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ABSTRACT
Position estimation using global navigation satellite systems (GNSS) suffers from poor accuracy within urban canyons due to significant signal
disruption caused by tall buildings. This issue can be attributed to the GNSS signals reflecting off buildings resulting in severe multipath
reflections which degrade the receiver’s performance. In this paper, we introduce an innovative approach to filter GNSS satellite measurements
to improve the accuracy of the estimated position by leveraging a clustering algorithm. This approach utilizes a predictive GNSS availability
service to filter out non-line-of-sight measurements. Then, a subset of line-of-sight satellite measurement combinations are evaluated using a
clustering algorithm. When combined, results show these techniques can reduce the mean horizontal error measured in an urban canyon by
nearly an order of magnitude, from ∼ 18 meters to ∼ 2 meters when using a single point positioning solver.

I. INTRODUCTION
High accuracy positioning will become a necessity to enable future UAS operations (Young et al., 2020). This is especially
true for urban settings, where global navigation satellite systems (GNSS) positioning (Morton et al., 2021) will play a pivotal
role in optimizing routes for real-time traffic management and ride-sharing services (Williams et al., 2022), as well as powering
location-based mobile apps that facilitate finding nearby restaurants or tracking delivery drivers (Zangenehnejad and Gao, 2021).
Urban Air Mobility (UAM) envisions a future where aerial vehicles navigate complex urban landscapes to provide efficient
transportation solutions (Straubinger et al., 2020). Accurate and reliable position estimation is a critical factor in ensuring safe
and efficient UAM operations. However, the errors caused by multipath in dense urban environments can severely impact the
accuracy of position estimates for GNSS users (Amin et al., 2016), as well as future airborne vehicles (Xie and Petovello, 2014).

One popular method to improve the reliability of GNSS positioning is Receiver Autonomous Integrity Monitoring (RAIM)
(Hewitson and Wang, 2006). RAIM is a system that ensures the integrity of GPS measurements for accurate position, navigation,
and timing (PNT) solutions by detecting and mitigating errors caused by erroneous GPS measurements or other anomalies.
While RAIM systems play a crucial role in ensuring the integrity of GPS measurements, the effectiveness of RAIM algorithms



decreases in urban canyons due to multiple satellite signals simultaneously experiencing high levels of multipath, and signal
obstructions which reduce the redundancy of correct signals (Angrisano et al., 2012).

Systems, such as the Satellite-Based Augmentation Systems (SBAS) (Van Diggelen, 2009) and Ground-Based Augmentation
Systems (GBAS) (Pullen et al., 2011), have also been developed to correct for GPS signal errors. Unfortunately, these systems
are unsuitable to correct for multipath errors in urban environments. Newer technologies, such as advanced RAIM (ARAIM)
algorithms, have also been developed to use multiple GNSS constellations in an effort to further reduce the positioning error,
and can be useful in urban environments (Tran and Presti, 2019; El-Mowafy et al., 2022). Using ARAIM may be sufficient to
remove signals affected by multipath, as long as the number of affected signals is small. Furthermore, ARAIM paired with 3D
models have been shown to be effective at removing NLOS multipath effects (Hsu et al., 2015). Additionally, combining GNSS
with other sensor data, such as inertial sensors or Wi-Fi positioning, can enhance accuracy and reliability in urban navigation
(Ang, 2018). However, it’s important to recognize that these methods aren’t universally available or applicable in every situation.
Therefore, developing new methods of error mitigation, such as selective satellite usages techniques, as explored in this research,
is crucial in realizing reliable Urban Air Mobility operations.

In this work, we propose a novel clustering technique which involves evaluating a subset of combinations of satellites measured
by the receiver when determining a position solution, moving beyond the conventional single-satellite assessment employed by
RAIM. By concurrently evaluating the position solution from multiple satellite combinations, we can identify single problematic
measurements, and detect and address the complexities that arise when significant multipath is present on multiple measurements.
This new approach is computationally intensive due to its combinatorial nature, but can now feasibly run in real-time due to
the increased compute power available in modern consumer computer systems. This computational power allows us to analyze
larger amounts of data using our technique to provide a better position solution in a reasonable amount of time.

