Next Generation Batteries for Electric Aviation and Space

Donald A. Dornbusch¹, Yi Lin², William Huddleston³, Vesselin Yamakov⁴, Rocco P. Viggiano¹

¹ - NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, USA

²- NASA Langley Research Center, Hampton, VA 23681, USA

³-NASA NPP/Oak Ridge Associated Universities, USA

⁴ – Analytical Mechanics Associates Inc, Hampton, VA 23666

Introduction – Electrified Aviation

- Electric and hybrid electric aircraft systems can lead to higher efficiencies, safer designs, and quieter operation
- Current battery technology is insufficient to achieve the requirements for electric aviation:
 - Energy, Power, and Safety
- Higher energy density batteries and current flammable liquid electrolytes lead to safety concerns

Aircraft Requirements

- Aircraft design significantly impacts power requirement
- Current battery energy limited to ~200 Wh/kg

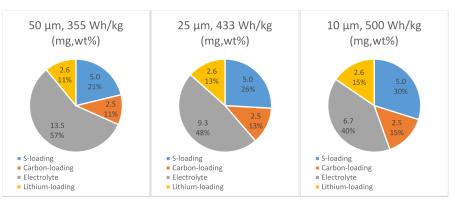
Solid-State Electrolytes

Advantages:

- Solid-state electrolytes = low volatility
- Wide temperature tolerance

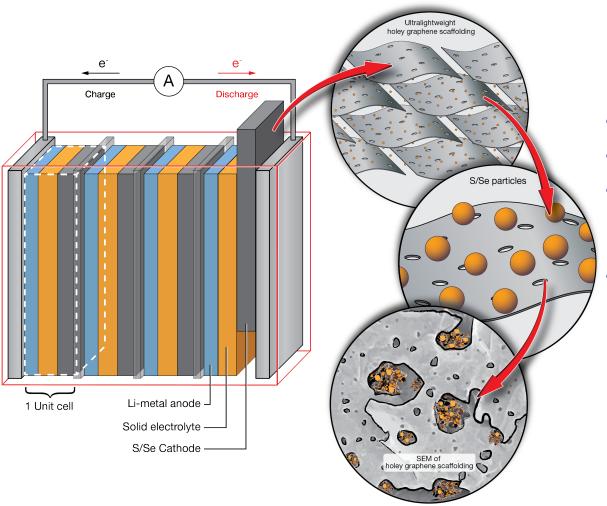
Disadvantages:

- Difficult to manufacture
- Interface issues
 - Solid-Solid contact vs Liquid-solid
- High density vs liquid (g/cm3)

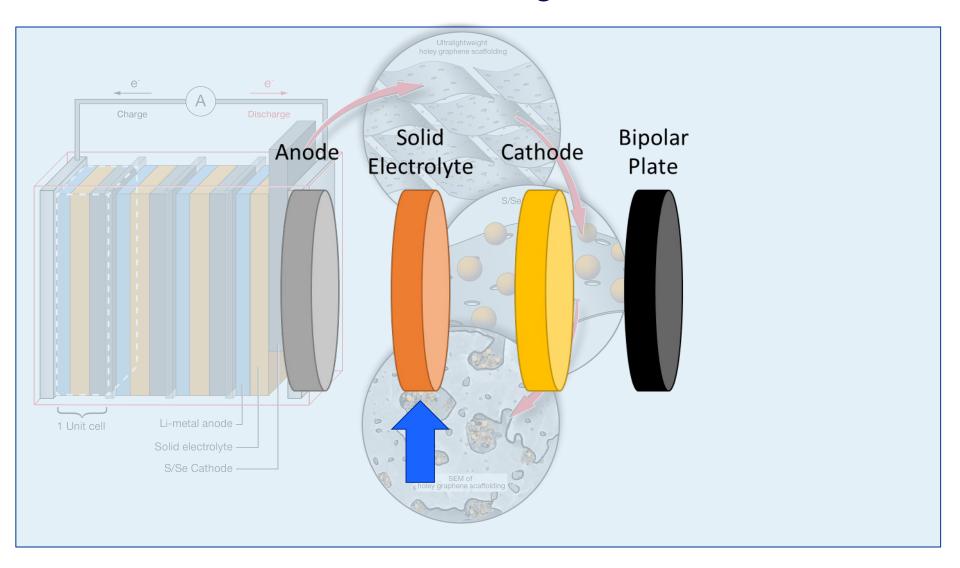


Material Selection

- Lithium-Sulfur
 - Lithium metal is an ideal anode material
 - · Lightweight (3860mAh/g), low potential, metallic
 - Sulfur has high capacity (1675mAh/g)
 - Reasonable potential above lithium (~2V)
 - Dissolution prevented in a solid-electrolyte
- Solid-Electrolyte
 25 μm separator:
 - Polymer ~1.2g/mL → 3 mg/cm2
 - Sulfide \sim 1.7 g/mL → 4.25 mg/cm2
 - Oxide \sim 5.6 g/mL \rightarrow 14 mg/cm2

