Sounder for Microwave-Based Applications (SMBA): the Next-Gen Backbone Microwave Sounder for the Near Earth Orbit Network (NEON)

Edward Kim

Instrument Scientist for ATMS Acting Instrument Scientist for SMBA

NASA Goddard Space Flight Center/JPSS/NEON

NASA MORE

AMS 2024 Baltimore, MD

Outline

- Backdrop: JPSS, NEON, microwave sounders
- Basic capabilities
- New features
- Trades, trades, trades
- Summary

Acknowledgements: whole team of dedicated SMEs within NASA, NOAA, industry, & academia preparing to ensure critical wx obs continue to be available *and improved*

Backdrop for Operational MW Sounders

- MW sounders provide the highestimpact observations for NWP
- Continuous coverage by microwave sounders since 1980s
- Current gen = ATMS on JPSS (designed in 1990s)
- JPSS is operational through ~2040
- NEON timeframe: 2030-2050
- MW sounder for NEON = Sounder for Microwave-Based Applications (SMBA)
- SMBA = successor to ATMS

- 9 flight units → backbone segment of NEON architecture
- Potential "augmentation" segment not discussed here; smaller/cheaper sats, more limited sensors
- Draft requirements, desires, etc. from:
 - Systems performance Assessment Team (SAT), Scientific Guidance for potential study and design of Microwave Sounder (for SounderSat and GEO-XO).
 - NOAA workshop on MW sounders: <u>https://doi.org/10.25923/wkgd-pw75</u>
 - 2019 NOAA SounderSat studies

Familiar Basic Capabilities

- Priorities:
 - 1. Temperature sounding
 - 2. Humidity sounding
 - 3. Other applications
- MW sounding users require¹
 - Bands
 - o Existing ATMS bands 23-183 GHz
 - o Plus 118 GHz
 - o 183 GHz + window channel(s)
 - o 118 GHz cannot replace 50 GHz
 - − Channels \rightarrow vertical profile
 - o performance no worse than today
 - o Baseline design: similar # channels as ATMS

- Performance
 - NEDT, etc. no worse than today
 - Baseline similar to actual values rather than today's specs
 - 5-year lifetime (Class C)
- Coverage
 - 2 backbone orbits
 - Polar sun-synch
 - Daily global coverage

¹NOAA workshop on MW sounders: <u>https://doi.org/10.25923/wkgd-pw75</u>

New Features

- SMBA has 3 significant new features (requirements)
 - 1. Hyperspectral MW sounding
 - 2. RFI detection
 - 3. Inter-calibration
- Plus other new requirements on
 - Striping
 - Noise power spectrum
 - Interchannel noise correlation

- Design tradespace as wide as possible for now; multiple inter-related trades (not a full list)
 - Example: Conical or cross-track scan
 - NEDT, nonlinearity, accuracy
 - Channel bandwidths vs. noise vs. vertical resolution
 - Footprint size, spatial sampling
 - Heterodyne vs. direct detect
 - Polarizations
 - Calibration method (black body, noise diode, etc)
 - Striping (1/f noise)
 - Hyperspectral channelization
 - RFI detection algorithms
 - Inter-calibration approach

4 SMBA SCIENCE REQUIREMENTS

To provide guidance on microwave sounder instrument performance capabilities, Table 4.0-1 details the relative prioritization of the various performance factors associated with the next generation microwave instrument.

Table 4.0-1. Microwave	Instrument Performance	Capabilities Prioritization ¹
------------------------	-------------------------------	---

Factor Order	Performance Factor	Baseline Target	Aspirational Target
1	Channels for direct Temperature Sounding	13 Channels around 50- 60 GHz and 7 channels around 118 GHz line	 > 20 channels around 50-60 GHz and > 10 channels around 118 GHz line
2	Channels for direct Moisture sounding	5 Channels or more around 183 GHz	10 Channels or more around 183 GHz
3	Window channels; channels for cloud, precipitation, ice detection for direct all- sky assimilation and NWP QC	Channels at 23.8, 31.4, 88.2. One channel at 165.5 (TBR) and/or 229 (TBR) GHz channels	Baseline Targets and: a) At least 4 channels at low frequencies (priority order) (i.e. 22-23 GHz(a), 31-37 GHz(b), 89 GHz(c) and 18 GHz (d)) b) 200-325 GHz channels for cloud/precipitation detection and surface signal distinction
4	Spatial coverage (daily)	95% Global Coverage	100% Global Coverage
5	Noise Level (NEDT) for Temperature sounding channels	See Table 4.1-1	See Table 4.1-1
6	Noise level (NEDT) for Moisture sounding channels	See Table 4.1-1	See Table 4.1-1

From Phase A PSD: Draft baseline & aspirational performance targets, prioritized

Factor Order	Performance Factor	Baseline Target	Aspirational Target
7	Spatial horizontal resolution (nadir)	32 km (T) 16 km (q)	8 km (T) 5 km (q)
8	Spatial sampling	Contiguous footprints (or better)	Oversampling (Spatial Nyquist sampling at a minimum) to enable higher spatial resolution
9	Scan geometry	Cross track or conical	
10	Polarization	Single linear polarization	Baseline and: Dual polarization (vertical/horizontal) for window channels below 50 GHz
11	ATMS Channels Continuity	Yes, for similar channels	
12	Calibration accuracy	See Table 4.1-1	Less than values in Table 4.1-1

¹ Systems performance Assessment Team (SAT), Boukabara, S.(chair), Gallagher, F.(cochair). [Scientific Guidance for potential study and design of Microwave Sounder (for SounderSat and GEO-XO)]. Retrieved from NOAA/NESDIS Center for Satellite Applications and Research. September 17, 2020.

