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1. Introduction 
Across the science and defense space sectors, researchers and spacecraft designers are actively 

exploring the use of artificial intelligence (AI) and machine learning (ML) onboard spacecraft for 

applications requiring low-latency predictions and/or data products to enable next-generation 

mission concepts. However, there are many modeling and computational challenges in attempting 

to deploy AI onboard spacecraft.  

From a modeling standpoint, the space domain must address many of the same challenges as the 

commercial embedded domain for mobile and Internet of Things (IoT) deployment. Commonly 

used supervised AI models, especially those with deep architectures, depend upon vast amounts 

of labeled training data to extract rich, meaningful features and accurately predict the output. 

However, for novel instrument sensors or missions to unexplored environments, there is often a 

lack of large-scale datasets that accurately represent the full distribution of input data. Thus, it can 

be challenging to ensure the model generalizes well to new data captured by the instrument sensor 

in its planned environment.  

From a computational standpoint, there are numerous challenges for spacecraft processors due to 

constraints imposed by the harsh space environment. The radiation environment in space can cause 

issues ranging from non-destructive soft errors to even catastrophic device failures from varied 

mechanisms, including cumulative total ionizing dose (TID) effects and single event effects 

(SEEs). Beyond radiation, spacecraft designers are limited by further constraints, including the 

size, weight, power, and cost (SWaP-C) requirements of their target mission. While current 

radiation-hardened (rad-hard) processors provide the necessary resiliency for space radiation 

effects, they are extremely performance-limited, trailing generations behind commercial 

embedded processors. These performance limitations render the deployment of state-of-the-art AI 

frameworks on rad-hard platforms generally infeasible. As such, an attractive option is the use of 

commercial-off-the-shelf (COTS) embedded devices, ranging from CPUs, GPUs, field-

programmable gate arrays (FPGAs), and custom accelerator application-specific integrated 

circuits (ASICs). However, it is essential that these commercial parts are screened for space use, 

which includes radiation testing to examine their response to TID and SEEs. Once screened, 

various fault-tolerant computing techniques can be employed to enhance their reliability in the 

presence of radiation-induced bit upsets. Given their massive performance increase over their rad-

hard alternatives, these COTS devices offer promising solutions to feasibly deploying AI models 

onboard spacecraft. 



 
Date: 07/23 
Revision: v4 
 

 

 
As Published in “Precision Medicine for Long and Safe Permanence of Humans in Space” 

2 Current AI Technology in Space 
 

 

2. Onboard AI Applications 
The use of AI onboard satellites is driven by the need for low-latency predictions or products for 

a variety of autonomous applications. Historically, there have been many demonstrations of 

autonomous functionality, but due to limitations in onboard processing capability, the machine-

learning and computer-vision algorithms implemented have been fairly simple with respect to 

computational complexity. 

Most early demonstrations of autonomy involved technology-demonstration missions to increase 

the technology readiness level (TRL), a measure of its technological maturity, such that these 

concepts could eventually be used in higher class and potentially flagship missions. As part of the 

New Millennium program to advance technology for land-imaging instruments, Earth Observing-

1 (EO-1) began its Autonomous Sciencecraft Experiment in 2003, which deployed several onboard 

autonomous remote-sensing applications, including cloud detection, flood scene classification, 

change detection, and generalized feature detection, using hyperspectral data from the Hyperion 

instrument. However, the complexity of the algorithms deployed was severely limited by the 

computational capability of the onboard Mongoose V microprocessor, primarily featuring simple 

decision tree and thresholding techniques [1]. Approximately a decade later in 2013, a 1U 

(10×10×10 cm3) technology-demonstration CubeSat, known as the Intelligent Payload Experiment 

(IPEX), advanced these autonomous onboard processing concepts, using more complex random 

forest algorithms for image classification and salience-map algorithms to identify “interesting” 

regions in imagery for downlink [2]. 