Clustering algorithms offer a promising avenue for identifying similarities between position solutions within a set of combinations
of satellites. Clustering algorithms are a type of unsupervised machine learning algorithms designed to group similar data points
together in order to discover patterns within the data (Xu and Wunsch, 2005). Common clustering methods include K-means,
hierarchical clustering, and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Xu and Tian, 2015), each
employing different approaches to assign data points to clusters based on predefined criteria. By grouping satellite combinations
with similar position solutions, we can identify anomalies that deviate from these established clusters. Outliers, which may
represent erroneous satellite measurements or unique error patterns, often stand out as distinctive clusters or isolated data points.
By leveraging clustering techniques, we can gain insights into these irregularities and remove erroneous measurements from
our final position estimation. This approach could be used to enhance the detection of problematic satellite measurements and
contribute to improved accuracy and reliability in navigation and positioning systems.

However, even with the advances in computation, iterating through all possible combinations is computationally impractical.
For this reason, being able to choose which combinations to iterate through is important. The state space of possible solutions
can be reduced by using NavQ (Dill et al., 2021) to determine which satellite measurements are predicted to be NLOS and
remove them prior to running the clustering algorithm. The development of NavQ is an ongoing effort to achieve near real-time
GNSS simulations by leveraging high performance computing techniques (Dill et al., 2021; Gutierrez et al., 2022a) to improve
GNSS reliability in urban canyons (Gutierrez et al., 2022b; Moore et al., 2023; Gilabert et al., 2023). In this work we use the
lower elevation angle LOS satellites to create the combinations of satellites for which we compute position solutions as these
satellites typically have a higher probability of having larger multipath error components (Hofmann-Wellenhof et al., 2007).
The higher elevation angle satellites remain fixed and are appended to each combination. The position solution for each satellite
combination is then computed and the clustering algorithm determines the densest collection of position solutions. Finally the
combination of satellites closest to the centroid of the cluster is selected as the algorithm’s solution. Further elaboration is
provided in the following sections of this paper.

II. OBJECTIVES
This work advances three research objectives:

1. Enhancing Position Estimation Accuracy in Urban Environments: The primary objective of this research is to develop
and prototype an innovative approach to improve the accuracy of a GNSS position estimation in urban canyons.

2. Exploring Advanced Satellite Signal Selection: This research seeks to explore advanced satellite signal selection methods,
moving beyond conventional RAIM techniques. The clustering algorithm determines and removes erroneous measure-
ments. It is hypothesized that even when there are many erroneous measurements, there often still exist a subset of
measurements that will produce a more accurate solution than using all the available signals measured by the receiver.

3. Leveraging Machine Learning for Multipath Mitigation: This research aims to leverage clustering algorithms to mitigate
the effects of LOS multipath on positioning accuracy.



III. METHODOLOGY
1. Physical Setup
For this experiment, we employed a SparkFun u-blox F9R breakout GNSS receiver, for its ability to measure L1 and L2
signals from various satellite constellations (including GPS/QZSS, Galileo, GLONASS, and Beidou), generate a GNSS/inertial
integrated solution, and provide raw GNSS ephemeris and signal measurements. To complement this receiver, we chose the
ArduSimple simpleANT2B multiband GNSS antenna, which is fully compatible with the satellite constellations and frequencies
used by the u-blox F9R GNSS receiver. The antenna was affixed to the vehicle’s roof using a magnetic mount with the receiver
installed inside the vehicle. To facilitate data collection, the receiver was connected to a laptop, which powered the receiver and
logged the GNSS data.

2. Location
Data for this experiment was collected around the downtown area of Columbus, Ohio shown in Figure 1. The city of Columbus
was a good candidate due to its moderately sized urban canyon. The vehicle was driven through the same route in the downtown
area of Columbus, Ohio 8 times over 2 days, for a total of 4 test drives each day, collecting 5445 epoch samples. As part of
this analysis, we also focus on a specific segment of the path. This segment of the path, which will be referenced as the urban
canyon segment, is characterized by the dense urban canyon topography we target in this work. The urban canyon segment of
the path contained 1883 epochs, out of the 5445 total epochs we collected.

