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ABSTRACT

The emergence of catalytic RNA is believed to have
been a key event during the origin of life. Under-
standing how catalytic activity is distributed across
random sequences is fundamental to estimating the
probability that catalytic sequences would emerge.
Here, we analyze the in vitro evolution of triphospho-
rylating ribozymes and translate their fitnesses into
absolute estimates of catalytic activity for hundreds
of ribozyme families. The analysis efficiently identi-
fied highly active ribozymes and estimated catalytic
activity with good accuracy. The evolutionary dynam-
ics follow Fisher’s Fundamental Theorem of Natural
Selection and a corollary, permitting retrospective
inference of the distribution of fitness and activity
in the random sequence pool for the first time. The
frequency distribution of rate constants appears to
be log-normal, with a surprisingly steep dropoff at
higher activity, consistent with a mechanism for the
emergence of activity as the product of many inde-
pendent contributions.

INTRODUCTION

In vitro evolution of RNA from random sequence pools
has a long history of success in identifying sequences with
novel chemical function, such as catalytic RNAs (1–3). By
exploring a large sample of sequence space, in vitro evolu-
tion also probes the underlying distribution of molecular

fitness among random sequences of nucleic acids. Insofar as
fitness correlates with activity, a fitness distribution also re-
flects the corresponding chemical activity distribution (e.g.
a ribozyme’s kcat) over a sequence space (4). The shape of
such frequency distributions is a fundamental open issue
for understanding the emergence and evolution of an RNA
World during the early stages of life (5). Knowledge of ac-
tivity distributions would yield insight into the likelihood,
repeatability, and activity level of ribozyme emergence dur-
ing prebiotic scenarios as well as during in vitro selection of
new catalysts. Knowledge of the related distribution of cat-
alytic activation energies may also offer suggestions on an
underlying mechanism for the emergence of function from
sequence. From a practical perspective, knowledge of the
fitness and/or activity distribution underlying a selection is
also necessary to accurately design the best conditions for
selection (6).

Despite the high degree of interest (6,7), prior work es-
timating the underlying fitness and chemical activity dis-
tributions of any in vitro selection has been relatively lim-
ited. Studies on selections from starting pools with differ-
ent sequence complexity suggested a power-law relation be-
tween pool size and aptamer affinity or ribozyme activity,
though only a small number of measurement points were
available (7,8). In contrast, theoretical considerations sug-
gested a log-normal distribution of KD values (and a normal
distribution of binding energies) in sequence space for nu-
cleic acid aptamers (9,10), as well as a normal distribution
of activation energies of RNA melting (11). Previous ex-
perimental work has measured fitness over limited sequence
spaces, e.g. ribozymes in which several nucleotides (or pep-
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tides) were randomized (12–14) or aptamers containing a
small enough region of variation to explore within the span
of a microarray (15,16), or in special scenarios in which
DNA sequencing itself can be used as an assay of function
(e.g. for self-cleaving activity) (17). Thus, empirical mea-
surement of fitness and chemical activity distributions over
a highly diverse, random pool has been lacking.

Extracting distributions from in vitro evolution has been
historically hampered by the low throughput of sequencing
data. Now, high-throughput sequencing (HTS) has become
a useful tool for addressing deep evolutionary questions
(12,18,19), e.g. enabling quantitative analysis of the fitness
‘landscape’ in sequence space, including the distribution of
fitness peaks and neutral evolutionary pathways (13,20,21),
as well as revealing the importance of cryptic variation in
rapid adaptation (21,22). On the practical side, HTS of in
vitro evolution of RNA is useful for identifying high-fitness
sequences (23,24). To estimate fitness, HTS analyses typi-
cally count sequences present at a single round of selection,
although more recent analyses use the relative enrichment
of sequences before and after a final round (23–25), or fol-
low a specific ribozyme and its variants over several rounds
(26). Integrative analysis of HTS data over the whole course
of an in vitro evolution from random sequence would take
advantage of more data to provide more accurate estima-
tion of the fitness of optimal sequences, while also provid-
ing insight into the consistency of selection and the accu-
racy of such estimation. Here we develop a method to es-
timate fitness from multiple rounds of in vitro evolution,
translate fitness into chemical activity, and infer the under-
lying distributions of an initially random pool of RNA. We
apply this analysis to a previously performed in vitro evolu-
tion of triphosphorylation ribozymes (27) and validate in-
ferences on catalytic activity. Through this analysis, we iden-
tify substantially improved ribozymes and discover the ap-
proximately log-normal shape of the underlying frequency
distribution of ribozyme activities.

MATERIALS AND METHODS

Ribozyme selection and sequencing

Triphosphorylating ribozymes using cyclic trimetaphos-
phate (Tmp) were selected in a previous study (27) (Fig-
ure 1A). Ribozymes were selected for converting their 5′-
hydroxyl group to a 5′-triphosphate by reacting with Tmp.
In brief, the selection consisted of: (i) processing of an RNA
construct, including a 150-nt randomized region, with a
hammerhead ribozyme to create a 5′-OH, (ii) incubation
of the pool with Tmp such that active ribozymes generate
a 5′-triphosphate, (iii) selection of the 5′-triphosphorylated
molecules by reaction with a biotinylated RNA oligonu-
cleotide and a ligase ribozyme and (iv) RT-PCR to gen-
erate the pool for the subsequent selection round. Se-
lection rounds used constant reaction conditions for this
triphosphorylation reaction step, with the following excep-
tion: Rounds 1–4 were carried out using a 3-h incubation
with Tmp, while Rounds 5–8 were split into two selection
branches, one with 3 h (branch ‘3h’) and one with 5 min
(branch ‘5m’) of Tmp incubation.

DNA samples from Rounds 1–8 (including both
branches) as well as the initial pool (Round 0) were sub-

Figure 1. Selection scheme and evolutionary dynamics of ribozyme fami-
lies and clusters during Rounds 4–8. (A) Abbreviated depiction of selection
scheme for triphosphorylation ribozymes (27). (B) The abundance of clus-
ters over time in the 5m branch of selection: red areas represent clusters
close to the original centers of the top 20 families of Round 8 (5m), blue
areas represent new clusters whose central sequence diverged from the orig-
inal family center, gray area represents clusters from families ranked 20–
138 in abundance, solid black area represents families and clusters that dis-
appeared by Round 8 (5m), white area represents other low abundance se-
quences. (C) The 5m and 3h selection branches were separated after Round
4; green areas represent families present in both branches, yellow areas rep-
resent families present only in the 3h branch, blue areas represent families
present only in the 5m branch.

mitted for high-throughput sequencing on the Illumina
MiSeq platform with paired-end 150 bp reads. Mutagenic
PCR during amplification between Rounds 5–8 would
result in an expected mutation rate of 1.7% per base
(28,29), substantially greater than the expected error rate
from paired-end sequencing. In addition, because of the
sparse coverage of sequence space, clusters are expected
to be highly distinct, and thus a correction for sequencing
errors (20) was not performed. (See further details in
Supplemental Text S1.)