More recently, higher class missions have integrated autonomous optical navigation due to the 

infeasibility of using human-in-the-loop control for certain spacecraft maneuvers. To perform the 

Touch-And-Go maneuver on the asteroid Bennu’s surface, the Origins, Spectral Interpretation, 

Resource Identification, Security, Regolith Explorer (OSIRIS-Rex) spacecraft employed a natural 

feature-tracking algorithm. Using a database of features collected during a flyby of Bennu, the 

onboard processor performed cross-correlation algorithms to autonomously identify these features 

in images captured during the Touch-and-Go maneuver and estimate the spacecraft’s position and 

contact point [3]. Similarly, to improve landing accuracy and avoid hazards (e.g., rocks, craters, 

steep slopes, sand ripple fields, etc.) in Jezero Crater, the Mars 2020 science mission employed 

autonomous terrain relative navigation (TRN) algorithms during the entry, descent, and landing 

(EDL) phase of the mission. These algorithms correlated features from camera pictures taken 

during the descent with an onboard hazard map, which is generated a priori using data products 

from the Mars Reconnaissance Orbiter, to simultaneously determine the spacecraft’s 

location/altitude and navigate to safe zones [4]. 

With advances in onboard computing (discussed further in the Section 3), spacecraft designers are 

now investigating the deployment of more computationally complex AI models due to their 

performance over the last decade on computer-vision and natural-language-processing tasks. 

Beyond the aforementioned historical examples, Table 1 lists key domains and applications that 

could benefit immensely from the use of onboard AI for low-latency predictions.  
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Domain Applications 

Remote Sensing • Rapid Disaster Response (e.g., Wildfire Detection) 

• Data Triage including Image and Video 

Compression 

• Onboard Product Generation 

Guidance, 

Navigation, and 

Control (GNC) 

• Autonomous Rover Controls 

• Autonomous Hazard Detection and Landing 

• Horizon/Star Tracking 

• Terrain Classification 

Mission Planning • Intelligent Scheduling 

• Distributed System Missions 

Communication • Software Defined Radio 

• Cryptography 

Table 1: Domains and applications that could significantly benefit from the use of onboard AI 

While an exhaustive review of onboard AI examples is beyond the scope of this chapter, we will 

highlight major domains where onboard AI research is bourgeoning, including remote sensing and 

autonomous guidance, navigation, and control (GNC). For remote-sensing applications, methods 

for onboard data triage are becoming exceptionally critical to maximize the science return of 

remote-sensing instruments, as limited satellite downlink bandwidth becomes saturated by ever-

increasing amounts of data generated by next-generation sensors. Currently, numerous missions 

spanning planetary science, Earth science, and other domains suffer from severe downlink 

restrictions. For instance, the four Magnetosphere Multiscale (MMS) spacecraft generates 

approximately 100 GB/day of science data in its high data rate mode, but only 4% of this data can 

be transmitted to the ground on average [5]. AI models can be used to classify objects in an image 

or identify regions of interest, allowing the spacecraft to autonomously prioritize what data to 

downlink and/or track interesting features for capture. For example, for Earth observation, onboard 

cloud-masking algorithms could segment an image with cloudy and non-cloudy labels. Since 

clouds constitute a substantial portion of the imagery captured, but are irrelevant to many missions, 

onboard cloud masking can significantly reduce the data volume that must be downlinked. In 

particular, the Φ-sat-1 experiment was one of the first technology-demonstration satellites to 

incorporate and test this onboard cloud-masking capability, using a deep convolutional neural 

network (CNN), known as CloudScout, for cloud detection on imagery captured by a hyperspectral 

camera, HyperScout-2. With extremely limited preflight data captured by the HyperScout-2, the 

team initially trained the model using a proxy dataset generated by augmenting existing Sentinel-

2 datasets [6]. Numerous other AI models have been proposed for cloud masking on different 

sensors, which can be deployed onboard assuming sufficient computational resources are 

available.  

