

High-temperature slurry environmental barrier coating with graded HfO₂-HfSiO₄ topcoat

R. I. Webster, K. N. Lee, B. J. Harder, B. J. Puleo NASA Glenn Research Center, Cleveland, OH

48th International Conference and Expo on Advanced Ceramics and Coatings S2: Environmental Barrier Coatings (II)

January 30, 2024

Funded by: Transformational Tools & Technologies (TTT) Project Hybrid Thermally Efficient Core (HyTEC) Project

- Current-generation environmental barrier coatings (EBCs) consist of a rare earth (RE) silicate (RE₂Si₂O₇; RE₂SiO₅) topcoat and a silicon bond coat
- Upper use temperature limited by melting point of Si (~1410°C)
- EBC operating temperature of 2700°F (1482°C) desired

https://ntrs.nasa.gov/api/citations/20180004253

- Current-generation environmental barrier coatings (EBCs) consist of a rare earth (RE) silicate (RE₂Si₂O₇; RE₂SiO₅) topcoat and a silicon bond coat
- Upper use temperature limited by melting point of Si (~1410°C)
- EBC operating temperature of 2700°F (1482°C) desired

https://ntrs.nasa.gov/api/citations/20180004253

Alternative bond coat materials necessary to reach EBC temperature goal

 A slurry-based oxide bond coat with significantly higher temperature capability has been developed at NASA Glenn Research Center

Mullit		Mullite	RE ₂ Si ₂ O ₇ , Al ₂ O ₃ , proprietary oxide	Si, SiC
	Bond coat	balance	< 3 wt% (total)	< 30 wt% (total)

 A slurry-based oxide bond coat with significantly higher temperature capability has been developed at NASA Glenn Research Center

 Multilayer high-temperature EBC has been shown to be successful at temperatures ≥ 2700°F in oxygen, water-vapor-containing environments and under temperature gradients
1480°C, 1000 cycles, steam

Bond coat: mullite + sintering aids

Intermediate coat: HfSiO₄ + sintering aids

• Topcoat: **Sc₂Si₂O₇** + sintering aids

SiO₂ thermally grown oxide (TGO)

Motivation

 HfO₂ is desirable as an EBC topcoat due to its stability at high temperatures and in steam

Motivation

 However, the thermal expansion coefficient (CTE) of HfO₂ is large and highly anisotropic

Lowest CTE

Objective

• Prepare HfSiO₄-HfO₂ gradient topcoat layer with HfSiO₄ intermediate coat and high-temperature, mullite-based bond coat via slurry process

Objective

 Prepare HfSiO₄-HfO₂ gradient topcoat layer with HfSiO₄ intermediate coat and high-temperature, mullite-based bond coat via slurry process

Objective

- Prepare HfSiO₄-HfO₂ gradient topcoat layer with HfSiO₄ intermediate coat and high-temperature, mullite-based bond coat via slurry process
- Determine viability of this system via steam cycling at 2700°F

Experimental

- Bondcoat (BC), intermediate coat (IC), and topcoat powders mixed and milled
- Milled powders prepared as slurry with ethanol, polyethyleneimine (PEI) dispersant, and polyvinyl butyral (PVB) binder
- Coating layers deposited on Hexoloy® SA coupons via spin coating
- Dried coupons sintered 3 h/1520°C, annealed 20 h/1480°C in air (all layers)

	Base Material Sintering Aids		Amount
Topcoat	HfO ₂ + HfSiO ₄	Si, mullite, RE ₂ Si ₂ O ₇	TBD
Intermediate coat (IC)	HfSiO ₄	Si	2 wt%
Bond coat (BC)	Mullite	Al ₂ O ₃ , Yb ₂ Si ₂ O ₇ , proprietary oxide	< 3 wt% (total) < 30 wt% (total)
		Si, SiC	

KN Lee, DL Waters, U.S. Patent 11325869, 10 May 2022.