Experimental determination of ribozyme activities

Experimental determination of ribozyme activities was per-
formed as previously described (27), allowing direct com-
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parison to the previously reported ribozyme activities.
The equivalence of assay conditions was confirmed by re-
measuring the activity of four clones from the previous
study, which resulted in the same values within error (Sup-
plemental Figure S1). In brief, the RNA sequence contain-
ing a 5′-hydroxyl group was incubated with Tmp, generat-
ing a 5′-triphosphorylated RNA product, and then reacted
with R3C ligase ribozyme (30) and a radiolabelled substrate
oligonucleotide. Ligated products were separated from un-
reacted oligonucleotides by denaturing PAGE and quanti-
fied by phosphorimaging, and each reaction was measured
at least three times. The activity assay conditions are the
same as in the in vitro selection, thereby measuring fitness
as experienced during the evolution procedure. (See further
details in Text S1.) Apparent first-order rate constants mea-
sured this way are termed kapp.

Assignment of sequences to families

Sequences were sorted by similarity using custom software
running on the Galaxy bioinformatics platform (20,31),
with the highest-abundance sequence in each family defined
as the center, for each round. In general, families were sep-
arated by large Hamming distances from each other due
to the long length of the random region, allowing unam-
biguous assignment of sequences to families. Some fami-
lies displayed a shift in center sequence across rounds, typ-
ically consisting of 1–2 nucleotide mutations (termed ‘no-
table’ mutations). For some analyses, similarity to one of
multiple variant centers was used to ‘split’ families into two
or more new clusters, treated independently, as the notable
mutations impacted fitness. We use the term ‘cluster’ to re-
fer to a group of related sequences for which such splits
were performed when appropriate (and ‘cluster’ is equiv-
alent to ‘family’ when no split was appropriate). Further
details on sequence-grouping procedures are described in
previous work (20,31) and in Text S1.

Best method to estimate fitness from HTS data

We define the abundance (AR) of a sequence (or cluster) in a
given round (R) as the frequency of its reads in that round,
ranging from 0 to 1. Each round contained at least 1.5 mil-
lion sequence reads, so the abundance for a single read is
slightly less than 10−6. We define the enrichment (ER) of a
sequence (or cluster) in round R as AR/AR-1. During an in-
cubation period t, we define F as the fraction of a partic-
ular sequence that has reacted and is carried forth to the
next round’s sequence pool. F is the absolute viability of a
particular sequence, ranging from 0 to 1, which should re-
main constant under unchanging selection conditions and
represents the chemical activity of the sequence. If differ-
ences in the amplification tendency (or fecundity) of the
sequences are neglected, then F is also the relative fitness
(also called ‘w’ in the evolutionary biology literature). For
any sequence, ER is expected to be proportional to F by
a round-dependent scaling factor (SR) that primarily ex-
presses the inverse of the average F of the pool in that round
(ER/SR = F). (ER values are not expected to be constant
across rounds, as they depend on the fitness of the other se-
quences in the pool in a given round.) Several methods were

used to estimate a single enrichment value (Ee, expected to
scale with estimated viability Fe) from ER values from mul-
tiple rounds, for each cluster or each sequence. Method 1
of fitness estimation used ER-1 (normalized by average en-
richment for round R-1) as a predictor of normalized ER;
Method 2 used a geometric mean of multiple ER values to
estimate Ee; Methods 3–5 used different modifications of
summation of squares to build linear estimates of Ee; and
Method 6 used Maximum Likelihood Estimation to esti-
mate Ee. The weighted coefficient of determination (r2) be-
tween ER and Ee was used to test the consistency of each es-
timation method. Because F is directly proportional to ER,
the value of r2 between ER and F is the same as between
ER and Ee, allowing the best method for estimation of F to
be determined through analysis of Ee (see further details in
Supplemental Text S1, Figure S2).

Conversion of evolutionary fitness to catalytic activity

To estimate ribozyme activity from HTS data alone (i.e. in-
dependent of biochemical assays), we made the following
approximation. We assumed that triphosphorylation fol-
lows pseudo-first-order kinetics, as observed for ribozymes
previously isolated from this selection,(27) such that F =
L ∗ (1 − e−kt) where k is the rate constant (kcat[Tmp]), and
L is the maximum extent of triphosphorylation followed by
ligation. The constant L includes the fraction of molecules
that fold into the active structure for triphosphorylation
catalysis and their ability to act as a substrate for the lig-
ase ribozyme. To calculate F from Ee, an overall scaling fac-
tor (Se, resulting from a combination of SR) was estimated
as described below for each branch of selection, as Ee/Se
= Fe. For the purpose of comparing 5m and 3h HTS data
to determine the scaling factors Se, in order to minimize
the number of fitting parameters, we approximate average
L = 0.5 across sequences. For any given ribozyme, L may
vary from 1, as sequences vary with respect to their opti-
mality as a ligation substrate. The approximation of aver-
age L = 0.5 can be justified (i) because the previous study
(27) found that most amplitudes were in the range of 0.5, (ii)
because an incorrect estimate of average L does not affect
the relative scaling of L for individual ribozymes, but only
affects the absolute scale of estimated L values and (iii) post
hoc because the resulting activity estimates conform well
with values measured biochemically (see Results). Setting
k equal at two t measurements gave the mathematical rela-

tion Ee(t1)/L = Se (t1)(1 − [1 − Ee(t2)/L
Se(t2) ]

t1/t2
) which was fit to

the HTS-derived Ee for 5m and 3h selection branches (using
sequence clusters), thereby obtaining the two scaling fac-
tors Se(5m) and Se(3h), using the Matlab curve-fitting tool-
box. Se(5m) was used to calculate an absolute estimate of
Fe(5m) for clusters from the 5-min selection, and similarly
for Se(3h) and Fe(3h). The ratio Fe(5m)/Fe(3h) was used
to calculate an estimated k for each sequence as Fe(5m)

Fe(3h) =
(1−e−5k)

(1−e−180k) , where k has units min−1. The estimated value of L
for an individual ribozyme cluster was calculated using es-
timated k and Fe in the relation F = L ∗ (1 − e−kt). If the
approximation of average L = 0.5 was inaccurate, the esti-
mated L values would be affected in proportion (see further
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details in Supplemental Text S1, Figure S3). L and k esti-
mated in this way are termed Lest and kest. As both L and
k were expected to affect sequence enrichment, we used es-
timated initial rate (Lestkest) to compare measured and pre-
dicted sequence activities.