Similarly, the ability to provide low-latency classifications of Earth imagery is also critical for 

rapid disaster response in the remote-sensing domain. Recently, the deployment of large 

constellations of small satellites, such as Planet Lab’s Dove constellation [7], offers unprecedented 

spatial and temporal coverage of Earth compared to flagship, single-spacecraft missions, 
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significantly reducing revisit times in disaster areas. For natural disaster detection via these 

remote-sensing satellites, the detection time is limited by lengthy downlink times of the raw data 

due to limited bandwidth and by ground processing time. To reduce these detection times, 

researchers are transitioning towards more onboard processing such that natural disasters can be 

detected in near-real time, with alerts/warnings able to be downlinked rapidly as a significantly 

smaller fraction of the broader raw sensor data. Among natural disasters, wildfire detection and 

flood mapping are two applications that have garnered significant research interest, with many 

groups examining various AI models for accurate detection and segmentation of the affected areas 

[8]-[12]. A key consideration for onboard deployment is designing the architecture of the neural-

network model such that it can be feasibly deployed on the spacecraft’s computational hardware. 

Notably, the authors of  [11] specifically crafted their model to be efficiently executed on the 

computational hardware present on Φ-sat-1, demonstrating the segmentation of a 12-megapixel 

image in less than a minute. 

With respect to the autonomous GNC domain, major strides have been made toward building 

large-scale datasets necessary to train AI models for planetary rovers and landers. While multiple 

Mars Rovers, including Spirit, Opportunity, Curiosity, and Perseverance, have employed an 

autonomous-driving capability, known as AutoNav, even the most advanced versions of their 

machine-vision processing pipeline have been constructed purely on classical computer-vision 

algorithms, relying solely on geometric information to traverse the Mars landscape [13]. However, 

with Spirit and Curiosity having been stuck in sandy terrain and Curiosity’s wheels being 

punctured on sharp rocks, there is a need to autonomously identify semantic information about the 

terrain type to assess traversability of the landscape, similar to how self-driving cars employ 

semantic-segmentation models to identify the drivable surface.  As such, for future Mars rover 

missions, NASA’s Jet Propulsion Lab (JPL) has developed the AI4Mars dataset that includes 

approximately 326K semantic-segmentation instances (among four classes: “soil,” “bedrock,” 

“sand,” and “big rock”) in 35K images from the Spirit, Opportunity, and Curiosity rovers in order 

to train common deep-learning models for semantic segmentation [14]. For autonomous-landing 

capabilities, the Mars 2020 TRN algorithms relied primarily on classical computer-vision 

techniques based on template matching and registration to a priori hazard maps. For relatively 

unmapped and dynamic environments such as Europa, these TRN techniques may be infeasible, 

as they are heavily dependent on a priori hazard maps.  Researchers are thus attempting to adapt 

AI models from the autonomous-driving domain to achieve much more generalized perception, 

using models such as You Only Crash Once (YOCO), which was first trained on simulated data 

and then tested on real Mars 2020 data, to predict both the location and semantic information of 

hazards during landing [15]. 

However, unlike Mars 2020, many science missions employ highly specialized sensors that 

capture novel, first-time measurements, which poses several modeling challenges for AI 

applications. Notably, the process of capturing sufficient quantities of this novel data for model 

training can be prohibitively restrictive, and labeling the data is often time-consuming that may 

require input from subject-matter experts. The combination of these factors often leads to the lack 

of a large-scale labeled training dataset for a science instrument that may not capture the full 

distribution of input data seen during deployment, as the Φ-sat-1 developers experienced when 
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developing the cloud-detection model for HyperScout-2. Certainly, proxy data from similar 

sensors or physics-based simulations can be used to initially train the model, as the Φ-sat-1 

developers have done. Still, with limited data in the planned deployment environment, it can be 

challenging to validate the generalization of the AI model. As such, during deployment, there is a 

need to implement some form of continuous validation, especially for mission-critical and safety-

critical applications, in order to trust the model’s predictions. Continuous validation involves the 

downlinking of raw data, with the quantity depending upon the performance requirements of the 

model. If significant data-mismatch error or model drift is encountered, re-training and then 

updating the model onboard can also be challenging depending upon the model size, as uplink 

rates are often even more limited than downlink rates.   

