(AAS-24-093) Re-Creation of an Apollo-Era Separation Anomaly using a Low-g Slosh Mechanical Analog

William J. (Liam) Elke, III, PhD

Aerospace Engineer, Dynamic Systems and Control Branch, NASA Langley Research Center

Ryan J. Caverly, PhD Assistant Professor, Department of Aerospace Engineering and Mechanics, University of Minnesota

46th Annual American Astronautical Society Guidance, Navigation, and Control Conference Session 09: Challenges and Solutions in Managing Liquid Propellant Dynamics Breckenridge, CO February 5, 2024

Contents

- Background
 - Low-g Slosh
 - Existing models
- Low-g Slosh Mechanical Analog
 - Model Development
- Case Study: Apollo Separation Anomaly
 - Problem Description
 - Simulation Setup
 - Results and Discussion
- Summary

Liquid Propellant Slosh

Slosh is the motion of a liquid inside another object

william.j.elke@nasa.gov

Low-g Slosh Modeling is Complex

Bottom Line (Flight Mechanics)

Use the **lowest fidelity model for the application** that captures the

- forces imparted on the spacecraft
- bulk motion of the liquid

The well-studied techniques for high-g slosh are limited in low-g slosh applications!

Large amplitude liquid sloshing in a high-g environment Pendulum analog for high-g liquid sloshing.

Low-g Slosh Mechanical Analogs

Particle Model Heritage: Apollo Separation Anomaly

RCS thruster firing sequences

Spacecraft perturbed from spin axis due to slosh interactions

[1] "Apollo 11 Mission Anomaly Report No. 3, Service Module Entry," NASA MSC-03466, November 1970.

Particle Model Heritage: Origins and Gaps

Derivation of the particle model and simulation of anomalous SM motion in [2].

Excellent reference for the development of low-g slosh mechanical analogs. However,

- Cited simulation documents were unable to be recovered [3]
- Errors contained in derivation [3]
- Lack of information about the simulation parameters to replicate the results
- **Limited analysis** to 10 simulations (only figures for 1 out of 10 shown)
 - *"Five of the ten simulations indicated the possibility of retrograde motion" [2].*

Paper Objectives

- 1. Develop a simulation framework of a rigid spacecraft with a single slosh particle that addresses errors
- 2. Recreate the simulation environment of the CM/SM separation event by piecing together information from literature and historical data
- **3. Expand upon analysis** of the anomalous SM motion found in [2] by running the simulation with more initial conditions

[2] D. H. Merchant et al., "Prediction of Apollo Service Module Motion after Jettison," *Journal of Spacecraft and Rockets*, 1971.
 [3] W. J. Elke III et al., "Framework for Analyzing the Complex Interactions Between Spacecraft Motion and Slosh Dynamics in Low-G Environments," IAC-22-C1.IPB.34.x72589, 2022.

Particle Model Simulation Features

Wall-interaction dynamics

Ellipsoidal constraint surface

Constraint surface and **particle mass** are a functions of fill level.

NASA

Particle (3 DOF) = 9 total DOF

Case Study Simulation Parameters

- "Ten SM jettison simulations were made by varying the magnitude of the propellant masses and their initial position within the tanks" [2].
- Simulation parameter roll call:

A lot of detective work went into recovering the simulation parameters. Check out the paper for details!

Parameter	Status	Determination	# of values
Mass properties of SM	Given	Found in [1,2]	1 set
Thruster properties	Given	Thrust values in [1,2]. Sequences in [1,2].	2 sequences
Initial conditions of spacecraft	Unknown	Estimated using orbital mechanics with Apollo 7 tracking data	1 set
Mass values of particle	Limited	Reasoned from [1,2]	3 values
Friction model parameter	Uncertain	Dispersed parameter	6 values
Initial conditions of particle	Limited	Reasoned from limited results in [1,2] as well as mission events	35 values

[2] D. H. Merchant et al., "Prediction of Apollo Service Module Motion after Jettison," Journal of Spacecraft and Rockets, 1971.

Case Study Simulation Parameters (cont.)