Analysis of evolutionary noise using HTS data

To analyze the noise present in observations of fitness dur-
ing the selection experiments, a distribution of noise was
calculated from the absolute difference between ER and the
expectation of ER generated from F (i.e. Ee) for each se-
quence in each round. (See further details in Text S1.)

Evaluation of selection behavior using Fisher’s Fundamental
Theorem of Natural Selection and its corollary

Fisher’s Fundamental Theorem of Natural Selection
(FFTNS; also called the ‘growth rate theorem’) (32–35)
states that, under ideal haploid conditions, change in pop-
ulation mean fitness should equal normalized population
variance, such that mean(F, R+1) – mean(F, R) = Var(F,
R)/mean(F, R), with mean(F, R) being abundance-weighted
mean F distributed over all sequences in the Round R pool,
and Var(F, R) being abundance-weighted variance of F in
the same round. This relation, and a corollary to FFTNS
derived in the Supplemental Text S1, which relates the
change in variance to the skewness of the fitness distribu-
tion, were used to determine whether the shape of estimated
fitness distribution evolved in a fashion consistent with evo-
lutionary theory. (See further details in Text S1.)

Retrospective inference of underlying fitness and activity dis-
tributions

The 3h selection branch was chosen for further analysis of
the fitness distribution, having undergone identical selec-
tion conditions from Round 1 through 8. Fe values were
binned into an empirical probability distribution function
of estimated fitness for Rounds 4–8, PR(Fe) (with PR denot-
ing probability distribution at round R), normalized to in-
tegrate to 1. Fitness distributions for Rounds 1–3 were cal-
culated retrospectively, with PR−1 (Fe) = PR(Fe)/Fe

∫1
0(PR(Fe)/Fe)d Fe

, as

the relative abundance of a sequence in a preceding round
is expected to be its relative abundance in the current round
divided by F. (See further details in Supplemental Text S1).

The retrospectively inferred distribution of F in the ran-
dom pool (i.e. P0(Fe)) was converted to a distribution of
catalytic rate constants k by the relation Fe = (1 − e−kt) L.
For this analysis, the assumption of L = 0.5 was used, jus-
tified as described above. To focus on fitting the long tail
of the initial distribution, curve fitting was performed with
log-transformed variables. To account for difficulty in es-
timating the precise area under the low-fitness end of the
distribution curve, each theoretical probability distribution
function was multiplied by a constant parameter that was
allowed to vary during curve fitting. The initial distribu-
tion of rate constants was compared to candidate distribu-
tion shapes using the Matlab curve-fitting toolbox and stan-
dard Trust-Region fitting parameters. We investigated fit to

an exponential, Pareto (scale-free), and log-normal distri-
bution, fitting with parameters selected to maximize r2 for
log-log-transformed values of Fe and PR(Fe).

Any data and code not previously described (20,31) will
be made available by the authors upon request.

RESULTS

Evolutionary dynamics of ribozyme families

High-throughput sequencing (HTS) of Rounds 0–8 pro-
vided 1.6–4.8 million usable sequences per round (Table
1). Sequences were sorted into distinct families based on
sequence similarity. Because the initial RNA pool repre-
sented a minute fraction of sequence space for random 150-
mers, families are expected to be highly distinct, and de-
tectable sequence similarity almost certainly indicates relat-
edness by descent. Indeed, the Hamming distance between
all sequences in the pool shows a maximum ∼110, as ex-
pected for completely random sequences with a length of
150 nucleotides (Supplementary Figure S4). Additionally,
the number of families was robust to the value of the pair-
wise Hamming distance cutoff from 60 to 90, with a dis-
tance of 70 chosen to allow unambiguous family assignment
and alignment across rounds (Supplementary Figure S4).

Analyzing multiple rounds of the ribozyme selection per-
mitted tracking of the sequence families and clusters, their
distribution, and their relative abundance. Sequence fami-
lies could not be reliably identified in Rounds 1 and 2 due
to the large number of unique sequences, but 829 ribozyme
families were identified in Round 3. These were gradually
winnowed over subsequent rounds. Over a hundred unique
families were present at the end of Round 8 of both branches
of selection, and several of the major families were best
analyzed after splitting into clusters based on the pres-
ence or absence of notable mutations (see below). The top
20 families comprised ∼80% of the pool (Figure 1B). The
presence of many ribozyme families indicated that a low-
throughput approach would not be sufficient to identify the
fittest sequences (Supplementary Figure S5A). Indeed, pre-
vious analysis of the selection––in which 16 colonies se-
lected from transformants from Round 5 and 20 colonies
selected from transformants from Round 8, were Sanger se-
quenced and assayed for activity––had identified members
of some, but not all, high-abundance families, consistent
with the diversity of families we observed (Supplementary
Figure S5B and previous work (27)). Beginning in Round 4,
ribozyme selection was dominated by competition among
dozens of sequence clusters. In Round 4, the top five clus-
ters composed a larger percentage of the pool than in Round
8 for either selection branch, illustrating the emergence of
many clusters of similarly high fitness toward the end of the
selection. Many high-abundance clusters in Round 8(5m)
were extremely scarce at Round 4 (Figure 1B), suggesting
that these clusters had a fast relative enrichment rate and
thus high fitness. While each cluster tended to either in-
crease or decline in relative abundance over multiple rounds,
abundances taken at a single round would be a poor pre-
dictor of overall evolutionary fitness. Indeed, abundances
did not correlate with observed ribozyme activity previously
measured for isolated clones (Supplementary Figure S6).
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Table 1. Number of raw sequence reads, sequences extracted based on presence of known adapter sequences, and unique sequence families present in
each round of ribozyme selection. 5m and 3h indicate the two branches of selection

Sample # of sequence reads (# of extracted sequences) # of sequence families

Round 0 (initial pool) 2 376 803 (2 182 213) n.d.
Round 1 2 721 407 (2 623 400) 2
Round 2 2 682 133 (2 572 500) 6
Round 3 2 569 736 (2 486 543) 829
Round 4 2 309 537 (2 256 055) 497
Round 5(3h) 1 815 219 (1 758 685) 411
Round 5(5m) 1 615 498 (1 563 259) 327
Round 6(3h) 1 932 193 (1 869 175) 290
Round 6(5m) 1 719 683 (1 658 222) 204
Round 7(3h) 1 624 442 (1 560 875) 220
Round 7(5m) 1 710 580 (1 648 206) 136
Round 8(3h) 4 781 335 (4 516 812) 227
Round 8(5m) 3 989 007 (3 771 315) 138

The 5m and 3h selection branches showed high overlap
between families initially, as expected since they were both
derived from the same earlier rounds. The similarity then
decreased such that about half of the families from the 5m
branch were also found in the 3h branch in Round 8 (Fig-
ure 1C). The higher-stringency 5m selection branch expe-
rienced a significantly faster loss of pool diversity and had
fewer sequence families at the end of selection, and there-
fore a larger fraction of its families were shared compared
to the 3h branch.