3. Space Computing Devices 
Deploying AI models onboard spacecraft is challenging because common rad-hard space 

processors are extremely performance-limited, lagging generations behind commercial embedded 

technology. Because they are expensive to develop and serve vital science/defense goals, flagship 

missions have traditionally used slow, rad-hard processors to ensure reliability and safeguard 

against failure due to radiation effects. Table 2 lists the most prevalent radiation-hardened 

processors and examples of the high-class missions for which they have been used.  

Radiation-Hardened 

Processor 

Description Missions Served 

BAE RAD6000 [16] Radiation-hardened 32-bit CPU, 

employing the Power Architecture 

of the IBM RISC System/6000 

Mars Exploration Rovers 

(Spirit/Opportunity), 

Deep Space 1, Spitzer 

Telescope, DSCOVR 

BAE RAD750 [17] Successor to the RAD6000, 

employing the radiation-hardened 

version of the IBM PowerPC 750 

Deep Impact, Mars 

Reconnaissance Orbiter, 

Curiosity and 

Perseverance Rovers, 

James Webb Space 

Telescope 

CAES Gaisler GR712RC [18] Dual-core processor 

implementing the LEON3FT, a 

fault-tolerant version of the 

LEON3 SPARC V8 processor  

DART/LICIAcube, 

Artemis I/ArgoMoon 

CAES Gaisler GR740 [19] Successor to the GR712, featuring 

a quad-core LEON4FT, a fault-

tolerant version of the LEON4 

SPARC V8 processor 

Copernicus, 

Nancy Grace Roman 

Space Telescope 

(Planned) 

BAE RAD5545 [20] radiation-hardened, quad-core 

processor implementing Freescale 

Semiconductor’s PowerPC 

e5500v architecture 

Lunar Gateway Power 

and Propulsion Element 

(PPE) (Planned) 

 
Table 2: List of common rad-hard processors 
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The process of radiation hardening such complex CPU devices necessitates considerable financial 

and engineering investment, with many rounds of radiation testing at particle-beam facilities. Once 

in production, strict quality assurance measures must be implemented during the fabrication 

process to achieve Qualified Military Line (QML) classification. The combination of radiation-

hardening design and extensive development cycles often leads to radiation-hardened CPUs using 

archaic architectures and older fabrication processes with larger feature sizes, making them slower 

(clocked at lower frequencies) and more power hungry than commercial embedded technology. 

To demonstrate the gap between rad-hard and commercial technology, Figure 1 compares the 

computational density (CD), a metric that measures the theoretical steady-state performance of the 

computational units of a processor for a stream of independent integer (Int8, Int16, Int32) and 

floating-point (SPFP-Single Precision Floating Point, DPFP-Double Precision Floating Point) 

operations, of state-of-the-art rad-hard processors (BAE RAD750, CAES Gaiser GR740, and BAE 

RAD5545) and commercial embedded processors (Xilinx Zynq 7020 and Intel Core i7-4610Y) in 

millions of operations per second (MOPS) on a logarithmic scale [21]. Even the latest rad-hard 

processor, the BAE RAD5545 (still awaiting QML qualification as of July 2023), exhibits a 

computational density that is nearly two orders of magnitude smaller than that of the commercial 

Xilinx Zynq 7020, a popular embedded system-on-chip (SoC) architecture released in 2011 that 

combines a dual ARM Cortex-A9 core and an FPGA fabric, and the commercial Core i7-4610Y, 

a 4th-generation Intel hyperthreaded dual-core processor launched in 2013 that was designed for 

mobile and tablet markets. 