RCS seq.	m_P (lbm)	(x,y,z) (m)	C_f (lbm/s)
Original	1,220	$(-a_1, 0, 0)$	100
Revised	3,300	$(-a_1/2, 0, 0)$	200
	8,600	$(-a_1/2, \pm a_2, 0)$	300
		$(-a_1/2, 0, \pm a_2)$	400
		$(-a_1/2, \pm a_2 \sin 45^\circ, \pm a_2 \sin 45^\circ)$	500
		$(-a_1/2, \pm a_2/2, 0)$	600
		$(-a_1/2, 0, \pm a_2/2)$	
		$(-a_1/2, \pm (a_2/2)\sin 45^\circ, \pm (a_2/2)\sin 45^\circ)$	
		(0, 0, 0)	
		$(0,\pm a_2,0)$	
		$(0,0,\pm a_2)$	
		$(0, \pm a_2 \sin 45^\circ, \pm a_2 \sin 45^\circ)$	
		$(0,\pm a_2/2,0)$	
		$(0, 0, \pm a_2/2)$	
		$(0, \pm (a_2/2)\sin 45^\circ, \pm (a_2/2)\sin 45^\circ)$	
2 >	< 3 >	< <u>35</u>	× 6

Time after	Events	
separation (s)	Original	Revised
0	-x jets on	-x jets on
2	+x roll jets on	+x roll jets on
4		+x roll jets off
7.5	+x roll jets off	
25		-x jets off
300	-x jets off	

= 1,260 simulations

Results: No. of Cases with Retrograde Motion

	No. of cases exhibiting retrograde motion		
<i>mp</i> (FIII 76)	Original Firing Sequence	Revised Firing Sequence	
1220 (~5%)	15 / 210	0 / 210	
3300 (~15%)	62 / 210	0 / 210	
8600 (~38%)	164 / 210	0 / 210	

Analysis of correlation of simulation parameters to retrograde motion is contained in the paper!

What would [1] do?

- Residual propellant on Apollo 7-11 was [1] $2400 < m_P < 9500$ lbm
- Reasonable to assume [2] restricted their analysis to these values
- Restricting our analysis to this range yields the number of cases exhibiting retrograde motion is

226 of 420 simulations (53.8%)

• Recall,

"Five out of the ten simulations indicated the possibility of retrograde motion" [2].

[1] "Apollo 11 Mission Anomaly Report No. 3, Service Module Entry," NASA MSC-03466, November 1970.
[2] D. H. Merchant, R. M. Gates, and J. F. Murray, "Prediction of Apollo Service Module Motion after Jettison," *Journal of Spacecraft and Rockets*, Vol. 8, June 1971, pp. 587–592.

Results: 3D Trajectory

Original RCS sequence

Revised RCS sequence

Results: Spin Orientation

Original RCS sequence

Revised R	CS sequence
-----------	-------------

 $m_P = 8600 \text{ lbm}$

30

Time (s)

600 — Nom.

60

Results: Longitudinal Motion of Particle

Original RCS sequence

Revised RCS sequence

Summary

- Formulation of a particle model that addresses the errors found in [1]
- The reconstruction of the Apollo-erabased test case that can be used as a comparison for different low-g slosh models
- The validation of the particle model with its original use case

Conclusions

• The agreement between these results and the results from [1] suggest the formulation and case study can be used to fill in the gaps in [1, 2].

[1] "Apollo 11 Mission Anomaly Report No. 3, Service Module Entry," NASA MSC-03466, November 1970.
[2] D. H. Merchant, R. M. Gates, and J. F. Murray, "Prediction of Apollo Service Module Motion after Jettison," *Journal of Spacecraft and Rockets*, Vol. 8, June 1971, pp. 587–592.

Acknowledgements

This material is based upon work supported by the Human Landing System (HLS) project under the Artemis program of NASA.

Thank you for your time

Corresponding paper

W. J. Elke III, R. J. Caverly, "Re-Creation of an Apollo-Era Separation Anomaly using a Low-g Slosh Mechanical Analog," *American Astronautical Society Guidance, Navigation, and Control Conference,* AAS-24-093, Feb. 2024.

william.j.elke@nasa.gov

Extra Slides

Method: Computational Fluid Dynamics

W. Elke, R. Caverly

AAS-24-093

AAS GN&C 2024

william.j.elke@nasa.gov

Ellipsoidal Constraint Surface

• Use an **ellipsoid** that is a function of **tank geometry** and **fill ratio** [4-6].

$$C(x, y, z) = \frac{x^2}{a^2} + \left(\frac{y^2 + z^2}{b^2}\right) - 1 = 0$$

[4] Z. Zhou, H. Huang, (2015).
[5] R.L. Berry, J.R. Tegart, (1975).
[6] P.G. Good et al., (1998).

Low-g Slosh Mechanical Analog

Results: Separation Distance and Speed

Original RCS sequence

Revised RCS sequence