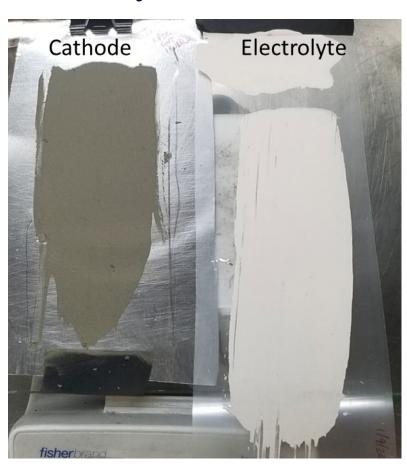

Oxides, such as LLZO, must be x3.3 times thinner than corresponding sulfide to achieve same weight penalty

- Impact of Solid-Electrolyte (Sulfide):
 - Substantial gains in energy by controlling separating layer thickness


Cell Design

- Multilayered system
- Anode: Lithium Metal
- Separator: Solid Electrolyte-Polymer composite
- Cathode: Sulfur-Carbon-Electrolyte Composite

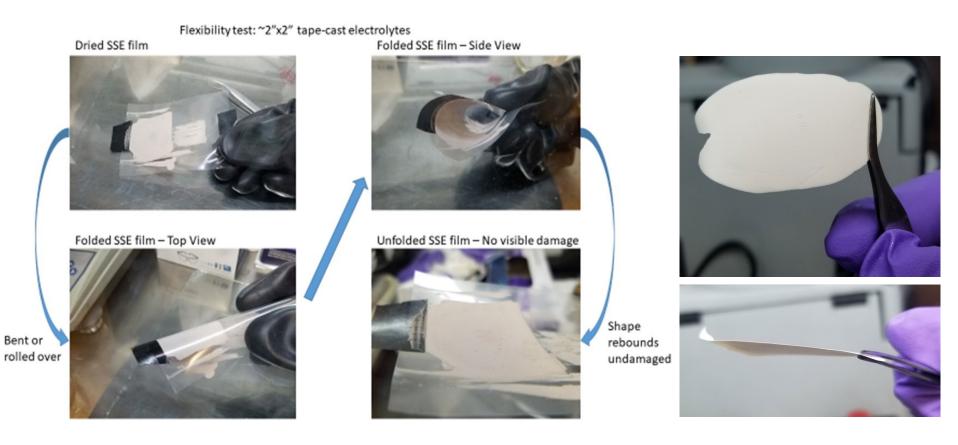
Cell Design



Manufacturing Thin Electrolytes

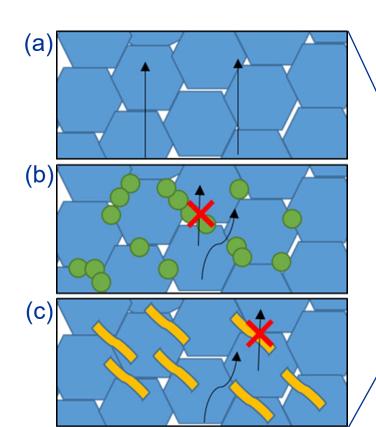
Sulfide (Li₆PS₅CI)-Polymer Composites

- Tape-casting produces thin electrolytes
- Traditional lithium-ion manufacturing technique
- Utilizing inert binder (3-5wt%) to achieve well adhered films
- Capable of producing multi-phase cathodes
 - (Active-Carbon-Electrolyte-Binder)