Experimental

- Bondcoat (BC), intermediate coat (IC), and topcoat powders mixed and milled
- Milled powders prepared as slurry with ethanol, polyethyleneimine (PEI) dispersant and polyvinyl butyral (PVB) binder
- Coating layers deposited on Hexoloy® SA coupons via spin coating
- Dried coupons sintered 3 h/1520°C, annealed 20 h/1480°C in air (all layers)
- Samples exposed in a steam cycling rig (1 hour hot, 30 min cool) at ~1480°C
 - 90 vol% H₂O/10 vol% O₂
 - 10 cm/s gas velocity

- HfO₂ + 20 wt% HfSiO₄ + 1.5 wt% Si \rightarrow spallation by 100 cycles at 1480°C
 - Silicon added to topcoat as sintering aid, densifier

1480°C, 100 cycles, steam

• HfO₂ + 30 wt% HfSiO₄ + 1.5 wt% Si \rightarrow limited spallation after 500 cycles at 1480°C

1480°C, 100 cycles, steam

- HfO₂ is completely transformed into HfSiO₄ by 500 cycles
 - Si (in topcoat) + $O_2 \rightarrow SiO_2 + HfO_2 \rightarrow HfSiO_4$
 - 50/50 vol% HfO₂/HfSiO₄ expected in topcoat based on reaction of Si in topcoat alone

- HfO₂ is completely transformed into HfSiO₄ by 500 cycles
 - Si (in topcoat) + $O_2 \rightarrow SiO_2 + HfO_2 \rightarrow HfSiO_4$
 - 50/50 vol% HfO₂/HfSiO₄ expected in topcoat based on reaction of Si in topcoat alone
 - Full transformation suggests that Si/SiO₂ from BC is transported to topcoat via eutectic

1480°C, 500 cycles, steam

 Energy dispersive spectroscopy (EDS) maps confirm that eutectic moves from BC to topcoat

- HfO₂ is completely transformed into HfSiO₄ by 500 cycles
 - $Si + O_2 \rightarrow SiO_2 + HfO_2 \rightarrow HfSiO_4$
 - Eutectic product from sintering aids (containing SiO₂) moves up

Addition of mullite + Yb₂Si₂O₇ or Sc₂Si₂O₇ to single-layer topcoat results in "bubbling"/cracking after 100 cycles

HfO₂ + 30 wt% HfSiO₄ + 1.5 wt% Si + 2.5 wt% mullite/Yb₂Si₂O₇ mixture

1480°C, 100 cycles, steam

Results: Three-layer topcoat

Very little HfO₂ remaining in three-layer coating after 100 cycles

- Presence of SiO₂ in topcoat results in transformation of HfO₂ to HfSiO₄
 - Silicon in topcoat oxidizes to form SiO₂, reacts with HfO₂ to form HfSiO₄
 - Silicon/SiO₂ in bond coat is transported to topcoat

HfO ₂ + xSi			
HfO ₂ + 20 wt% HfSiO ₄ + xSi			
HfO ₂ + 40 wt% HfSiO ₄ + xSi			
HfO ₂ + 60 wt% HfSiO ₄ + xSi			
HfO ₂ + 80 wt% HfSiO ₄ + xSi			
HfSiO₄ + Si			
Mullite + sintering aids (xSi)			
SiC			

- Presence of SiO₂ in topcoat results in transformation of HfO₂ to HfSiO₄
 - Silicon in topcoat oxidizes to form SiO₂, reacts with HfO₂ to form HfSiO₄
 - Silicon/SiO₂ in bond coat is transported to topcoat

HfO ₂ + xSi				
HfO ₂ + 20 wt% HfSiO ₄ + xSi				
HfO ₂ + 40 wt% HfSiO ₄ + xSi				
HfO ₂ + 60 wt% HfSiO ₄ + xSi				
HfO ₂ + 80 wt% HfSiO ₄ + xSi				
HfSiO ₄ + Si				
Mullite + sintering aids (xSi)				
SiC				

1) What is the minimum amount of Si needed in each layer of the topcoat?

- Presence of SiO₂ in topcoat results in transformation of HfO₂ to HfSiO₄
 - Silicon in topcoat oxidizes to form SiO₂, reacts with HfO₂ to form HfSiO₄
 - Silicon/SiO₂ in bond coat is transported to topcoat

HfO ₂ + xSi				
HfO ₂ + 20 wt% HfSiO ₄ + xSi				
HfO ₂ + 40 wt% HfSiO ₄ + xSi				
HfO ₂ + 60 wt% HfSiO ₄ + xSi				
HfO ₂ + 80 wt% HfSiO ₄ + xSi				
HfSiO₄ + Si				
Mullite + sintering aids (xSi)				
SiC				

- 1) What is the minimum amount of Si needed in each layer of the topcoat?
- 2) What is the minimum amount of Si needed in the bond coat?