Figure 1: Google Earth view of the location with the ground-truth displayed in green.

3. Ground-truth Reference
The ground-truth reference in this experiment was derived from the fused GNSS/internal solution generated by the F9R receiver
during the data collection process as depicted in Figure 1. Although this integrated solution is anticipated to possess greater
accuracy compared to either a standalone GNSS or inertial solution, it remains susceptible to inaccuracies, particularly within
areas of higher urban density. Nevertheless, this fused solution suffices for the purpose of comparing the raw and processed
GNSS solutions.



IV. CONSENSUS CLUSTERING ALGORITHM
A novel clustering algorithm was developed to enhance GNSS-based position estimation. A block diagram describing this
algorithm is shown in Figure 2. The algorithm is divided into three main stages: 1) “NavQ execution”, 2) “Satellite combinations
and positions computation”, and 3) “Cluster determination”. This algorithm is designed to use RTKLIB’s single point positioning
(SPP) solver. An SPP solver is a navigation technique that estimates the location of a single receiver by using the pseudorange
measurements to different GNSS satellites. Additionally, the algorithm does not rely on previously computed solutions to
reduce the error (i.e., each solution is independently computed). Using these techniques allows for the treatment of each epoch
in isolation to determine the effectiveness of the algorithm.

Figure 2: Block diagram of our proposed consensus clustering algorithm.

For each epoch, the NavQ GNSS performance monitor (Dill et al., 2021) is used to predict which satellites are in LOS, and which
are NLOS. The algorithm then computes the combinations of the lowest satellites (in terms of elevation angle) and obtains the
position solution for each distinct combination of satellites. If the algorithm finds a sufficient number of valid position solutions,
the clustering algorithm identifies the densest cluster of position solutions. The combination of satellites that generates the
position solution closest to the centroid of the identified cluster is selected as the final set of satellites.

1. Input Parameters and Variables
The proposed algorithm uses two input parameters:

• NT : represents the target number of satellites used to create combinations of satellites and compute position solutions.
The value selected for the results described in this paper is 10, unless stated otherwise.

• Rmin: ensures a minimum number of valid position solutions are obtained so that the clustering algorithm can work
effectively. The value selected for the results described in this paper is 0.1.

Additionally, the algorithm uses the following variables:

• N : indicates the number of satellites being evaluated. For each epoch, this variable is initialized to be equal to NT .

• BNLOS: boolean variable indicating the use of NLOS satellites. For each epoch, this variable is initialized to false.

• VC : equal to the number of valid combinations of satellites.

• RV : defined as VC/2
N . RV represents the ratio of the number of valid combinations of satellites, versus the total

combinations of satellites.

• Ccount: indicates the number of clusters found by the clustering algorithm.

2. NavQ Execution
In this stage, the fused GNSS/inertial solution is used to provide an estimated position to NavQ (Gilabert et al., 2023). This
position is processed by NavQ to determine the relative geometry between satellite positions, local buildings and the receiver.
The output of NavQ is a list of satellites that are considered in LOS. The measurements observed by the sensor at this epoch
are then divided into two sets: 1) the measurements coming from LOS satellites, and 2) the measurements coming from NLOS
satellites.

3. Satellite Combinations and Positions Computation
Figure 3 depicts the block diagram of the logic used to produce the results from the ”combinations of satellites and position
solutions” stage from Figure 2. In this stage, we determine which combinations of satellites (and their corresponding position
solutions) are passed on to the clustering algorithm. The algorithm has two priorities when creating the combinations of
satellites. Priority 1 uses LOS satellites only. Priority 2 incorporates the use of high elevation angle NLOS satellites when there
are not enough LOS satellites to meet the target Rmin. The algorithm then determines the lowest N -LOS satellites and creates a
total of 2N combinations. Any remaining LOS or NLOS satellites are added to all of the combinations. These combinations are



Figure 3: Block diagram of the satellite combinations and positions computation stage of the consensus clustering algorithm.

written to a RINEX file where each combination is treated as a different epoch in RTKLIB1. This modified version of RTKLIB
is used to obtain the position solutions for all the combinations of satellites. Some of these combinations will not generate a
valid position solution for one of two reasons: 1) the combination does not have enough satellites to produce a solution, or
2) the solver is unable to find a position solution that meets a predetermined threshold, therefore marking that combination of
satellites as invalid.