Best method for estimation of fitness

For all sequences present in our selection pools, ribozyme
fitness was estimated under two categories: individual se-
quences and sequence clusters. In the clustered approach,
each family was generally assigned a single estimated fitness
value based on the total abundance of that family. How-
ever, some families underwent notable changes in the cen-
ter sequence (i.e. the sequence of highest abundance) during
the selection, usually corresponding to a single nucleotide
mutation initially appearing in a few unique sequences and
then increasing to become the majority of a family towards
later rounds. We refer to these mutations as ‘notable’. Such
families were identified by a change in center sequence be-
tween Rounds 4 and 8 (amplification in these rounds in-
cluded mutagenic PCR). In these cases, families could be
split into two or more clusters based on similarity to the
old or new center.

As many prominent clusters and sequences were not
present at detectable abundance until Round 4, estimated
fitness values (Fe) and the corresponding enrichment values
(Ee) were calculated for all sequences and clusters in Rounds
4–8 from the 5m and 3h selection branches using Meth-
ods 1–6. These methods integrate information from multi-
ple rounds in different ways, depicted graphically in Supple-
mentary Figure S2. Coefficient of determination (r2), calcu-
lated between Ee and observed ER (weighted by sequence or
cluster abundances), was used to evaluate the methods. In
general, the correlations appeared linear, as expected, and
estimation of an overall fitness was more descriptive of all
rounds compared to fitness from any individual round (Fig-
ure 2A shows one example, with all comparisons detailed
in Supplementary Figure S7). Correlations based on clus-
ters were substantially better than correlations based on in-

Figure 2. Estimation of evolutionary fitness across the selection. (A) Ee
(Method 4) correlates with observed enrichment of clusters in the 5m
branch at Round 7 (correlation trend line shown with weighted r2= 0.77;
similar comparisons occur in other rounds); Ee was initially scaled to the
same range as E7 (as described in Materials and Methods). The area of
each dot is proportional to the relative abundance of the cluster. (B) Com-
parison of different methods of fitness estimation using the weighted r2

coefficient between estimated fitness of clusters (Fe, using Methods 1–6)
and observed enrichment (ER) at Rounds 5–8 (5m); r2 correlation does
not depend on scaling or normalization.
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Figure 3. HTS analysis used to identify high activity ribozymes and pre-
dict ribozyme activity from evolutionary fitness. (A) Triphosphorylation
and ligation rates for radiolabeled RNA. Left section (gray diamond) indi-
cates the activity of a control RNA transcribed carrying a 5′-triphosphate;
ligation higher than this shows adaptation for increased ligation efficiency,
corresponding to higher L. Other sections show activity of individual se-
quences, assayed after 5 min or 3 h; white diamonds denote clones chosen
previously (27), and black diamonds denote sequences identified by HTS
data. (B) Comparison of fitness estimated from the 5m and 3h branches
(weighted r2 = 0.87), fit by setting k equal at two time points; the fitted
parameters provide scaling constants Se(5m) and Se(3h). The area of each
dot is proportional to relative abundance of each cluster. (C) Comparison
of kestLest estimated from HTS fitness (Method 4, split clusters along 5m

dividual sequences (Supplementary Figure S8). We there-
fore focused further analysis primarily on clusters. Enrich-
ment ratios using clusters split according to notable mu-
tations showed a greater consistency across rounds com-
pared to families (Supplementary Figure S8), so clusters
were used in further analysis, with cluster enrichment and
fitness used to predict the fitness and activity of their center
sequences. The change of cluster fitness can be visualized
over several rounds (Video S1). Overall, Methods 4 and 5
(certainty-weighted linear combination of ER, with or with-
out scedasticity correction) showed the highest correlation
across rounds of selection (Figure 2B). As Method 5 adds an
extra level of complexity compared to Method 4, Method 4
was chosen as the best method of fitness prediction in this
study, and used in further calculations.

Identification of new highly active ribozymes

We sought to determine whether the HTS fitness analysis
could identify higher activity ribozymes than those previ-
ously identified through the arbitrary sampling and Sanger
sequencing of 36 clones from Rounds 5 and 8. We chose
eight sequences with high Fe and high prediction confidence
(see Supplementary Table S1 for details), and tested their
activities by reaction with Tmp and ligation of the triphos-
phorylated ribozyme by a ligase ribozyme, thus mimicking
the conditions of the selection procedure (27). Indeed, these
sequences reached considerably higher experimental activ-
ity than the ribozymes previously identified from the same
selection (Figure 3A; Table 2). Six of the eight high-Fe se-
quences showed activity greater than or equal to the best
previously identified ribozymes, by a factor of up to 10–
20. Overall, this approach identified ribozymes with sub-
stantially greater activity while testing fewer individual se-
quences (8 tested sequences versus 36 tested previously).

The 5m and 3h selection branches gave consistent esti-
mates of fitness (Figure 3B), which fits the relationship ex-
pected according to first-order kinetics (Text S1 (Equation
7)). The fit of the data to this equation yields the parame-
ters Se(5m) and Se(3h), which are needed to convert Ee into
Fe, which is directly tied to kinetic parameters (see Meth-
ods and Text S1). This provides an absolute prediction of
ribozyme activities from analysis based solely on evolution-
ary dynamics. The predicted activity (kL) of most high-
fitness sequences was found to be within a factor of 3 of
the values determined by experimentation on isolated se-
quences, with overall correlation (r2 = 0.52) across all tested
sequences (Figure 3C). The estimation errors in both HTS-
derived prediction and empirical measurement likely limit
the observable correlation (Supplementary Figure S9). The

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
branch), with kappLapp observed from isolated sequences, for points de-
scribed in Table 2. Black points correspond to previously identified and
tested sequences; red points correspond to eight sequences found to have
high fitness and tested biochemically in the present study. Observed values
of kappLapp were obtained in triplicate, with error bars corresponding to
standard deviation. The error ranges for kestLest for individual sequences
are expected to be on the order of ±50% (Supplementary Text S2, Figure
S11). Overall, these points (with the linear trend line shown as a dotted
black line) show an r2 correlation of 0.52.
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Table 2. Ribozyme activity assayed experimentally, comparing newly identified ribozymes with the best previously identified (27)

Sequence Name

Initial rate estimated by
HTS (kestLest)
(min−1M−1) R8(5m) Abundance

Initial rate measured
experimentally (kappLapp)

(min−1M−1) Previously Identified?

