# Assessing Long-Term Health (LTH) Outcomes in Astronauts 

Investigators' Workshop (IWS)
February 17, 2024

Matthew Prelich ${ }^{1}$
Beth Lewandowski¹
Christopher Gallo ${ }^{1}$
Mona Matar ${ }^{1}$
Hunter Rehm ${ }^{2}$

Megan Sickinger ${ }^{3}$
Suleyman Gokoglu ${ }^{1}$
Lauren McIntyre ${ }^{1}$
Jerry G. Myers ${ }^{1}$

## Analyses Summary and Bottom-lines

A. Assess astronaut longevity alongside cause of death and compare to the U.S. general population

- Bottom-line Up Front: Astronauts live longer when compared to the U.S. general populatione.g. only $25 \%$ of astronauts pass before their expected age of death
B. Analyze what relationship-if any-exists between the total hours flown on astronaut longevity
- Bottom-line Up Front: No relationship between premature mortality and an astronaut's spaceflight history (number of hours flown and number of flights)
C. Assessing premature mortality in those astronauts who died from cancer to gauge whether this subset dies from cancer at younger ages than those dying of cancer in the general U.S. population
- Bottom-line Up Front: Initial investigations show some evidence of astronaut deaths at younger ages compared to U.S. general population deaths due to cancer


## Astronaut Data

- The Long-Term Health (LTH) project focuses on post-flight and long-term concomitant risks associated with spaceflight.
- Initial development work included collection and organization of statistics about NASA astronauts, both past and present, and alive and deceased.
- The reported primary causes of astronaut deaths include cancer, other diseases, or natural causes (no further details provided in public records except "natural causes" [median age at death: 86.2]).
- Data analysis focused mainly on deceased astronauts through investigation of trends linking astronaut death details with spaceflight history
- Data was collected from publicly available resources for a total of 386 astronauts.
- Deceased - 53 (cancer, other diseases or natural causes)
- Deceased - 33 (disaster, accident or surgery complications)
- Current - 42
- Former - 248
- Candidate - 10


## Astronaut Data

- The following data were collected for each astronaut from publicly available sources:
- Status - Candidate, Current, Former, Management, Deceased.
- Year the astronaut was selected by NASA.
- Group number the astronaut was selected into.
- Total number of flights to space on any spacecraft.
- Total cumulative hours of spaceflight time.
- Gender, Date of Birth and Date, Cause and Details of Death.
- Current age if living or age at death.
- Spacecrafts Flown - Mercury, Gemini, Apollo, Skylab, Shuttle, Soyuz, Space-X and Mir, ISS.
- Reference with details of death (obituary, newspaper article, press release).

| Astronaut | Status | Selection Year | Group | Flights | Total hours of space flight time | Gender | Date of birth | Date of death | Age Current or Death | Death <br> Year- <br> Selection Year | Cause of Death | Details of Death | Mercury | Gemini | Apollo | Skylab | Shuttle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Deceased | 1962 | 2 | 2 | 205 | Male |  | 08/25/2012 | 82.1 | 50 | Surgery | Coronary Bypass Complications |  | Gemini | Apollo |  |  |
|  | Deceased | 1963 | 3 | 2 | 1671 | Male |  | 05/26/2018 | 86.2 | 55 | Natural | Sudden IIIness |  |  | Apollo | Skylab |  |
|  | Deceased | 1966 | 5 | 0 | 0 | Male |  | 08/11/2008 | 73.9 | 42 | Natural | Long Term Asthma |  |  |  |  |  |
|  | Deceased | 1996 | 16 | 0 | 0 | Male |  | 10/03/2009 | 51.3 | 13 | Cancer | Brain Tumor |  |  |  |  |  |

## A. Astronaut Longevity at a Glance (with Hours Flown)

Current/Death Age vs. Number of Hours Flown


Age at Death vs. Flight Hours
for Deceased Astronauts


## B. Years Lived Above Life Expectancy vs. Hours Flown

- Age at death minus Life Expectancy (LE) is calculated for the deceased astronaut subset to compare how long an individual lived relative to their expected age at death.
- Life expectancy figures are found using CDC mortality trends with the birth year and sex

- Only $25 \%$ of astronauts perish before their expected age of death
- Half of the decreased astronauts lived 20 or more years beyond their LE and $20 \%$ lived 30 or more years beyond
- Cancer markedly lowers the age at death distribution among astronauts

- No clear relationship can be surmised between hours in spaceflight and age at death.