If RV >= Rmin, the algorithm continues to the next block. The condition RV < Rmin can happen in situations where there
is a low satellite count and the combination of satellites do not produce enough valid position estimates. If this happens, the
algorithm decreases the value of N by one and retests the new set containing combinations of satellites. Decreasing the value
of N results in a smaller combination count (2N ), which increases the likelihood of obtaining enough position solutions to meet
Rmin, while reducing the need to use NLOS satellites. If the algorithm reaches a value of N lower than 5, it will begin to
incorporate NLOS satellites. If BNLOS is false, the algorithm sets BNLOS to true, and resets the value of N to be equal to NT .
Once these changes are made, the algorithm restarts. If BNLOS was already set to true, the epoch process is terminated because
there are not enough satellites available to produce solutions for our algorithm to work. This situation was never encountered
during this study, but is certainly a possibility in GNSS degraded environments.

4. Cluster Determination

Figure 4: Block diagram of the cluster determination stage of the consensus clustering algorithm.

Figure 4 shows the final stage of the algorithm, where a clustering algorithm is used to identify the densest cluster of the position
solutions. In this work, different hierarchical clustering techniques have been tested, as well as the aforementioned DBSCAN
method, where DBSCAN was selected based on the observed results. DBSCAN works by grouping together data points that are
closely packed and have a sufficient number of neighbors (also referred to as core points), defining clusters based on the density

1The demo5 version of RTKLIB (Takasu et al., 2007) was modified to process multiple epochs as if they were the same epoch. This modification allows
multiple combinations of satellites to be processed within the same execution program, and therefore, improving the execution time of the algorithm.



of the data, while identifying points that are isolated as noise. The two main variables used with DBSCAN are ”epsilon” (ϵ),
representing the radius within which to search for neighboring points, and ”minPts” (Kmin), the minimum number of points
required to form a dense region or cluster(Xu and Tian, 2015). Our algorithm initializes the value of ϵ to the smallest Haversine
distance2 between the closest position solutions. Kmin is defined as: Kmin = Rmin × VC .

The algorithm then runs DBSCAN with the previous parameters on the valid position solutions. If a cluster is not found
(Ccount < 1), then the value of ϵ is increased. DBSCAN will rerun this step until the algorithm is able to find at least one
cluster. This technique allows for the systematic identification of the densest cluster. The premise of this approach is that
the densest cluster will contain position solutions from satellite combinations which have not been affected by multipath. The
proximity of the position solutions indicates that any position solution that is not found within the dense cluster is likely the result
of a combination of satellites that contained one or more outliers. Finally, the algorithm selects the combination of satellites
that resulted in the position solution closest to the centroid of the cluster.

5. Example

(a) (b)

Figure 5: Example epoch with a moderate sky blockage due to buildings to the east and northwest of the position of the vehicle as shown in
the sky-plot (a), and (b) the resulting position solutions from the satellite combinations including the selected position solution.

Figure 5 shows an example of how the algorithm works for a datapoint from the collected data. The input parameters to the
consensus clustering algorithm were set to the following values: N = 10, and Rmin = 0.1. In this example, the sensor
observed measurements from 17 satellites, where 14 of those satellites were predicted to be in LOS by NavQ. The algorithm
then created combinations of satellites for the satellites: C12, C24, C26, C35, G01, G17, G19, G30, R12, and R22; while
keeping fixed the satellites: C44, E31, G14, and R13. All of the 1024 possible combinations were tested using RTKLIB and
only 457 combinations generated valid position solutions.