Results: Si in topcoat

- Bond coat composition kept constant (+15 wt% Si, other sintering aids)
- Minimum of 1.5 wt% Si necessary for topcoat (each layer)

x = 1.5 wt% Si

- Topcoat layer compositions kept constant (+1.5 wt% Si each layer)
- Minimum of 15 wt% Si necessary for bond coat

As-processed (3 h/1520°C, 20 h/1480°C, air)

- BC = +15 wt% Si, topcoat layers = +1.5 wt% Si
- ~150 μm thick region containing HfO $_2$ remains at surface after 100 cycles at 1480°C

1480°C, 100 cycles, steam

- BC = +15 wt% Si, topcoat layers = +1.5 wt% Si
- ~150 μm thick region containing HfO $_2$ remains at surface after 100 cycles at 1480°C

- ~75 μm thick region containing HfO₂ remains near surface after 500 cycles
- Thin, dense HfSiO₄ layer observed at surface
- Pore coalescence in bond coat

1480°C, 500 cycles, steam

- ~75 μm thick region containing HfO₂ remains near surface after 500 cycles
- Thin HfSiO₄ layer observed at surface
- Pore coalescence in bond coat

EBC layers are porous. Can we add additional sintering aids or change the sintering regime?

- Proprietary oxide added to intermediate coat (IC) in addition to 2 wt% Si
- Each layer (BC, IC, topcoat) sintered separately, 20 h anneal total

1480°C, 100 cycles, steam

HfO ₂ + 1.5 wt% Si				
HfO ₂ + 20 wt% HfSiO ₄ + 1.5 wt% Si				
HfO ₂ + 40 wt% HfSiO ₄ + 1.5 wt% Si				
HfO ₂ + 60 wt% HfSiO ₄ + 1.5 wt% Si				
HfO ₂ + 80 wt% HfSiO ₄ + 1.5 wt% Si				
HfSiO ₄ + Si + proprietary oxide				
Mullite + sintering aids (15 wt% Si)				
SiC				

- Proprietary oxide added to intermediate coat (IC) in addition to 2 wt% Si
- Each layer (BC, IC, topcoat) sintered separately, 20 h anneal total

HfO ₂ + 1.5 wt% Si				
HfO ₂ + 20 wt% HfSiO ₄ + 1.5 wt% Si				
HfO ₂ + 40 wt% HfSiO ₄ + 1.5 wt% Si				
HfO ₂ + 60 wt% HfSiO ₄ + 1.5 wt% Si				
HfO ₂ + 80 wt% HfSiO ₄ + 1.5 wt% Si				
HfSiO ₄ + Si + proprietary oxide				
Mullite + sintering aids (15 wt% Si)				
SiC				

- Addition of oxide to IC seems to improve density of layer and adhesion to underlying BC
- HfO₂ remaining after 400 cycles

HfO ₂ + 1.5 wt% Si				
HfO ₂ + 20 wt% HfSiO ₄ + 1.5 wt% Si				
HfO ₂ + 40 wt% HfSiO ₄ + 1.5 wt% Si				
HfO ₂ + 60 wt% HfSiO ₄ + 1.5 wt% Si				
HfO ₂ + 80 wt% HfSiO ₄ + 1.5 wt% Si				
HfSiO ₄ + Si + proprietary oxide				
Mullite + sintering aids (15 wt% Si)				
SiC				

1480°C, 400 cycles, steam

- Addition of oxide to IC seems to improve density of layer and adhesion to underlying BC
- HfO₂ remaining after 400 cycles

HfO ₂ + 1.5 wt% Si				
HfO ₂ + 20 wt% HfSiO ₄ + 1.5 wt% Si				
HfO ₂ + 40 wt% HfSiO ₄ + 1.5 wt% Si				
HfO ₂ + 60 wt% HfSiO ₄ + 1.5 wt% Si				
HfO ₂ + 80 wt% HfSiO ₄ + 1.5 wt% Si				
HfSiO ₄ + Si + proprietary oxide				
Mullite + sintering aids (15 wt% Si)				
SiC				

1480°C, 400 cycles, steam

+ proprietary oxide / layers sintered separately

1480°C, 500 cycles, steam

no proprietary oxide / one sintering schedule

BC/IC interface more coherent when proprietary oxide added to IC

1480°C, 400 cycles, steam

+ proprietary oxide / layers sintered separately

1480°C, 500 cycles, steam

no proprietary oxide / one sintering schedule

EBC layers appear denser when proprietary oxide added / layers sintered separately

How does HfO₂ deposited by plasma spray-physical vapor deposition (PS-PVD) compare to slurry HfO₂ under similar conditions?