Linear Regression of Age at Death vs. Flight Hours for Deceased Astronauts


## C. Comparing Cancer Deaths Between Astronaut and General Populations

- Exploring the astronaut dataset with deaths due to cancer of any type
- The general population dying of cancer has lived more years above their life expectancy than astronauts who died of cancer
- Half of astronauts who died of cancer lived below their life expectancy versus less than $30 \%$ of general cancer patients living below their life expectancy
- Could the space environment contribute towards inducing more aggressive types of cancer?



## Astronaut Standardized Mortality Ratios

- Standardized Mortality Ratio (SMR) is the Observed Deaths / Expected Deaths
- Quantifies how much more likely an astronaut dies of cancer versus general population
- We observe higher SMRs for astronauts in comparison to the general U.S. population using SEER incidence data
- Limitation: Very wide confidence intervals due to small dataset (e.g. 5 of the 8 age brackets have 2 or less observed deaths)

Astronaut Standardized Mortality Ratio
Using SEER Incidence Data for Male and Female


## Age at Death Probability Density Functions

- Markedly higher proportions of astronauts die of cancer than natural causes (defined as non-cancer related fatalities) in the 50-70 age bracket
- In comparison, for the general population, a relatively small proportion of the causes of death at any age bracket is due to cancer




## Summary, Limitations, and Future Work

## Summary:

- Astronauts generally live longer when compared to the U.S. general population-e.g. only $25 \%$ of astronauts die before their expected age of death
- The analyses of the deceased NASA astronaut data produced no evidence that the number of hours flown or number of flights are related to pre-mature mortality
- These conclusions are consistent with published literature ${ }^{[1,2,3]}$
- Astronaut cancer deaths happen at younger ages compared to U.S. general population cancer deaths.
- This says nothing about the cancer survival or incidence rates where more data is needed


## Limitations:

- Astronaut cause of death is often not complete/specific (type of cancer often nondisclosed from public sources)
- Complete access to death certificates needed to corroborate these findings
- Data unavailable about having cancer for astronauts who died from other causes
- Any analyses performed with the astronaut datasets are limited by sample size

Future work:

- Updating the causes of death with death certificate information, incorporating vitals into machine learning models, accessing longitudinal study data to perform robust survival analysis techniques and expand upon previous literature


## Long Term Health Metric Development - Astronaut Data Papers

- ${ }^{[1]}$ Reynolds RJ, Day SM. Mortality of US astronauts: comparisons with professional athletes. Occup Environ Med. 2019 Feb;76(2):114-117. doi: 10.1136/oemed-2018-105304. Epub 2018 Dec 4. PMID: 30514748.
- ${ }^{[2]}$ Hamm PB, Billica RD, Johnson GS, Wear ML, Pool SL. Risk of cancer mortality among the Longitudinal Study of Astronaut Health (LSAH) participants. Aviat Space Environ Med. 1998 Feb;69(2):142-4. PMID: 9491253.
- ${ }^{[3]}$ Reynolds, R. J. and Day, S. M., The Mortality of Space Explorers, Into Space - A Journey of How Humans Adapt and Live in Microgravity, doi: 10.5772/intechopen.73603, 2018.


## Thank you.



## B. Life Expectancy - Premature Death Summary Table

- The median life expectancy calculated to be 61 for the subset of the astronaut population that are already deceased (using birth year and sex of the astronaut along with CDC data)
- Using a chi-squared test, the result is not significant at $\mathrm{p}<.05$
- Not enough evidence to conclude that high flight hours (>1000) and premature death are related
- The same analysis is performed with a loftier 75 or older threshold to define premature mortality and the same conclusions are made, and, still, only 1 astronaut (Voss) flying more than 1000 hours died before age 75.
- Only 2 of the 82 astronauts who flew more than 2000 hours are deceased (aged 88 and 84.1 ), and only one astronaut who flew more than 1000 hours had a premature death.

|  | Premature Death <br> $(<\mathbf{6 1})$ | Alive or Died Beyond Age <br> $\mathbf{6 1}$ | Total |
| :---: | :---: | :---: | :---: |
| Flight Hours < 1000 | 11 | 180 | 191 |
| Flight Hours $>\mathbf{1 0 0 0}$ | 1 | 63 | 64 |
| Total | 12 | 243 |  |


|  | Premature Death <br> $(<\mathbf{7 5})$ | Alive or Died Beyond Age <br> $\mathbf{7 5}$ | Total |
| :---: | :---: | :---: | :---: |
| Flight Hours < 1000 | 22 | 87 | 109 |
| Flight Hours > 1000 | 1 | 12 | 13 |
| Total | 23 | 99 |  |