Figure 5(b) shows the valid position solutions together with the solution produced from the use of all measurements, and the
solution produced by NavQ. It is clear there are a large number of position solutions near the true reference position of the
vehicle (marked in purple), as seen in the zoomed image in the top right. The consensus clustering algorithm is able to find a
dense cluster near the true position, resulting in the selection of a combination of satellites that yields a horizontal positioning
error of 1.61 m, as compared to 67.17 m and 74.56 m of horizontal error for the position solutions, using all measurements and
NavQ, respectively.

V. EXPERIMENTAL RESULTS
We assess the performance of our proposed algorithm by measuring the horizontal error between the estimated ground truth
and the computed position solution. Measurements are collected in meters. Figure 6 shows the ground track of the various
position solution methods along with the truth reference. The blue rectangle highlights the urban canyon segment of the path. In
Figure 6, we can observe considerable variability in the solutions produced using all measurements from the sensor, particularly
those in the denser portion of the urban canyon around the taller buildings and narrow corridors. On the other hand, both

2The Haversine distance is the shortest distance between two points on the surface of a sphere. This formula is commonly used in navigation and geospatial
applications applied to the spherical shape of the Earth.



NavQ and our novel approach find position solutions closer to the true path; however, specific segments of the trajectory pose
challenges for both approaches.

Figure 6: Position solutions obtained with our approach (green), as compared to using only NavQ (yellow) and all measurements (red). The
blue rectangle marks the urban canyon segment of the full path.

Table 1 summarizes the results derived from using all eight datasets. We additionally processed all measurements and the
filtered measurements from NavQ using RTKLIB’s fault detection and exclusion (FDE) system based on RAIM. We will refer to
this system as RTKLIB-FDE. In this system, RTKLIB retries the estimation by excluding one by one of the available satellites.
After all of the combinations are tested, the estimated receiver position with the lowest normalized squared residuals is selected
as the final solution. This system is capable of identifying and excluding an outlier caused by multipath, but this feature will not
be as effective with two or more invalid measurements. Those results can also be found in Table 1. These results were collected
using NT = 10, allowing 1024 potential combinations of satellites to be analyzed. Our method showed marked improvements
across all metrics as compared to alternative methods. We were able to achieve 100% PVT availability, whereas using NavQ
alone resulted in 0.64% of the epochs with no available position solution due to an insufficient number of satellites. This effect
was also reflected with the RTKLIB-FDE outcome from NavQ.

Table 1: Horizontal error and PVT availability of the position solutions generated by all the raw measurements, NavQ, RTKLIB-FDE, and
our consensus clustering algorithm with NT = 10, for all eight datasets of the full path.

Method Mean error
[m]

Maximum
error [m]

Standard
Deviation [m]

PVT
Availability

All measurements 11.81 206.14 16.44 100%
All measurements + RTKLIB-FDE 7.93 147.99 12.9 100%
NavQ 3.23 149.45 6.26 99.36%
NavQ + RTKLIB-FDE 3.71 6163.61 84.66 99.36%
NavQ + Consensus Clustering 2.10 57.97 3.25 100%

Additionally, RTKLIB-FDE improved the overall accuracy of the position solutions for both, all measurements and NavQ. In
NavQ + RTKLIB-FDE, RTKLIB-FDE was executed after NavQ had already filtered out many satellites it had identified as
NLOS, allowing for RTKLIB-FDE to isolate the remaining problematic measurements. Only 5 epochs resulted in a horizontal
error of more than 200 m, and as high as 6 km, as shown in Table 1. These outliers skewed the mean error, although
RTKLIB-FDE performed adequately most of the time.

Table 2 provides a similar summary of the outcomes, specifically for the urban canyon segment of the path. When utilizing



Table 2: Horizontal error and PVT availability of the position solutions generated by all the raw measurements, NavQ, RTKLIB-FDE, and
our consensus clustering algorithm with NT = 10, for all eight subsets of the datasets for the urban canyon segment of the path.

