HAZARDS OF LUNAR SURFACE EXPLORATION: DETERMINING THE IMMUNOGENICITY/ALLERGENICITY OF LUNAR DUST

Audrie A. Colorado, PhD

2024 Human Research Program Investigators' Workshop

Overview

- During the Apollo moon missions, there were consistent reports of lunar dust exposure leading to upper respiratory symptoms in both astronauts and ground support personnel
- Crew members and landing vehicles will inevitably be exposed to lunar dust in future lunar missions and the hazards associated with this are essentially unknown.
- The goal of this study is to determine, in a simple cell culture experiment, if lunar dust has the capacity to serve as an allergen, an adjuvant, or a cellular toxin.

2024 Human Research Program Investigators' Workshop

*

.

Methods

- Co-cultures
 - PBMCs
 - Whole blood
 - Eosinophil cell line
 - Basophil cell line
- Stimulation
 - Staphylococcus enterotoxin B
 - Der p1 common household dust mite
 - Fine ground silica quartz
 - Lunar dust
- Outcomes
 - Flow cytometry
 - Milliplex
 - ELISA
 - Cell proliferation
 - Microscopy

3

Flow Cytometry Data

Cellular identification and activation markers

Audrie Colorado | audrie.a.colorado@nasa.gov

T and B Cells

 SEB and CD3/CD28 significantly activate T and B cells compared to untreated in WB and PBMC cultures

Audrie Colorado| audrie.a.colorado@nasa.gov

Monocytes

 No significant findings in monocyte activation in response to stimuli **Activated Monocytes**

Eosinophils and Basophils

• No significant findings in activation of eosinophils or basophils

2024 Human Research Program Investigators' Workshop

+

q

Cell Lines

- Silica and lunar dust treatment significantly induce eosinophil activation in the single cell line cultures
- No significant findings in basophil cell line cultures

Activated KU812 Basophil Cells

Cytokine Data

13 plex array

Audrie Colorado | audrie.a.colorado@nasa.gov

Human whole blood cultures

•

٠

SK

.

Eosinophil Cell Line

.

•

٠

Basophil Cell Line

*

٠

3-

IL-1β (pg/mL)

ELISA Data

Histamine, IgE, Leukotriene

Audrie Colorado | audrie.a.colorado@nasa.gov

*

*

•

•

٠

*

Microscopy Images

ESEM analysis of cell-lunar dust interactions

Audrie Colorado | audrie.a.colorado@nasa.gov

Lunar Dust – Particle Size Distribution

Size distribution of lunar dust sample used in co-culture of Immune cells. Size distribution range from surface area 0.323 μ m² with a width of 0.744 μ m and height of 0.709 μ m, up to a surface area of 60.3 μ m² with a width of 8.56 μ m and height of 10.4 μ m. This depicts the large variability in the size distribution of the Lunar dust samples used for this study.

ESEM Imaging of LD In Cell Co-culture Sample

Particle Id For Size Distribution

Size distribution of lunar dust particle that was in immune cell co-culture of confirmed cellular uptake. The large particle size had a surface area of 5760 μm^2 with a width of 75.8 μm and height of 111 μm . Particles of smaller size distributions also present with the smallest particle size having a surface area of 0.472 μm^2 with a width and length of 0.709 μm . This depicts the large variability in the size distribution of the Lunar dust samples used for this study.

Section	Area (μm^2)	Width (µm)	Height (µm)
1	1.83E+02	2.06E+01	1.68E+01
2	9.93E+00	4.52E+00	3.46E+00
3	1.07E+02	3.64E+01	9.22E+00
4	5.76E+03	7.58E+01	1.11E+02
5	1.56E+00	1.42E+00	1.42E+00
6	4.72E-01	7.09E-01	7.09E-01
7	3.76E+00	1.86E+00	2.48E+00
8	9.27E-01	1.15E+00	1.06E+00

Lunar Dust PBMC Ingested Particle

Conclusions

- Lunar dust does not significantly impact activation of eosinophils, basophils, T cells, B cells, or monocytes
- Lunar did not increase lymphocyte proliferation (data not shown)
- Silica and lunar dust increased activation of eosinophils cell line
- Lunar dust increases leukotrienes and histamine in both cell lines
- The lack of response seen in primary cell cultures indicates a low risk for allergenicity of lunar dust

Acknowledgements

• PI:

- Brian Crucian, JSC NASA
- Co-Investigators:
 - Cody Gutierrez, JEStech, JSC Immunology
 Laboratory
 - Mayra Nelman-Gonzalez, *KBR, JSC Immunology Laboratory*
 - Gailen Marshall, *The University of Mississippi* Medical Center
 - J. Torin Mccoy, JSC NASA

