.

4. Alice sends Bob the classical bits corresponding to her measurement through a classical com-

munication channel.

5. Depending on the bits sent to Bob by Alice, Bob performs a certain operation on his half of

the Bell state, which leaves his qubit in the state |ψ⟩ which Alice originally desired to send

Bob.

Because quantum teleportation requires a classical information channel, it does not enable in-

formation to be sent faster than the speed of light. Since measurements in a manufacturing control

loop are traditionally not quantum states, it is di�cult to see the bene�t of quantum teleportation

itself for transmitting information on the process state or control action between the autonomous

agent and the Quantum Computing Circuit because in this strategy, one bit of classical information

is encoded in a quantum state which then is transmitted using the entanglement scheme with two

bits of classical information.

5.4 State Prediction Strategy

In light of the analysis in Section 5.3, we might ask whether control-theoretic principles might be

used to �make up� for the two bits of classical information in quantum teleportation. Speci�cally, we

can ask whether, if |ψ⟩ is encoded to represent the state of the manufacturing process, the Quantum

Computing Circuit (Bob) can predict the state of the process (Alice) and use that prediction in

place of a measurement of |ψ⟩ to gain auxiliary information needed to perform quantum teleporta-

tion without exchanging two bits of classical information. However, not only is this an open-loop
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prediction (which defeats bene�ts of state measurements), but it must also be remembered that

one of the steps of quantum teleportation is interaction of |ψ⟩ with the Bell state held by Alice

(the manufacturing system). This interaction enables all four of the possible measurements on

two qubits to be possible when the sensing circuit performs its measurement (i.e., it is no longer

a function only of |ψ⟩ that can be predicted, or of the original Bell state which had a de�ned

relationship between only two qubits so that if one was measured, the state of the other could be

known). Therefore, the actions involved in setting up quantum teleportation remove from Bob (the

computing system) the possibility of predicting the outcomes of the measurements. This renders

physics-based or data-driven modeling ine�ective for obtaining |ψ⟩ any better than an open-loop

prediction where entanglement is not needed.

5.5 Stability-based Strategy

If both the Quantum Computing Circuit and the Actuator Circuit of Fig. 22 have an entangled

qubit, to each of those agents individually, a measurement of that qubit has a 50% chance of

returning |0⟩ and a 50% chance of returning |1⟩, which is no better than a random guess. One

might therefore ask whether control actions communicated via entanglement in this manner could

be su�cient as long as they are stabilizing. For a nonlinear system, this might mean that they

decrease a Lyapunov function over time. At the Actuator Circuit, it would be possible to check

whether a control action obtained by measuring an entangled qubit would decrease the Lyapunov

function over time. However, even if this control action achieves that, it is again not necessarily the

one which would have been computed on the Quantum Computing Circuit (thus it is essentially

a random guess and therefore stabilization of a process using such a control action is �lucky�).

Therefore, there is no bene�t to having a computing circuit at all at that point; it is equivalent to

randomly selecting from the set of potential inputs one of them and seeing whether it is stabilizing.

54



5.6 �Incorporating Hardware� Strategy

The control-theoretic and entanglement-based strategies above were not e�ective at permitting

information transfer between the autonomous and quantum computing systems. Another strategy

which might be investigated is one which involves a special design of the hardware on the various

circuits in Fig. 22. For example, the Sensor Circuit might consist of N̄ qubits entangled with those

on the Quantum Computing Circuit. Each of these qubits would correspond to a digit of a binary

number representing the measured state, and this correspondence would be hard-wired in both the

Sensor Circuit and the Quantum Computing Circuit prior to operation. When the Sensor Circuit

receives a measurement of 1 from the process, it would then measure the qubits corresponding to

digits of 1 in the binary representation of the state measurement. If there is some way that the

Quantum Computing Circuit could determine which qubits were then measured, it could then know

the process state regardless of the measurement outcome by noting the measured qubits represent

the 1 digits.

For example, if the state can be represented using four digits, the Sensor Circuit and Quantum

Computing Circuit would share four Bell state pairs. Then, to send the state 1001 from the Sensor

Circuit to the Quantum Computing Circuit, the Sensor Circuit could measure the �rst and last

qubits. If the Quantum Computing Circuit could tell that these two qubits were measured on the

sensor, then it would know the binary number that represents the measured process state. The

Quantum Computing Circuit could assume that the Sensor Circuit is making regular measurements

at some time interval, so it could know when the measurements were taken. However, the Quantum