This table taken from PSD document at https://sam.gov/opp/2c6dad01ed0c4d678442726894a6f800/view

Hyperspectral MW Sounding

- Theoretical studies have shown benefits to NWP, PBL & other applications
- Limited real-world demos to date
- 3 NOAA Joint Venture (JV) projects are in-progress to perform realworld demos to help inform SMBA
 - Airborne
 - Balloon
 - Cubesat

Trade topics for JVs and SMBA Phase A:

- Digital backend technology is available to do the signal processing
- But which bands, how many channels, how wide, etc?
- FPGAs require significant power and generate significant heat, reprogrammable on orbit
- ASICS use less power/less heat, but are not re-programmable
- Intermediate data volume is large

RFI Detection

- The RFI threat is real, passive MW sensors need to have the means to address it
 - Contaminated data can impact products
 - Detection (flagging) required
 - SMAP-like excision (removal) not required, but open to hear ideas
 - − RFI threat to sounders primarily from IMT (5G) signals
 → SMAP-type algorithms not expected to work so well
 - algorithm development/testing needed
- Digital backend technology offers possible new options for RFI detection
- But, data volumes likely to require some onboard processing
- Exact balance of on-orbit vs. ground processing is a TBD trade
- RFI will evolve in space & over time → dynamic capability may be nice

- Constellation RFI simulation tool under development
- Little/no real-world RFI data available for testing
- Airborne RFI surveys are needed; opportunity may come during hyperspectral JV activities
- On-orbit RFI surveys require careful interpretation; nothing seen doesn't necessarily mean 'no threat'

Inter-Calibration

- NIST definition of inter-calibration, so beyond GPM-style inter-comparison
- Long precedent in VIS/IR/thermal IR communities
 - Methodology is known
 - MW-specific technology needs work
- Holy grail: inter-calibration across all MW radiometers
 - From all countries
 - Sounders and imagers
- Opportunity to finally make SItraceable *microwave* obs
- Spinoff: GRSS activity on standards for RFI measurements

- Current variational bias 'correction' schemes still require sensor absolute cal to be 'close', and take ~2 years per sensor
- New NWP model developments may require new calibration approaches
 - Next big leap in NWP (coupled models) involves addn'l constraints
- Some NOAA retrievals still depend on absolute TB accuracy
- NWP benefits from improvements in both GNSS-RO and MW sounder accuracy; these are complementary

SMBA Notional Timeline

- Phase A study Request for Proposals (RFP) released Feb 23, 2023
 - https://sam.gov/opp/2c6dad01ed0c4d678442726894a6f800/view
 - 4 vendors began work October 2023
 - Study duration 1 year
 - Currently halfway through Phase A
- Phase B-D (building SMBA): a separate procurement
- First SMBA notional launch: early 2030s
- Notional operational period (assuming 9 flight units): approximately 2030-2050
- Note: *before* SMBA, refurbished ATMS EDU will be launched into the 1730 orbit on QuickSounder in 2026

QuickSounder

- Pathfinder for NEON
- Risk reduction for smaller bus, downlink, backhaul, ingest, etc
- Sensor performance is not a mission driver → Fly a wellunderstood sensor on a free flyer smallsat bus
- Still planning full pre-launch sensor characterization

- Refurbished ATMS EDU was first unit built in early 2000s
- Refurbished to be flightworthy, but as-is performance, no upgrades
- Will "succeed/join" AMSU-A on METOP-C in 1730 orbit
- 2026 launch

Summary

- Sounder for Microwave-Based Applications (SMBA) is the next-gen US operational MW sounder
- Initial sensor for NEON program (successor to JPSS)
- Draft threshold and aspirational specs released in PSD
- 3 new capabilities: hyperspectral, RFI detection, inter-calibration
- Significant trade studies in work

- 9 flight units, disaggregated NEON architecture → free-flyers
- Phase A (trade studies) began Oct. 2023, 12months, 4 vendors
- SMBA is a Backbone sensor, along with European MWS, will populate same 3 sunsync orbits as today
- Earliest SMBA launches in early 2030s
- Overlap with JPSS-3/4 (launches in 2027, 2032)
- QuickSounder (pathfinder for NEON) to launch in 2026

Contact: ed.kim@nasa.gov