[^0]
## Example Machine Learning Analyses with Hours Flown and Age at Death

- K-means and Support Vector Machine (SVM) machine learning analyses are performed to inform on the ability to discriminate causes of death using the number of space flight hours flown and age at death as features
- Various hyperparameter, with/without normalization, and class prediction arrangement routines are performed
- Based on the data available, results show an inability for the models to consistently predict cause of death, suggesting no clearly defined separation in the feature space





## B. Life Expectancy - Summary Table and Chi-Squared Test

- The median life expectancy calculated to be 61 for the subset of the astronaut population that are already deceased (using birth year and sex of the astronaut along with CDC data)
- Using a chi-squared test, the result is not significant at $\mathrm{p}<.05$
- Not enough evidence to conclude that high flight hours (>1000) and premature death are related (dependent)
- The same analysis is performed with a loftier 75 or older threshold to define premature mortality and the same conclusions are made, and, still, only 1 astronaut (Voss) flying more than 1000 hours died before age 75.
- Only 2 of the 82 astronauts who flew more than 2000 hours are deceased (aged 88 and 84.1 ) and only one astronaut who flew more than 1000 hours had a premature death.

|  | Premature Death <br> $(<\mathbf{6 1})$ | Alive or Died Beyond Age <br> $\mathbf{6 1}$ | Total |
| :---: | :---: | :---: | :---: |
| Flight Hours < 1000 | 11 | 180 | 191 |
| Flight Hours $>\mathbf{1 0 0 0}$ | 1 | 63 | 64 |
| Total | 12 | 243 |  |


|  | Premature Death <br> $(<\mathbf{7 5})$ | Alive or Died Beyond Age <br> $\mathbf{7 5}$ | Total |
| :---: | :---: | :---: | :---: |
| Flight Hours < 1000 | 22 | 87 | 109 |
| Flight Hours > 1000 | 1 | 12 | 13 |
| Total | 23 | 99 |  |

[^1]
## Astronaut Data Sources

- All data is from public record.
- The following sources were used to gather information on all NASA astronauts.
- Additional online sources (NASA and media) are referenced in the astronaut data spreadsheet with date and cause of death.
- NASA Astronauts Homepage https://www.nasa.gov/astronauts
- SPACEFACTS - Discover the world of astronauts
http://www.spacefacts.de/
- List of astronauts by year of selection
https://en.wikipedia.org/wiki/List of astronauts by year of selection
- Dead U.S. Astronauts
https://www.wa-wd.com/l astro.asp
- Every US astronaut ever listed by NASA
https://www.theguardian.com/news/datablog/2011/jul/08/us-astronauts-listed-nasa


## Age at Death of Deceased Astronauts

Probability Density Function of Age at Death


Years Lived Above LE vs. Number of Flights


The number of flights flown versus the years lived above or below the LE of the astronaut

Principal Component Analysis Clustering with Multiple Variables

- A Principal Component Analysis (PCA) is performed to visualize datapoints in the space of the components with the highest variance.
- "Hours of flight", "Flights", "Age at death", "Birth year", and "Selection year" used as data variables.
- Each principal component is a linear combination of the variables.

- No clear relationship can be surmised between hours in spaceflight and age at death.

Linear Regression of Age at Death vs. Flight Hours for Deceased Astronauts


Quadratic Regression of Age at Death vs. Flight Hours for Deceased Astronauts



[^0]:    Summary table with counts of those dying before or after 61 along with flight hours being greater or less than 1000 (left). Former astronauts who are alive and already past 61 are included in the Alive or Died Beyond Age 61 column. Note that only 24 astronauts (former, deceased, or current) are currently below the median life expectancy of the deceased astronaut population while 206 are already past this age. The same analysis is performed using a higher age to define premature death (right)

[^1]:    Summary table with counts of those dying before or after 61 along with flight hours being greater or less than 1000 (left). Former astronauts who are alive and already past 61 are included in the Alive or Died Beyond Age 61 column. Note that only 24 astronauts (former, deceased, or current) are currently below the median life expectancy of the deceased astronaut population while 206 are already past this age. The same analysis is performed using a higher age to define premature death (right)