Computing Circuit would be unable to tell which qubits were measured if the measurement collapses

the qubits to |0⟩ or |1⟩ and that is the information used to attempt to discern whether a measurement

of qubits at the Sensor Circuit took place. This is because measuring any of its qubits would result in

the collapsed state of either |0⟩ or |1⟩ with 50% probability, which will be the same result regardless of

whether the corresponding Bell state was measured on the sensing circuit. Therefore, this strategy

fails at transmitting any information about the state and could not be used in communication

strategies.
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An alternate �incorporating hardware� strategy could involve the following. Here, we allow n

N̄ -qubit sets to be shared between the Sensor Circuit and Quantum Computing Circuit. When the

Sensor Circuit receives a measurement of the process state, it then measures the n sets of entangled

qubits. Since each qubit in a set has a 50% probability of measuring |0⟩ or |1⟩, only a portion of the

measured sets would have states matching the actual process state. By having a su�cient number

of entangled qubit sets (n is large), it is hoped that at least one will correspond to the measurement

of the process state. Because the original Bell states were known, this measurement gives the Sensor

Circuit knowledge of what states were received by the Quantum Computing Circuit. The Sensor

Circuit also knows which qubit set(s) collapsed to the process state when measured.

The Quantum Computing Circuit can then have n circuits, one corresponding to each of the

entangled Bell states. When Quantum Computing Circuit measures its entangled qubit sets, it

gains knowledge of which states the Sensing Circuit has, though it cannot know which of these

matches the actual process state. Instead of trying to determine which state matches the process,

the Quantum Computing Circuit can then perform an appropriate series of gates on all of the qubit

sets. This leaves the Quantum Computing Circuit with n potential control actions (by ensuring n

is large enough, it is hoped that at least one of these is the desired control action) which it wishes

to send back to the actuator.

At this point, if it were possible to send the n control actions and the process states they

correspond with to the Actuator Circuit, the Actuator Circuit could then select the correct control

action by communicating with the Sensor Circuit (as the Sensor Circuit is local and knows the

correct process state). In doing this, the number of entangled qubits per set would be doubled

to form k 2N̄ -qubit sets, where each set contains a process state-input pair. By letting k >> n,

it is hoped that at least one of the k 2N̄ -qubit sets collapses to the process state-input pair that

corresponds to the actual process state. However, since the entangled qubits collapse randomly,

it is not possible for the Quantum Computing Circuit to signify which of the n 2N̄ -qubit sets

correctly contains a matching process state-input pair. For this reason the strategy fails, as it

cannot communicate control actions to the Actuator Circuit any better than a random guess.

This strategy could have some bene�t, as the Quantum Computing Circuit could be designed
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to communicate the process state-input pairs to the actuator over classical information channels.

Then the actuator could properly select the correct input by communicating with the sensor. Since

classical information only travels in one direction using this setup, the communication time would

be e�ectively halved, though with drawbacks such as the redundancy in the hardware that would

need to be considered.

5.7 CHSH Game-Inspired Strategy

A �nal strategy to be discussed is one which questions whether the CHSH game in Section 5.1.2,

which allows the results of actions by two agents at a distance to be coordinated without com-

munication such that the two agents can win a game a higher percentage of the time when their

coordination includes a Bell pair than when it does not, could aid in setting up communication for

next-generation manufacturing. If we consider that the Quantum Computing Circuit in Fig. 22 is

one player in the game and the Actuator Circuit is the other, for example, both can execute a strat-

egy on half of an entangled Bell pair to attempt to develop coordinated results. However, unless

the two measurements of the Bell States are put together, they appear random to the Quantum

Computing Circuit and the Actuator Circuit. The CHSH game is about relationships between the

measurements of the Bell states; it is not about the speci�c values of each individual Bell state.

Therefore, unless the Actuator Circuit learns what the Quantum Computing Circuit measured on its

Bell state, it will not be able to construct a meaningful control action any more than if it had made

a random guess of the control action. It therefore does not permit an instantaneous communication

of information of control actions.

6 Conclusion

This work reviewed several topics related to quantum computing and its potential intersections with

next-generation manufacturing in control and communication. It is interesting to consider potential

applications of the results toward issues such as cybersecurity of control systems. For example, a

policy for generating random control actions was developed in;43 the noise in the quantum hardware
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can aid in generating randomness. Also, those results indicate that if inputs which would not be

stabilizing were cut from the possibilities at a sampling time on classical or quantum hardware, there

would not be a possibility for selecting improper ones from a cybersecurity or quantum computing-

implemented control perspective. The results of this work are intended to inspire future work at

the intersection of control and quantum computing.
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Figure 24: Table of Contents Graphic. In this work, we provide some initial studies regarding
the implementation of control on quantum computers, including the implementation of a single-
input/single-output proportional control law on a quantum simulator with noise, evaluation of
potential impacts of non-determinism on theory for advanced control laws, and discussion of con-
sequences of the way that entanglement works for next-generation manufacturing communication
objectives.
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