 
Figure 1: Comparison of Computational Density (CD) of State-of-the-art Rad-Hard Processors (BAE RAD750, 

CAES Gaisler GR740, and BAE RAD5545) and Commercial Embedded Processors (Xilinx Zynq 7020 and Intel 

Core i7-4610Y) [21] 
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Figure 2: Comparison of Computational Density Per Watt of State-of-the-art Rad-Hard Processors (BAE RAD750, 

CAES Gaisler GR740, and BAE RAD5545) and Commercial Embedded Processors (Xilinx Zynq 7020 and Intel 

Core i7-4610Y) [21] 

Likewise, the power efficiency of rad-hard processors, which can be estimated from the 

computational density per watt (CD/W) metric shown in Figure 2, is nearly two orders of 

magnitude smaller than that of commercial embedded processors [21]. Aside from the 

computational density and power efficiency of the processing units, memory size and bandwidth 

are also key considerations for AI, allowing the processor to efficiently store and stream model 

parameters and intermediate calculations. With rad-hard processors typically clocked at lower 

frequencies, their memory bandwidths also trail behind commercial DDR solutions significantly. 

This limited computational density and memory bandwidth severely restricts the size and 

complexity of AI models that can be feasibly deployed on rad-hard processors.  

To reduce the disparity between rad-hard and commercial embedded technology and significantly 

advance the state-of-the-art in space computing, NASA and the U.S. Air Force have jointly funded 

the High-Performance Space Computing (HPSC) project. Originally initiated in 2013, the HPSC 

project has been historically plagued by significant delays. Initially contracted out to Boeing, 

HPSC was previously defined to include eight ARM Cortex-A53 cores arranged in two four-core 

clusters, known as chiplets, connected through a high-bandwidth interconnect [22]. However, with 

Boeing unable to deliver at key deadlines, the contract was terminated. As of August 2022, NASA 

has awarded the HPSC contract to Microchip, who plans to design, test, and qualify a RISC-V-

based 12-core processor, comprising eight SiFive’s X280 application-level cores [23]. 

Importantly, for fast AI model inference, the X280 cores include both SiFive Intelligence 

Extensions to accelerate neural network computations (touted at a performance of 4.6 trillions of 
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8-bit integer operations per second) and vector extensions to exploit parallelism in dataflow 

applications [24].  

3.1 Up-screened Commercial-Off-the-Shelf Processors for Space 
Due to the expense and the traditionally limited performance of rad-hard processors, low-budget, 

risk-tolerant Class D and small-satellite missions have gravitated toward hybrid computing 

designs, whereby a mix of a commercial-off-the-shelf (COTS) and rad-hard components are 

combined to achieve the necessary reliability and performance for the instrument or mission. The 

SpaceCube family of single-board computers (SBCs), developed by NASA Goddard Space 

Flight Center (GSFC), is a compelling example of this hybrid processing approach. Historically, 

this line of SBCs has employed high-performance, commercial Xilinx FPGAs and SoCs as the 

main processor, supplemented with peripheral rad-hard components such as voltage regulators to 

power the processor and watchdogs to monitor for radiation-induced upsets [25]. 

Of paramount importance to these hybrid processing approaches is ensuring the commercial 

devices are resilient to certain cumulative and acute radiation effects, which can cause erroneous 

bit flips or even catastrophic device failure. Thus, these commercial devices are typically up-

screened for space use through accelerated, ground-based radiation testing. In terms of cumulative 

effects, TID testing measures the device’s response to long-term ionizing damage from protons 

and electrons, causing parametric or functional degradation, such as transistor threshold-voltage 

shifts and increased device current leakage, that can lead to failure over time. In contrast, SEE 

testing measures the device’s response to single, high-energy particle impacts, simulating heavy-

ion components from cosmic rays and high-energy protons in the space environment. For CMOS-

based processors, these effects can take many forms, including but not limited to:  

• Single-event upsets (SEUs), which are non-destructive, soft errors that may cause bitflips 

in registers or memory. 

• Single-event functional interrupts (SEFIs), which are soft errors that cause the device to 

stop functioning nominally, usually requiring a power reset to restore normal functionality. 

• Single-event latchup (SEL), which results in the device operating in a high-current state 

that can be non-destructive (cleared by a reset) or destructive. 

To ensure resiliency to various SEE-induced faults, various fault-tolerant computing techniques 

can be employed on these commercial devices. One common method for FPGA-based processors 

is triple-modular redundancy (TMR) in which the same data is sent to three identical processing 

circuits and the final output is selected by a majority voter.  