Method Mean error
[m]

Maximum
error [m]

Standard
Deviation [m]

PVT
Availability

All measurements 18.52 206.14 18.73 100%
All measurements + RTKLIB-FDE 12.75 147.99 15.37 100%
NavQ 4.49 149.45 8.61 99.57%
NavQ + RTKLIB-FDE 7.03 6163.61 144.07 99.57%
NavQ + Consensus Clustering 2.39 57.97 4.19 100%

all measurements and employing RTKLIB’s SPP solver, the average horizontal error amounted to 18.52 m, with a standard
deviation of 18.73 m, and a maximum error of 206.14 m. In contrast, employing NavQ alongside the clustering algorithm,
which generates combinations from the 10 lowest elevation angle satellites, resulted in a notably reduced average horizontal
error of 2.39 m, with a standard deviation of 4.19 m, and a maximum error of 57.97 m, when using RTKLIB’s SPP solver. The
reduced maximum errors provides evidence regarding the efficacy of our approach.

Across the entire dataset, only 17 position solutions provided by our method had a horizontal error exceeding 10 m, as compared
to using all measurements, constituting a 0.3% of the overall collected data. Finally, our algorithm is able to handle situations
where LOS satellites are insufficient to produce a PVT solution (as shown by NavQ’s PVT availability). In these cases, the
consensus clustering algorithm incorporates NLOS satellites to produce enough valid position solutions for DBSCAN to work
effectively.

1. Horizontal Error Analysis
We compare the methodologies using an empirical cumulative distribution function (ECDF) graph to capture the horizontal
error. The ECDF, a statistical visualization tool, offers a comprehensive representation of the cumulative distribution within
a dataset. Figure 7 shows the ECDF’s for both: (a) the complete path dataset, and (b) the urban canyon segment. The x-axis
delineates the horizontal error, while the y-axis denotes the cumulative distribution. In Figure 7(a), the 95th percentile is
highlighted for the five methods, signifying the 95th percentile of the measured horizontal error. For the entire path dataset, the
use of all measurements resulted in a 95th percentile error of 45.54 m. In contrast, employing NavQ reduced this error to 11.19
m, and our proposed method further decreased it to 5.0 m, demonstrating a substantial reduction in the overall error versus using
NavQ alone. When compared to RTKLIB-FDE, our method was still able to provide a lower error, even when RTKLIB-FDE
was paired with NavQ.

(a) Full path (b) Urban canyon section

Figure 7: Empirical cumulative distribution function of the horizontal error for different algorithms. (a) results for the full 8 datasets, which
include 5445 epochs, and (b) results for the urban canyon segment of the path for the 8 datasets, which includes 1883 epochs.

Figure 7(b) illustrates the ECDF for the urban canyon segment of the path. Here, the 95th percentile error increases across
all methods, emphasizing the challenging nature of urban canyon environments. The horizontal errors observed with all
measurements seem to correlate with the dense urban canyon. Notably, our proposed method exhibits a marginal degradation,



from 5.0 m to 5.61 m in the 95th percentile of the horizontal error, suggesting that our method is capable of handling the
intricacies of dense urban canyons. We were able to significantly mitigate errors associated with faulty signal measurements.
In this segment of the path, RTKLIB-FDE paired with NavQ was also able to reduce the 95th percentile error, although not
as significantly as our method. The consistency in performance across varied environments underscores the resilience of our
method. The following subsection aims to quantify the scenarios in which our method may exhibit limitations, specifically
examining the results based on sky visibility.

2. Sky Visibility Effect
An insightful approach for characterizing the complexities of this problem can be illustrated by organizing the data based on the
percentage of sky visibility. This visibility metric was computed using NavQ on the ground truth position and estimating the
average sky visibility from the data used to generate sky plots. Figure 8 plots the average horizontal error against the percentage
of sky visibility, with data grouped into bins of 5% visibility increments. The error bars represent the maximum observed
error within each bin for each method, and the histogram at the top of the plot illustrates the percentage of observations falling
within each visibility bin. For the entire path segment as, shown in Figure 8(a), epochs predominantly exhibit high visibility,
attributable to extended path segments with limited obstacles around the ground truth positions. Conversely, Figure 8(b) shows
a reduced sky visibility for the urban canyon segment, averaging approximately 75% visibility, with instances as low as 45%.
Notably, the maximum horizontal error across multiple bins is significant when using all measurements. NavQ is capable of
reducing the maximum error in each bin considerably, with our method exhibiting the most significant improvement. The lower
average error at higher visibility aligns with expectations, indicating a favorable trend in terms of reducing errors in scenarios
with better visibility.