1-S 0.476 ± 0.238 0.1581 0.124 ± 0.033 No
2-S 0.761 ± 0.381 0.0449 0.278 ± 0.149 No
3-S 0.369 ± 0.185 0.0229 0.807 ± 0.171 No
4-S 0.431 ± 0.215 0.0435 0.212 ± 0.026 No
6-S 1.547 ± 0.774 0.0497 0.770 ± 0.166 No
8 0.298 ± 0.149 0.0759 0.080 ± 0.46 No
11-S 1.192 ± 0.596 0.0125 1.638 ± 0.078 No
22-S 1.072 ± 0.536 0.0060 0.412 ± 0.281 No
R5 3C21 0.115 ± 0.058 0.0060 0.074 ± 0.083 Yes
R8 35C18A 0.143 ± 0.072 0.0097 0.023 ± 0.003 Yes
R8 35C18B 0.173 ± 0.087 0.0130 0.020 ± 0.001 Yes
R8 55C10 0.423 ± 0.212 0.0102 0.030 ± 0.001 Yes
R8 35C10 0.173 ± 0.087 0.0130 0.050 ± 0.001 Yes
R8 55C18 0.158 ± 0.079 0.0030 0.036 ± 0.001 Yes
R8 35C16 0.295 ± 0.148 0.0457 0.025 ± 0.001 Yes

Estimated and measured values were calculated as described in Supplementary Text. Errors given are ± 1 standard deviation, as described in Methods and
Supplementary Text, with the standard deviation of kest calculated from cluster abundance as a scale-variant error of ±50% for cluster enrichment.

Figure 4. Area plot of sequence distribution over successive rounds. The
highest-count family of Round 8 (5m) (Family 1, with original center ‘1-
O’) begins the selection as a single center sequence at low count, with a
cloud of similar sequences appearing in subsequent rounds (red). At R4, a
strong beneficial mutation (referred to as ‘1-S’) appears, gradually becom-
ing surrounded by a cluster of similar mutants (blue) after mutagenic PCR
is introduced at R5 (see Supplementary Figure S10 for more details).

slope of the line of best fit was 0.73, close to the value of 1
expected from perfect prediction of absolute rates.

Beneficial mutations within clusters

Most of the clusters of highest estimated fitness carried no-
table mutations, in that they contained sequences that out-
competed the original highest-count sequence in the family
between Rounds 4 and 8. In the more stringent 5m selec-
tion branch, 34 out of the 59 highest-abundance peaks at
Round 8 displayed at least one notable mutation from the
central sequence of Round 4, such that a large portion of
the pool consisted of sequences similar to these mutants. In
such these cases, the notable mutation appeared to demon-
strate significantly increased survival fitness, with the new
cluster rapidly enriching to outpace the old sequence cen-
ter, with one such sweep shown in Figure 4. For clusters
with high abundance at Round 4, notable mutations (that

would dominate in later rounds) typically each accounted
for less than 1% of the cluster population at Round 4; thus,
out-competing the original center over the next four rounds
of selection would require a mutation with at least 1001/4

times (∼3×) the fitness of the original center. To determine
the effect of notable mutations on ribozyme activity, four se-
quences (1-S, 2-S, 6-S, 11-S) that clustered with previously
tested clones, but also possessed notable mutations, were
among those assayed experimentally. These sequences were
independently chosen on the basis of high fitness. Three of
the four mutants exhibited higher activity compared to the
best previously identified clone from the same cluster (up to
a five-fold increase), indicating that the notable mutations
were usually beneficial. One sequence (2-S) showed a five-
fold increase in activity despite a difference of only a single
nucleotide (Supplementary Table S2).

The observed bulk mutation rate during error-prone PCR
(following Rounds 4–8) was ∼1.7 mutations per sequence,
on average, or a fidelity q of 0.989 per base, which is consis-
tent with values from the original protocol (28). This gives
an estimated 18% (q150) of sequences surviving free of mu-
tations each round, such that the center sequence of a clus-
ter is expected to enrich at 18% of the rate of its cluster
if all mutations are neutral. For the top 20 clusters in the
pool, a single round of mutagenic PCR is expected to gen-
erate at least one copy of all possible single mutants, most
double mutants, and a substantial fraction of triple mu-
tants (though any individual sequence would appear at a
much lower count than the center sequence). HTS analysis
showed cluster center sequences enriching at approximately
half the rate of their overall clusters (Supplementary Figure
S10). This implies that cluster centers have ∼2.8-fold greater
fitness than the average of their mutants within a given peak
(50% versus 18%).

Ideality of in vitro evolution behavior

The observation that enrichment varies from round to
round, leading to inexact estimates of fitness, prompted
further study of the noise inherent to the selection. Error
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Figure 5. The ribozyme selection follows Fisher’s Fundamental Theorem
of Natural Selection (FFTNS). Clusters were analyzed for variance of fit-
ness in each round and for the change in mean F̄e (using Method 4). The
dotted line (y = x) represents behavior expected by FFTNS. Data are
shown for Round 4 and later, since earlier rounds were too heterogeneous
to support fitness calculation given the depth of sequencing performed.

distributions were calculated from the normalized differ-
ence between Ee and ER. Analysis suggested that lower-
abundance sequences enriched with greater noise, but en-
richment noise did not drop below a certain proportional
threshold for high-abundance sequences. This suggests that
abundance-dependent noise (e.g. genetic drift) dominates in
early rounds of selection and abundance-independent noise
or error (e.g. experimental variations) has a greater effect on
the enrichment of high-abundance sequences in later rounds
of selection. For lower-abundance clusters, scale-dependent
noise impacted individual sequences more than clusters,
suggesting that cluster enrichment might be a better pre-
dictor of the fitness of individual sequences (compared to
observed enrichment of individual sequences) (Supplemen-
tary Text S2, Figure S11).