Despite their susceptibility to radiation effects, commercial embedded devices exhibit significant 

improvements in performance compared to rad-hard devices as demonstrated in Figures 1 and 2, 

allowing for deployment of much more complex algorithms such as AI model inference. 

Moreover, many frameworks designed for edge AI inference already support a multitude of these 

commercial embedded devices. For example, the SpaceCube Mini-Z incorporates the Xilinx Zynq 

7020 SoC, featuring a dual ARM Cortex-A9 CPU alongside a FPGA fabric [25]. TensorFlow Lite, 

a standard framework for the deployment of AI/ML applications on embedded devices, is highly 

optimized for the ARM Cortex-A9 architecture by specifically leveraging instructions for the Neon 

Single Instruction Multiple Data (SIMD) units that are designed to accelerate vector processing 
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kernels such as matrix multiplication. Similarly, the SpaceCube v3.0 Mini SBC features the 

commercial Xilinx Kintex UltraScale FPGA that can instantiate the Xilinx Deep Learning 

Processor Unit (DPU) to accelerate neural network operations for AI/ML applications [26]. 

Recent research has explored the use of commercial edge AI accelerators developed for the mobile 

and IoT markets, including the Google Coral Edge TPU and Intel Movidius Myriad 2 and Myriad 

X. Because the mobile/IoT and space domains are under similar SWaP-C constraints, these edge 

accelerators incorporate attractive properties for space applications, demonstrating significant 

inferencing performance in small, low-power form factors. For example, the Google Coral Edge 

TPU advertises a performance of 4 trillions of 8-bit integer operations per second at only 2 W [27], 

with the Intel Myriad 2 and Myriad X at similar performance per watt efficiencies.  

Similar to other commercial devices, these accelerators underwent radiation testing to screen them 

for space use, including TID and SEE (heavy ion and proton) testing. Radiation testing of the 

Myriad 2 was led by Ubotica and the European Space Agency [28], while efforts for the Google 

Edge TPU and the Myriad X were led by NASA GSFC [29]-[30]. Additionally, each of these 

devices has been incorporated into technology-demonstration missions to achieve flight heritage 

and to increase their TRL. The Myriad 2 was integrated into the Φ-sat-1 mission to perform 

inference of the CloudScout cloud-detection model. The SpaceCube Low Power Edge AI Resilient 

Node (SC-LEARN) features three Google Edge TPU in a TMR configuration and has been 

deployed on the Space Test Program – Houston 9 (STP-H9) pallet as part of the SpaceCube Edge 

Node Intelligent Collaboration (SCENIC) experiment [31]. Finally, the Myriad X has been used 

in multiple missions, including STP-H9/SCENIC and NASA JPL’s international space station 

(ISS) benchmarking experiments [32]. 

4. Conclusion 
Due to the unprecedented performance of deep-learning AI models in the commercial embedded 

domain for computer-vision and natural-language-processing tasks, space researchers are actively 

examining how AI can be incorporated onboard next-generation spacecraft to enhance their 

autonomous capabilities and science return. Unlike the commercial domain, there are a multitude 

of space-specific modeling and computational challenges that must be addressed. On the modeling 

side, large-scale datasets are typically not available for novel sensors or unexplored environments, 

so it can be difficult to train deep neural networks and validate their performance prior to 

deployment. On the computational side, traditional, rad-hard processors cannot feasibly execute 

standard deep-learning inference, lacking the necessary compute and memory bandwidth. High-

performance, embedded COTS processors that are up-screened for space use, ranging from CPUs, 

GPUs, FPGAs, and custom neural-network-accelerator ASICs, offer a promising solution for more 

risk-tolerant missions. Unfortunately, these devices may not be able to be used in extremely harsh 

radiation environments. Thus, there are still significant efforts from NASA and the U.S. Air Force 

aimed at developing rad-hard, high-performance processors like the HPSC. Despite these 

challenges, the space domain is currently realizing the use of onboard AI in many technology-

demonstration missions, like Φ-sat-1, in order to increase its TRL and later infuse it in higher class 

missions as the technology matures. 
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