(a) Full path (b) Urban canyon section

Figure 8: Horizontal error as a function of the visibility of the sky percentage. (a) results for the full 8 datasets, which include 5445 epochs,
and (b) results for the urban canyon segment of the path for the 8 datasets, which includes 1883 epochs.

a) Low Sky Visibility Analysis
At low sky visibility, we observed two distinct error categories. The first category of errors are false positives arising from trees
near the path erroneously obstructing the view of the sky. These false positives are a result of the vehicle traversing close to
a tree, prompting NavQ to filter out numerous satellites due to the tree blocking their view of the sky. This error resulted in
degraded position solutions for NavQ, and occasionally for the consensus clustering algorithm, due to an increased Dilution of
Precision (DOP) from degraded satellite geometry. Figure 9 shows a representative example of this phenomenon.

Figure 9(a) shows the satellites used in NavQ’s solution (shown in green) predominantly occupy the third quadrant of the
sky. Despite 10 of these satellites being in LOS, RTKLIB was only able to identify 77 valid position solutions from these
combinations, culminating in a suboptimal position solution selected by our algorithm, as compared to one utilizing all available
measurements. While this issue aligns with the challenges associated with NavQ discussed in prior work (Moore et al., 2023),
the occurrence in this specific environment is infrequent, representing less than 0.5% of the observations. It is important to
note that, in this context, the magnitude of the error is typically not large. The limited error can be attributed to the fact that the



signals employed are not affected by reflective surfaces; rather, the issue arises from the use of satellites in a concentrated area
of the sky, resulting in an unfavorable DOP for the position solution.

(a) (b)

Figure 9: Example epoch of an incorrect assessment due to a tree blockage decreasing the sky visibility. (a) shows the sky-plot observed at
the location of the vehicle, and (b) the resulting position solutions from the satellite combinations including the selected position solution by
our consensus clustering algorithm.

The second category of errors observed during epochs with low sky visibility is attributed to poor visibility due to tall buildings
in densely urban environments. In such areas, the constrained sky visibility limits the number of LOS satellites to an extent where
obtaining an accurate position solution using only LOS measurements becomes infeasible, as evidenced by 35 occurrences where
NavQ removed NLOS, and as a result, was unable to estimate a position with only LOS satellites. Alternatively, while there
might be a sufficient number of valid LOS satellites to compute a single solution, their count may still be too small to generate
valid combinations of position solutions, thereby compromising the clustering algorithm’s ability to conduct a comprehensive
analysis.

(a) (b)

Figure 10: Example epoch of an incorrect assessment by the consensus clustering algorithm due to low sky visibility. (a) shows the sky-plot
observed at the location of the vehicle, and (b) the resulting position solutions from the satellite combinations, including the selected position
solution generated by our consensus clustering algorithm.

An instance of the second category of errors is shown in Figure 10(a), where only 7 satellites were in LOS, yielding just 1
valid position solution among all possible satellite combinations. Consequently, our algorithm attempts to lower the value of
N, a strategy that proves insufficient in this case. Therefore, our approach incorporates NLOS satellites into the satellite sets to
bolster the pool of valid position solutions eligible for the clustering algorithm. As illustrated in Figure 10(b), this corrective
measure is, again, insufficient to rectify the skew in position solutions, but does yield more valid solutions. Intriguingly, in
this specific case, the sole valid position solution derived from using only LOS satellites still turned out to be the best solution.
Consequently, our algorithm selects a subset of satellites resulting in a position solution inferior to that of NavQ. Fortunately,
such corner cases are infrequent, and in the majority of situations, our algorithm demonstrates superior performance.

b) High Sky Visibility Analysis
Across the majority of high sky visibility epochs, our algorithm demonstrated exceptional performance. A representative
example of our algorithm’s performance is presented in Figure 11(a). Figure 11(b) shows that our approach correctly identifies



a reliable position solution, which resulted in a minimal horizontal error. In this specific scenario, 14 satellites were in LOS,
and the 10 satellites with the lowest elevations contributed to a normalized distribution of position solutions, with our algorithm
converging near the truth position. This outcome implies the absence of significant multipath components in the signals received
from the LOS satellites.