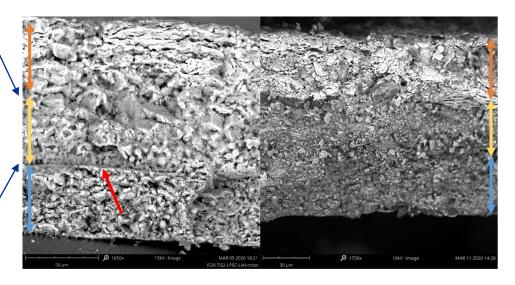


Improved mechanical properties

Mylar Supported

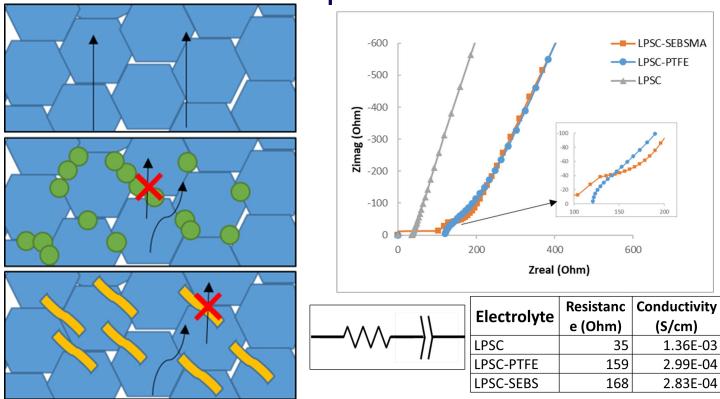

Free-standing

Substantially improved flexibility over pure glass electrolytes



Glass-Polymer Composite Electrolytes

Depiction of Li transport through densified solid-state electrolyte for pure (a), composite with PTFE powder binder (b), and composite with solution deposited Styrene-Butadiene-Styrene (SEBS) rubber binder (c).


- Introduction of a passive phase
 - Conduction pathways change

Densification processing improvements lead to better sheet adhesion

Impedance Data

- Increase in impedance through electrolyte layer due to binder phase
- Ionic conductivity still retains ~20% of pure LPSC
- Binder type has less impact on performance loss

Limitations of binder-based systems

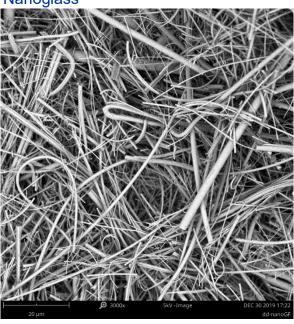
- Reactivity of LPSC with polar solvents forces the use of nonpolar solvents
 - Nonpolar solvents are limited to low polarity binders with weaker adhesion to polar LPSC surfaces
- Below 30µm films remain fragile

Limitations of binder-based systems

- Reactivity of LPSC with polar solvents forces the use of nonpolar solvents
 - Nonpolar solvents are limited to low polarity binders with weaker adhesion to polar LPSC surfaces
- Below 30µm films remain fragile

Possible solutions:

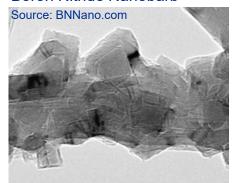
- Explore alternate binders/processing techniques
- Introduce a filler material to further strengthen the composites



Fiber-based fillers

Polyaramid(Kevlar)

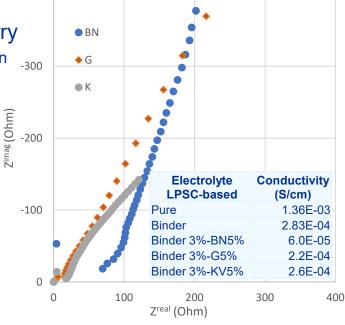
Nanoglass


NASA forcespun fibers

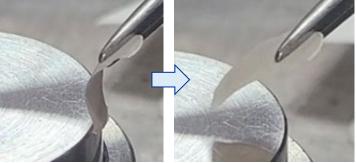
Fiber candidates:

Kevlar – high strength polymer fibrils (wide distribution) Nanoglass – high aspect ratio (700nm x 100's μm) Forcespun polymers – high aspect ratio, polymer control BNNanobarbsTM – insulating analog to CNT (very small, nm x nm)