To evaluate whether the evolution experiment would be
suitable for retrospective analysis (described below), we
measured the extent to which the selection as a whole fol-
lowed ideal behavior as predicted by Fisher’s Fundamen-
tal Theorem of Natural Selection (FFTNS) (33,34,36). In
general terms, FFTNS states that, over a round of natu-
ral (or artificial) selection (assuming that each allele’s fit-
ness does not change), the change in average fitness of a
population should equal the variance of sequence fitness in
the population (normalized by mean fitness). Obedience to
FFTNS by an evolving population implies that the evolu-
tionary dynamics are well-behaved and governed by rules of
natural selection. Indeed, the evolutionary dynamics were
consistent with FFTNS for both clusters and individual se-
quences (Figure 5, Supplementary Figure S12A), suggest-
ing that selection is the primary factor driving changes in
the estimated fitness distribution of the pool. This concur-
rence indicates that that the selection behaved predictably
and confirms that fitness mean and variance were accurately
estimated. Sequence clusters followed FFTNS more closely
than individual sequences, consistent with our earlier obser-
vation that a cluster-based analysis is subject to less noise.

As expected, estimated fitness F̄e increased during the
selection, with the higher stringency 5m selection branch

resulting in approximately 2-fold greater F̄e than the 3h
branch by Rounds 7–8. Interestingly, the variance of fitness
also increased over time in both selection branches. Intu-
itively, this increase is expected during a selection from ran-
dom sequence space, as the distribution of fitness is initially
sharply centered near zero, and then spreads to include
higher fitness values. To quantify this effect, we derived a
corollary to FFTNS, that the change in fitness variance be-
tween rounds is expected to equal the mean-scaled skew-
ness of the fitness distribution minus the change in aver-
age fitness squared: (σ 2

R+1 − σ 2
R) = E(FR − F̄R)3/F̄R −

(F̄R+1 − F̄R)2 (Text S1). The fit of the data to this corollary
reflects whether the shape of the fitness distribution, as cap-
tured by the first through third moments, obeys expected
dynamics. As skewness is a higher-order shape factor than
mean or variance, this relation is expected to be more sen-
sitive to noise or inaccuracies in the estimated shape of the
fitness distribution. Clusters followed this corollary well, al-
though individual sequences did not (Supplementary Fig-
ure S12). Therefore, Fe based on clusters gives a reasonably
accurate estimate of skewness, and the shape of the fitness
distribution based on clusters behaved in a predictable man-
ner.

Calculating the underlying distribution of ribozyme activity

Our ability to estimate fitness values, and therefore ri-
bozyme rate constants, with reasonable accuracy allows an
analysis of the overall distributions of fitnesses and rate con-
stants and their dynamics over the course of selection. Anal-
ysis focused on the distribution of these values for clus-
ters, since the fitness of individual sequences was subject
to a larger degree of noise and was less consistent with ex-
pected dynamics. A fitness distribution, PR(Fe), was cal-
culated from the HTS data for Rounds 4–8. As expected,
PR(Fe) shifts toward the right as the selection progresses
(Figure 6A), as sequences with high Fe increase in abun-
dance while those with low Fe decrease.

To infer the underlying fitness distribution of the initial
pool (P0(F)), 3h selection data were used, as the 3h selec-
tion experienced identical selection conditions throughout
Rounds 1–8. While the scarcity of conserved sequences and
clusters prior to Round 4 prevented direct measurement of
their distributions from sequencing data, FFTNS analysis
indicated that the selection exhibited predictable behavior.
We therefore employed a retrospective analysis to infer the
PR(F) of early rounds. As F represents a sequence’s sur-
vivability before amplification, the selection process essen-
tially multiplies a fitness distribution PR-1(F) by F to pro-
duce PR(F) (with appropriate normalization; see Materials
and Methods). Beginning at Round 4, we divided PR(Fe)
by Fe (and renormalized) to obtain the estimated distribu-
tion PR-1(F), until P0(F) (the initial pool) was obtained. The
validity of this process was verified by the observation that
PR(Fe)/PR-1(Fe) was linearly related to Fe (for later rounds
in which this comparison could be made) (Supplementary
Figure S13), in addition to the concordance of the experi-
ment with FFTNS.

The qualitative and quantitative shape of the distribution
of catalytic activities, not only fitnesses, in a pool of random
RNA is of fundamental interest. We therefore translated Fe
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Figure 6. The distributions of fitness and rate constants in a pool of RNA.
(A) Distribution of estimated rate constants (kest) for sequence clusters

(an absolute metric) into absolute rate constants by assum-
ing first-order kinetics with an average L value across the
population, as described in the Methods. The approriate-
ness of this translation was suggested by the correspondence
of absolute rate constants estimated by HTS data and rate
constants measured on isolated sequences of RNA (Figure
3C). Our retrospective analysis applied to rate constants
showed that the initial distribution of both fitness values
and rate constants had a tall peak near zero, as expected for
random RNA (Figure 6). Since the right-sided ‘tail’ of the
distribution would correspond to functional ribozymes, we
examined this region more closely. This tail was fit to three
possible distributions: log-normal, exponential, and scale-
free (Pareto). The log-normal distribution fit well to the ri-
bozyme tail for both fitness and rate constant, with a greater
correlation coefficient than the scale-free and exponential
distributions, whose fits also showed non-random patterns
of residuals (Figure 6C; Supplementary Figure S14). Sim-
ulations verified that stochastic noise in abundance data
would not interfere with the retrospective analysis to iden-
tify the distribution of the initial pool (Supplementary Fig-
ure S15).

Our method of translating fitness to rate constants had
made the approximation of a constant L (maximum extent
of triphosphorylation and ligation), i.e. that variations in
k (rather than L) dominate variations in fitness. At short
times (e.g. 5 min), the rate of a first order reaction is ap-
proximately Lk, and we would expect that the amount of
product conversion F≈Lkt. If k is dominant, then k should
correlate with F; conversely, if L is dominant, then L should
correlate with F. We found that k correlates well with Fe (r2

= 0.79) while L does not (r2 = 0.03), supporting our approx-
imation (Supplementary Figure S16A and B). In addition,
we found that k and L were uncorrelated, suggesting that
these kinetic parameters vary independently for ribozymes
(Supplementary Figure S16C).