- Si/SiO₂ from bond coat reacts with HfO₂ to form HfSiO₄ at IC/topcoat interface
- Severe topcoat debonding with some spallation
- Some debonding at bond coat

- Excessive reaction of Si/SiO₂ from bond coat with HfO₂ to form HfSiO₄ when amount of sintering aids in bond coat increased
- No debonding/spallation observed

PS-PVD HfO₂ topcoat undergoes similar issues as slurry HfO₂

Combined-process HfO₂ topcoat

- Si/SiO₂ content in topcoat, bond coat important with regards to CTE, reaction to form HfSiO₄
 - Five-layer topcoat system shows most promise
 - Minimum topcoat layer Si = 1.5 wt% (slurry)
 - Minimum bond coat Si = 15 wt% (slurry)
- Addition of proprietary oxide to intermediate coat results in better adhesion to bond coat, proprietary oxide/separate sintering of BC, IC, topcoat may increase density of layers
- PS-PVD topcoat shows similar trends to slurry topcoat
 - Increase in Si/SiO₂ content in bond coat = more HfSiO₄ formation in topcoat, better adhesion to underlying layers
- HfO₂ as single-layer EBC is unstable however, still useful component of <u>EBC system</u>
 - Need to monitor thermally grown oxide (TGO) in optimized system
 - Outermost PS-PVD HfO₂ may be viable approach

- Si/SiO₂ content in topcoat, bond coat important with regards to CTE, reaction to form HfSiO₄
 - Five-layer topcoat system shows most promise
 - Minimum topcoat layer Si = 1.5 wt% (slurry)
 - Minimum bond coat Si = 15 wt% (slurry)
- Addition of proprietary oxide to intermediate coat results in better adhesion to bond coat, proprietary oxide/separate sintering of BC, IC, topcoat may increase density of layers
- PS-PVD topcoat shows similar trends to slurry topcoat
 - Increase in Si/SiO₂ content in bond coat = more HfSiO₄ formation in topcoat, better adhesion to underlying layers
- HfO₂ as single-layer EBC is unstable however, still useful component of <u>EBC system</u>
 - Need to monitor thermally grown oxide (TGO) in optimized system
 - Outermost PS-PVD HfO₂ may be viable approach

- Si/SiO₂ content in topcoat, bond coat important with regards to CTE, reaction to form HfSiO₄
 - Five-layer topcoat system shows most promise
 - Minimum topcoat layer Si = 1.5 wt% (slurry)
 - Minimum bond coat Si = 15 wt% (slurry)
- Addition of proprietary oxide to intermediate coat results in better adhesion to bond coat, proprietary oxide/separate sintering of BC, IC, topcoat may increase density of layers
- PS-PVD topcoat shows similar trends to slurry topcoat
 - Increase in Si/SiO₂ content in bond coat = more HfSiO₄ formation in topcoat, better adhesion to underlying layers
- HfO₂ as single-layer EBC is unstable however, still useful component of <u>EBC system</u>
 - Need to monitor thermally grown oxide (TGO) in optimized system
 - Outermost PS-PVD HfO₂ may be viable approach

- Si/SiO₂ content in topcoat, bond coat important with regards to CTE, reaction to form HfSiO₄
 - Five-layer topcoat system shows most promise
 - Minimum topcoat layer Si = 1.5 wt% (slurry)
 - Minimum bond coat Si = 15 wt% (slurry)
- Addition of proprietary oxide to intermediate coat results in better adhesion to bond coat, proprietary oxide/separate sintering of BC, IC, topcoat may increase density of layers
- PS-PVD topcoat shows similar trends to slurry topcoat
 - Increase in Si/SiO₂ content in bond coat = more HfSiO₄ formation in topcoat, better adhesion to underlying layers
- HfO₂ as single-layer EBC is unstable however, still useful component of <u>EBC system</u>
 - Need to monitor thermally grown oxide (TGO) in optimized system
 - Outermost PS-PVD HfO₂ may be viable approach

Backup

10 hours

	Mullite	Al ₂ O ₃	Yb ₂ Si ₂ O ₇	Si
Bond coat	balance	1 wt%	1 wt%	20 wt%