Boron Nitride NanobarbTM

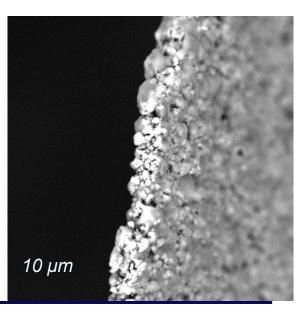


Filler Results

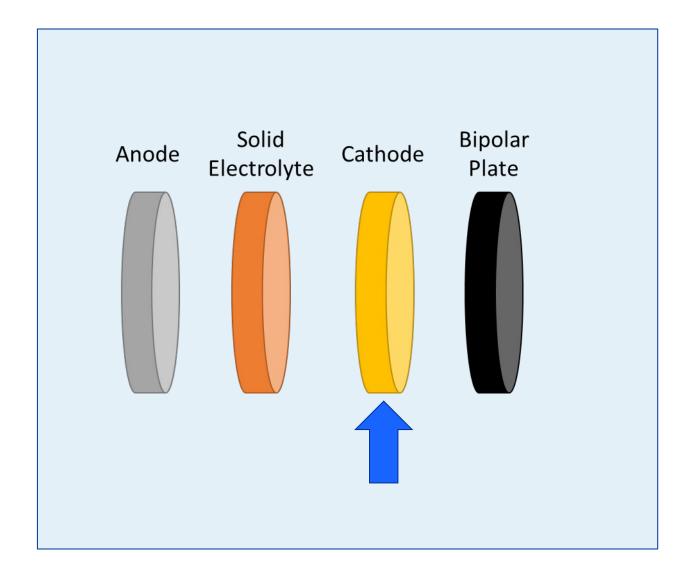

- Fillers were added at 5wt% to LPSC-Binder-Toluene slurry
 - Alternating centrifugal mixing and sonication to ensure even dispersion
 - Tape cast onto mylar substrate
 - Dried at 60°C

- Fibrous additives dramatically increased the slurry viscosity
 - Viscosity ranged from BN < Nanoglass < Kevlar
 - Kevlar viscosity greatly increased after sonication
 - Bundle unwrapping and/or stronger interaction with binder
- Impact on conductivity
 - Largest drop observed for BN, which suggests stronger interference between electrolyte particle-particle contacts within the composite.
 - Larger fibers retained more conductivity, close to filler-free composite indicating less contact interference between LPSC particles.
- Mechanical stability
 - All three materials showed substantially improved stability
 - The samples even showed flexibility after densification.

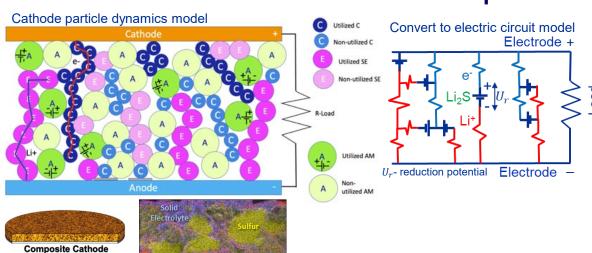
-400

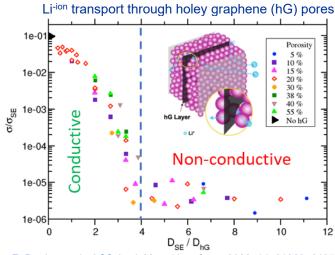

Conclusions

- Lithium conducting Li₆PS₅Cl composite electrolytes could be manufactured with thicknesses between 25-50 µm through a scalable process.
- Achieved thicknesses were in the practical range to make the chemistry competitive with current lithium-ion cells.
- Binder and filler impacted conductivity, but ~20% was retained.
 - Significant reduction in thickness will lead to overall improvements in energy and power capability.
 - Length-scale of filler influenced conductivity losses


Future Direction

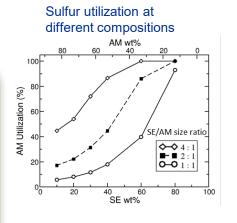
- Optimization of polymer and filler loadings to improve conductivity and mechanical stability
- Validate feasibility & reliability of thinner films