DISCUSSION

The origin of a proposed RNA World depended on the
emergence of relatively rare, functional sequences from abi-
otic synthesis. A critical, but poorly understood, aspect of
this emergence (and other molecular selection processes) is
the distribution of activity in random sequence space. We
used HTS data to follow the evolutionary dynamics of an

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
over multiple rounds of selection; lines correspond to distributions mea-
sured from HTS data of Rounds 4–8 in the 3h selection branch (Yellow:
Round 8; Green: Round 7; Blue: Round 6; Purple: Round 5; Red: Round
4). (B) Inferred distribution of kest for sequence clusters in earlier rounds of
selection; solid red line corresponds to Round 4 distribution, while dashed
lines represent the retrospectively inferred distributions for Rounds 0–3
(Brown: Round 3; Yellow: Round 2; Green: Round 1; Blue: Round 0, i.e.
initial pool). (C) The high-activity (right-sided) tail of the initial distri-
bution of rate constants (k) is fit by a log-normal distribution (Red line:

log-normal distribution y = 1
σk

√
2π

exp[− (ln k − μ)2

2σ 2 ] with σ = 0.665,

μ = −5.375, pdf scaling factor = 54.3, and nonlinear r2 = 0.933; dot-

ted green line corresponds to fit scale-free distribution y = 6.38∗[27.9]6.38

k7.38 ,

with pdf scaling factor = 0.00807 and nonlinear r2 = 0.910; dotted blue
line corresponds to fit exponential distribution y = 89.08e−89.08k, with
pdf scaling factor = 1390 and nonlinear r2 = 0.859.
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in vitro selection for ribozymes capable of triphosphoryla-
tion, and we thereby inferred the distribution of fitness and
the underlying distribution of catalytic activity in the ran-
dom pool of RNA.

This ribozyme selection began with a random pool
(N150), whose effective complexity (1.7 × 1014 starting se-
quences from a theoretically possible set of 2.0 × 1090) far
exceeded the capacity of HTS. The selection thus illumi-
nates many random ‘pinpoints’ in sequence space (37), and
the high complexity of the pool allowed essentially unam-
biguous assignment of sequences to families. Although the
complexity of this pool prevents detailed mapping of the
complete fitness landscape (27), our selection yielded hun-
dreds of high-fitness sequence clusters, which provided data
suitable for generating a potential overall probability distri-
bution of fitness. In this selection, RNA fitness is a com-
bination of catalytic activity for the triphosphorylation re-
action as well as suitability as a substrate for ligation. Cat-
alytic activity is reflected by the rate constant (k), while both
catalytic and ligation substrate activity are reflected in the
total extent of reaction (L). In practice, we found that fit-
ness correlated well with kest but not with Lest, suggesting
that catalytic activity was the most important determinant
of fitness in this selection (Supplementary Figure S16).

Although sequence abundance is a convenient, and fre-
quently used, metric for fitness (23,38,39), abundance is sub-
ject to unpredictable effects that distort a direct relation-
ship to ribozyme activity (Text S3). Fitness estimated from
enrichment over multiple rounds indeed improved the fit-
ness metric. We attempted multiple methods to estimate
true fitness from enrichment data, including the previously-
reported geometric mean (36), as well as maximum likeli-
hood estimation, and variations of least-squares methods.
The best metric appeared to be a modified least-squares
regression (Method 4), in which enrichment observations
were weighted by the absolute sequence abundance in each
round for each sequence, essentially giving a larger ‘vote’ to
the rounds having greater observational certainty.

We identified eight high-fitness sequences that had not
been previously identified or tested during a conventional
analysis (in which 36 clones were assayed for activity) (27).
Our analysis proved to be powerful, in that six of the eight
clones had greater activity than the most active ribozyme
previously found, improving materially upon conventional
analysis (Text S4). As noted in other contexts (e.g. (23), HTS
also readily identified individual beneficial mutations (‘no-
table’ mutations), some of which were verified experimen-
tally.

The underlying distribution of fitness, and the accompa-
nying distribution of ribozyme activity, across populations
of random RNA are subjects of special interest for under-
standing both the RNA World hypothesis of early life and
the practical in vitro evolution of ribozymes. However, lit-
tle is known empirically about these––or any––evolutionary
fitness landscapes over large nucleotide sequence spaces. An
experimentally tractable pool of random RNA sequences
cannot sample its whole sequence space if the random re-
gion is longer than ∼28 nucleotides. However, in principle,
the underlying distribution of fitness, i.e. the probability dis-
tribution function, can still be inferred given an incomplete
sample of sufficient size, which our analysis of hundreds of

individual sequence families likely provided. We found that
changes in fitness distribution during in vitro evolution fol-
lowed Fisher’s Fundamental Theorem of Natural Selection
(FFTNS) and a corollary of FFTNS describing higher mo-
ments of the distribution (Text S5). We thus verified that
our selection was well-behaved and predictable in the for-
ward direction.

A well-ordered selection propagates its fitness distribu-
tion through each round according to an applied survival
function. The inverse function could in principle be ap-
plied retrospectively to later rounds, giving an inferred fit-
ness distribution of the preceding rounds. We found a lin-
ear relationship between the fitness distributions of consec-
utive rounds, as expected, confirming the validity of this ap-
proach. The inferred fitness distribution of the random pool
of RNA had a large component near zero, as expected, and
a high-fitness tail that represents sequences of particular in-
terest. We converted the fitness distribution of the right-
sided tail into a distribution of absolute ribozyme rates,
scaled using a comparison of sequence fitness between the
two selection branches. One may expect that accurate pre-
diction of activity for each ribozyme cluster is likely to be
challenging, due to experimental variations during selection
and measurement of ribozyme kinetics, as well as varia-
tions in ligase efficiency. The accuracy of our conversion was
evaluated for several individual ribozymes by comparing
rate constants predicted from HTS data with rate constants
measured biochemically, resulting in prediction of real val-
ues to within a factor of around 3 (r2 = 0.52 for overall cor-
relation). In addition, the conversion makes two simplify-
ing assumptions, namely assuming a pseudo-first-order re-
action, and neglecting variations in maximum activity (L),
which may be influenced by multiple factors (e.g. ligation
efficiency and folding stability) (40) (Supplementary Figure
S17). The assumption of pseudo-first-order kinetics is con-
sistent with earlier work in which eight isolated ribozymes
were found to have kinetics that fit well to this model (27).
The assumption of constant L is consistent with the post
hoc observation that L is essentially uncorrelated with Fe
(in contrast, k correlates well with Fe); while individual se-
quences’ L values are expected to vary, we assume its aver-
age will hold roughly constant over the larger overall fitness
distribution. It is important to note that the rate constants
were predicted from fitness on an absolute scale (set by the
reaction times of the selection branches), with no free pa-
rameters needed to achieve workable agreement with exper-
imental numbers.

