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Background

* Satellite visible/infrared (IR) imager
and microwave radiometer (MWR)
signatures of severe weather

e Highly textured imagery
* Cold cores < 200K,

* Strong 19-GHz PCT depression signifying
strong scattering

e NEXRAD measurements of Maximum
Expected Size of Hail (MESH) for
ground truth

* More consistent than human spotters
and storm reports
e USA only

Novel demonstration of how
combined satellite IR, MWR, and
atmospheric reanalysis data can
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With relatively high accura cy Severe-weather outbreak over Kentucky and Tennessee, 7 April 2006




Method

All Aqua orbits coincident with MESH captured using the
Lan qIey Automated Sensor Inter-calibration Sys%em
(LASICS)

» Satellite science opportunity identification tool

* Local 01:30/13:30 not strongly favorable to hail over USA

Deep neural network (DNN) trained to map MODIS (IR),
AMSR-E (MWR), and/or MERRA-2 reanalysis predictors to
MESH over the USA

* 1,949 samples split 60%, 20%, and 20% across training, validation,
and testing sets

* 6-fold cross-validation
* Estimates likelihood of 95t percentile MESH > 1.5”
* True/Null=48%/52%

Evaluate predictor importance using Recursive Feature
Elimination

Explore variable space as a function of hail likelihood
globally

AMSRE Hailstorm Frequency, 2002—-2011
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Questions:

1. How skillfully can a DNN estimate severe hail likelihood?

2. How do IR, MWR, and MERRA-2 reanalysis predictors contribute to that skill?
3. Is the model globally generalized — how do predictors vary across distinct regions?




Neural Network Predictor Importance

RecurSive Feature Elimination: IR + MWR Predictor Importance
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* Train model with all predictors 19 GHz PCT is a strong
’
* Exclude one feature and retrain unique signal that’s very
e Eliminate least contributing feature and repeat sensitive to ice scattering




Neural Network Skill: IR + MWR Predictors

Hail Size by Severe Hail Likelihood ROC: Likelihood of 1.5"+ MESH Performance Diagram: Likelihood of 1.5"+ MESH
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* High fold variance and overfitting perhaps owed to low
sample size

DNN is assigning the highest
sning & * Generalization possible with reasonable skill

likelihoods to storms with + 6-fold Testing set skill exceeds 0.41 (+0.03) HSS and 0.56
the greatest MESH (+0.02) CSI at ~50/50 class split

 70% (x5%) Recall, 76% (+6%) Precision, 20% (+7%) False
Alarm Rate

e Suggests balanced performance




Neural Network Predictor Importance

Recursive Feature Elimination: IR + MIWR + MERRA2
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*Top 6 IR + MWR Model Predictors

* A feature may be deemed “unimportant” because of irrelevancy or

redundancy

e That s, information may be important, but is already contained in

remaining features

Significantly correlated features
may “demote” one another




Neural Network Predictor Importance

Recursive Feature Elimination: All Model Testing Sets
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IR+MWR model shows similar features sensitivity and skill to that of the

IR+MWR+MERRA-2 model

IR- or MERRA-2-only models have poorest skill
Min 19-GHz PCT remains consistently important

A DNN with MWR predictors
alone is the most capable
single-source model




(» Variable Space by Region

By IR + MWR Model Likelihoods

5
12000 T
g o
10000 [~ — 3 é
$ 8000 - g
e o-10r
@ 6000 - = 'IT

-
(4]
T

fidy

i

20 275|93 27(?45 184;-98 58|10
20001 ] i 0.0-0.25 0.25-0.50 0.50-0.75 0.75-1.00
Likelihood of 1.5"+ MESH
0.0-0.25 0.25-0.50 0.50-0.75 0.75-1.0 —— Amazon — Argentina —— Bangladesh

Likelihood of 1.5”+ MESH
300

Training a model over USA
with MERRA-2 is going to
reinforce MERRA-2 - also

cloud heights and cold area 220

N
®
o

Min 19GHz PCT (K)
»
[~
=)

275|93 273|45 184|98

it i

|

58.10

_eél

0.0-0.25 0.25-0.50 0.50-0.75
Likelihood of 1.5"+ MESH

* Are predictor variables well grouped?
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* Height and environment not generalized predictors

* Maritime Continent has peculiarly high likelihoods
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' Variable Space by Region

By MWR Model Likelihoods
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Y Variable Space by Region

By Alternative IR + MWR Model Likelihoods (no heights, cold cloud area, or 37-GHz PCT)
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e Sample size limitations hurting skill of more generalize model

* Poorly generalized predictors can be specifically important — not a lot of sample
size to work with if losing key predictors




Summary

Key Predictors
Thermodynamic Kinematic Scale
IR-Tropopause T Diff (K) Storm Relative Helicity (m?/s?) 19GHz PCT (K)
Surface-based EL (m) Energy Helicity Index (m?/s?) 10GHz PCT (K)
Surface-based CAPE (J/kg) WMAXSHEAR (m?/s?) N 85GHz Pixels
Precipitable Water (mm) Area of Cold Cloud (km?)

* IR+MWR DNN skillfully estimates severe hail likelihood

 MERRA-2 reanalysis predictors offer slightly better skill, but are less globally
generalized

* Larger features are preferred when model is trained on MWR — which is also
more latitudinally-independent than models that include IR in training



Additional Slides



Neural Network Skill: All Model Testing Sets

Receiver Operating Characteristic Performance Diagram
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* Model most skillful when combining all IR + MWR satellite
observations and MERRA-2

* IR + MWR combination model remains reasonably skillful

Important to consider
regionally dependency or
atmospheric environment




Variable Space by Region

By IR + MWR + MERRA2 Model Likelihoods
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) Additional Satellite MERRA2 by Region
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Additional Satellite IR by Region
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5 Additional Satellite MWR by Region
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5 Additional Satellite MWR by Region
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