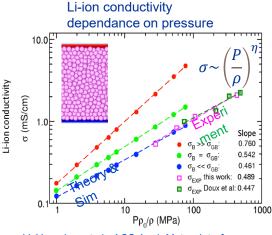




Cathode - Experimental & Computational

Development



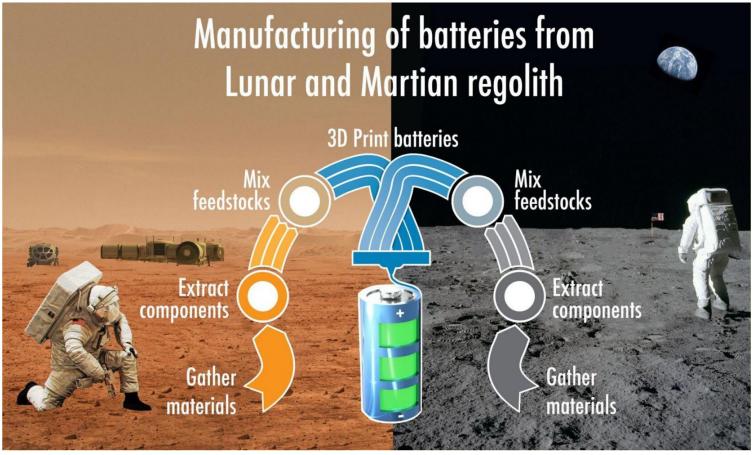


E. Barrios et al., ACS Appl. Mater. Interfaces 2022, 14, 21363-21370

Optimization

- Effect of holey graphene porosity on Li-ion conductivity in the electrolyte
 - Li ion can conduct through hG holes if the holes are at least 25% the size of the SE particles.
- Effect of pressurization on the electrolyte conductivity
 - Pressure dependance of Li-ion conductivity is dependent on the surface properties of the electrolyte particles.
- Effect of cathode composition and particle size on active material (AM) utilization

V. Yamakov et al., ACS Appl. Mater. Interfaces 2023, https://doi.org/10.1021/acsami.3c01279

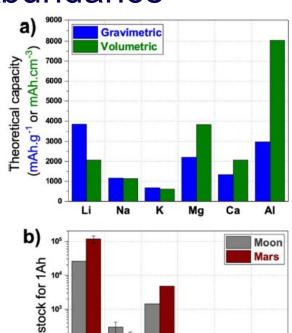


Aeronautics Summary

- Ultra-high performing batteries required to compete with commercial aviation fuels
- Energy, Power, Cycle Life, and Safety advances beyond current state-of-the-art technologies required as EA needs are well beyond EV requirements

Beyond Aeronautics: Space

ACS Energy Lett. 2023, 8, 1042-1049


Lunar derived materials for sustained habitation on the moon and mars



Lunar & Martian Abundance

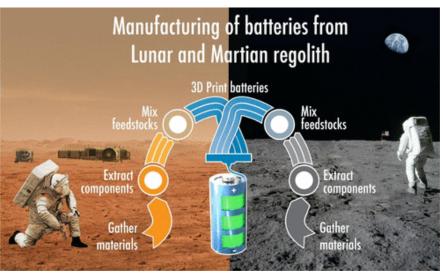
Table 1. Bulk Composition of Lunar, Martian, and Terrestrial Soila

	Moon	Mars	Earth
Element	(refs 17-19)	(refs 20, 21, 24)	(refs 25, 26)
Li (ppm)	10	1.8-3	18
Na (ppm)	2000-3000 (average);	5770	23 600
	5000 (Maria region)		
K (ppm)	1000	309	21 400
F (ppm)	70	20-30	525
Cl (ppm)	50	30	472
P (ppm)	800	675	757
V (ppm)	130	130	98
Mg (wt%)	5.5	18.5	2.2
Ca (wt%)	10 (highland);	1.7	3.9
	8 (Maria Region)		
Fe (wt%)	26 (highland);	14.1	4.3
	15 (Maria region)		
Mn (ppm)	200 (highland);	2250	716
	2000 (Maria region)		
Al (wt%)	13 (highland);	1.6	8.0
	5 (Maria region)		
Cu (ppm)	8	2	25
Si (wt%)	21	20.5	28.8
Ni (ppm)	200	330	56
Co (ppm)	40	71	24
Ti	1 wt% (average);	832 ppm	4010 ppm
	5 wt% (Maria region)		(0.4 wt%)
Zr (ppm)	100-400	7.5	203
C (ppm)	<100	2960	200-1990

- Elemental abundance driven material discovery
- Different geological processes affect elemental distributions
- Make it don't take it

Conclusions

- NASA has many unique considerations when developing energy storage devices
- Electric aviation demands ultra-high performing next generation batteries
- Sustained habitation on the moon and mars need alternate chemistries based on elemental availability
 - Environmental extremes vary greatly compared to Earth
- Safety and reliability remain critical



48th International Conference and Expo on **Advanced Ceramics and Composites**

Acknowledgements

Convergent Aeronautic Solutions (CAS) Transformational Technologies & Tools (TTT) Early Career Initiative (ECI) GRC Team, LaRC Team, MSFC Team

Presenter: Dr. Donald A. Dornbusch-NASA GRC donald.dornbusch@nasa.gov