(a) (b)

Figure 11: Example epoch of a correct assessment by the consensus clustering algorithm. (a) shows the sky-plot observed at the location of
the vehicle, and (b) the resulting position solutions from the satellite combinations, including the selected position solution by our consensus
clustering algorithm.

VI. COMPUTATIONAL PERFORMANCE ANALYSIS
We have also conducted an analysis of the algorithm’s execution time. Table 3 shows the mean epoch processing times when
targeting different values of NT , along with the associated horizontal error. Increasing the value of NT above 10 drastically
increases the execution time of the algorithm, making it infeasible for near real-time applications using today’s modern hardware.
We do observe an improvement across all metrics when increasing the value of NT , achieving the lowest mean error of 2.08 m
with a maximum error of 55.56 m, with NT equal to 12.

Table 3: Comparison of the average epoch processing time for the consensus clustering algorithm, for different values for NT and the average
and maximum horizontal error and PVT availability, across all datasets.

NT Mean epoch pro-
cessing time [s]

Mean error [m] Maximum Error
[m]

PVT Availability

6 0.69 2.42 104.99 99.96%
8 1.69 2.15 105.19 100%
10 6.25 2.10 57.97 100%
12 28.86 2.08 55.56 100%

Finally, it should be noted that while the execution time of the algorithm is considered in our results, the primary goal of
this research was to improve GNSS positioning accuracy. Additional work could be done to further optimize the algorithm’s
performance.

VII. CONCLUSIONS
In this work we explore a unique approach to mitigating the impact of multipath in urban environments. We proposed a
new algorithm to enhance position estimation accuracy in the presence of multipath on multiple satellite measurements. By
combining an unsupervised machine learning algorithm and the NavQ GNSS performance monitor, our framework refines
position estimates and offers a more reliable and accurate navigation and localization system. This technique yielded significant
improvements to the horizontal error measured, decreasing the mean error from 11.81 m to 2.10 m when evaluating the full
path and 18.52 m down to 2.39 m when evaluating the urban canyon path.

The work described in this paper addresses the critical issue of degraded position estimation performance within urban
environments using GNSS. While existing methods, such as ARAIM and various augmentation systems, are generally effective
in open sky environments with few erroneous satellite measurements, new solutions need to be developed for the unique
challenges that arise when operating in urban environments. This research introduces a novel approach by considering a large
set of potential combinations of satellite measurements, leveraging advanced clustering algorithms to address multipath.



While our methods consistently reduced errors effectively, there were areas in our analysis that could be improved. While a
reasonable horizontal ground truth was constructed from the fused GNSS/inertial measurement unit (IMU) solution, it will
inherently contain a small degree of error, particularly in denser portions of the urban canyon. Additionally, epochs within
areas of dense urban canyon are challenging to process with the clustering algorithm due to reduced satellite visibility and poor
geometry. In these circumstances, our algorithm is unable to produce an adequate number of valid combinations in order to
make an accurate assessment. Our algorithm is able to address one of the key issues discussed by Gilabert et al. (Gilabert et al.,
2023), which is when 3DMA removes too many satellites, the receiver is unable to produce a position solution. We addressed
this PVT availability concern by adding high elevation angle NLOS satellites in order to produce enough position solutions for
the clustering algorithm.

Future work in this area will include the development of a prototype of the framework, capable of real-time execution on a
local platform with the sensor. Additionally, this improved position solution could be coupled with an IMU for even better
performance. Finally, from the analysis of the multiple position solutions collected for each combination of satellites, we have
found that in most cases with adequate GNSS satellite availability, there exists a combination of satellites that yields the lowest
horizontal error. Future work will consider a way to identify the satellite combinations that produce this optimal position
solution. This new method can involve the use of weighted clustering to give higher priority to position solutions that have
specific performance characteristics (e.g., low DOP, low standard deviation of residuals, etc.).
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