No previous work has measured or approximated the
distribution of a catalytic activity over random molecu-
lar space of this scale; here, analysis of HTS data al-
lowed for the conversion of fitness information into ki-
netic parameters. Despite experimental and theoretical in-
terest, there is little consensus in the literature on the na-
ture and shape of any such distribution for any ribozyme
function. The affinity of aptamers has been posited to be
log-normally distributed, based on a model and experimen-
tal data for dsDNA-protein interactions in which individ-
ual base pairs contribute independently to overall binding
energy (9,10,41). However, energetic contributions that are
correlated along the sequence, such as from DNA bending,
could alter this distribution (42). In the case of RNA fold-
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ing, a theoretical model suggests that the activation energies
of melting follow a Gaussian distribution (11), while fold-
ing simulations suggest that the distribution of minimum
free energies for random RNAs is non-Gaussian (43). In mi-
crobial populations, the distributions of fitness effects from
new mutations have been fit to a variety of distributions, in-
cluding normal and exponential (44). In addition, extreme
value theory indicates that a high-value tail can be approx-
imated as a Pareto (scale-free) distribution if the value is
comprised of independent random variables, a trend ob-
served in previous comparisons of pool size and activity
(8). We attempted to fit the empirically derived ribozyme
rate constant distribution to log-normal, exponential, and
scale-free distributions.

We found that the inferred distribution of ribozyme rates
in a random pool fit well to a log-normal distribution. A log-
normal distribution of catalytic constants k for ribozymes
across sequence space could indicate a normal distribution
of the corresponding activation energies. Although the ob-
served distribution cannot be quantitatively translated into
activation energies without knowledge of the Arrhenius pre-
exponential factor (A), we note that the probability density
drops precipitously as rate increases, such that high-fitness
ribozymes occur in the population as extremely rare events.
A normal distribution of log(k) implies a normal distribu-
tion of Ea/RT + log(A). If we posit that A is similar for
most ribozymes in the population, the standard deviation of
log(k) should equal the standard deviation of Ea/RT, such
that our calculated σ log(k) = 0.665 corresponds to σ Ea = 1.6
kJ/mol. This distribution of activation energies is surpris-
ingly steep; under such a distribution, a ribozyme cluster
with 100-fold higher activity than the mean would occur
only once in a pool of 1011 sequences. The steep drop-off of
the distribution can be put in terms of the expected activity
of the best ribozyme in a pool of a given size (Supplemen-
tary Figure S18), which shows that even very large increases
in pool complexity result in relatively small gains in activity.
While various possible initial distributions of ribozyme ac-
tivity have been proposed, the fit of rate constants to a single
log-normal distribution (and the fit of activation energies
to a normal distribution) suggest that the ribozymes, de-
spite the large heterogeneity of sequence, share an underly-
ing mechanism for the emergence of function. One possible
interpretation is that a normal distribution of activation en-
ergies reflects the energetic contributions of many indepen-
dent interactions with finite variance, with the ribozymes
each using a similar number of interactions. The appar-
ent independence of small contributions could be tested by
combining mutations (45). HTS could be used to expand
and systematize this approach.

A few caveats should be considered regarding the use of
HTS data to infer the distribution of rate constants. First,
while sequence clusters exhibited behavior that was con-
sistent with evolutionary theory, individual sequences were
less well-behaved. The effect of this limitation can be seen
in the somewhat imperfect correlation between kinetics esti-
mated from HTS and kinetics determined biochemically for
individual sequences. This limits the retrospective analysis
to sequence clusters, and the relationship of PR(F)/PR-1(F)
to F should be used to verify the validity of such an analysis.
Given that an earlier effort analyzing a mutational library

of the Tetrahymena group I ribozyme did not find a good
match to FFTNS (46), the success in the present instance
may be due to a combination of the data-rich, robust met-
ric for cluster fitness, the relatively large variation in fitness,
and the low background of the experimental selection, for
which all tested sequences have exhibited catalytic activity
(i.e. low false positive rate). Second, any conversion of fit-
ness to rate constants would rely on assumptions about the
kinetic model. In this case, the assumption of constant L is
known to be a simplification. L is presumably influenced by
RNA folding and activity as a ligase substrate, in addition
to the triphosphorylation reaction. While it may be justi-
fied as discussed above, based on the ribozymes observable
in later rounds, it is possible that the statistical properties of
L differ for lower activity ribozymes. In that case, it would
not be possible to deconvolve the effect of k and L on fit-
ness, although F would still have biochemical meaning as
the fraction reacted. Another assumption made here is that
RT-PCR amplification was not a substantial influence on
fitness; the plausibility of this assumption should be con-
sidered as a source of error. With respect to the distribution
itself, it should be noted that there is presumably an up-
per limit to activity that truncates any probability distribu-
tion function in reality. That is, increasingly precise arrange-
ments of nucleotides at the active site, and correspondingly
higher catalytic rates, are presumably limited by the RNA’s
ability to arrange around a catalytic site. Structural and/or
chemical limits in RNA would provide an upper limit for
the possible catalytic rate enhancement, affecting the distri-
bution at very high activity. Finally, it is unknown whether
conclusions drawn from in vitro evolution for triphosphory-
lation ribozymes would apply to other selections (Text S6).

In summary, an evolutionary analysis of a ribozyme se-
lection for triphosphorylation activity identified improved
ribozymes as well as crucial beneficial mutations, and thus
this procedure may be useful for identifying the highest ac-
tivity ribozymes (or aptamers or protein enzymes) in a se-
lection pool with minimal experimental testing. In addi-
tion, estimated ribozyme fitness across the selection largely
obeyed evolutionary dynamics as expected by Fisher’s the-
orem. Here the translation relied on normalization using
the two selection branches (5m and 3h), but normalization
could also be achieved using varying substrate concentra-
tions or knowledge of the amplification required between
rounds. A retrospective analysis allowed inference of the
distribution of catalytic activities in the initial pool of ran-
dom RNA, providing, for the first time, a look at the un-
derlying distribution of rate constants and activation ener-
gies for an in vitro selection. The analysis suggests a Gaus-
sian distribution of activation energies, perhaps reflecting
the summation of many independent energetic contribu-
tions. The surprisingly steep drop-off in the frequency of
high-activity ribozymes, and the accompanying flatness of
the expected maximum k vs. complexity curve (Supplemen-
tary Figure S18), suggests that the ribozyme activity level
is largely determined by the nature of the function, not the
complexity or diversity of the library. For some functions,
a relatively low complexity pool of RNA may thus possess
ribozymes of biochemically significant activity, suggesting
that the emergence of such functions may not be uncom-
mon in an RNA world.
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Supplementary Data are available at NAR Online.
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