weather.msfc.nasa.gov/tempo/

Tropospheric Emissions: Monitoring of Pollution Hourly Measurement of Pollution

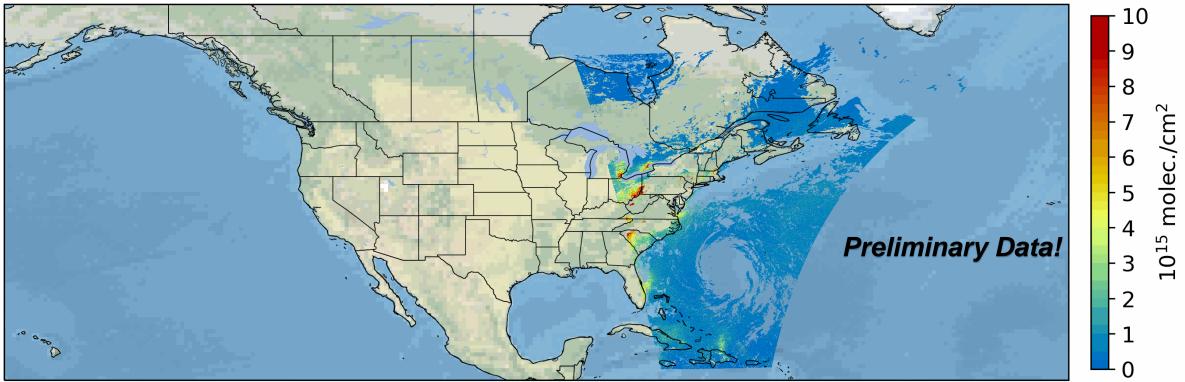
> Smithsonian Astrophysical Observatory

Upping the TEMPO on Air Pollution Observations from Space for Enhanced Science Applications

Aaron Naeger¹, Kevin Fuell², Kelley Murphy², Ryan Wade², Michael Newchurch², Xiong Liu³, Kelly Chance³

& TEMPO Team

¹NASA Marshall Space Flight Center, Huntsville, AL ²University of Alabama in Huntsville, Huntsville, AL ³Harvard-Smithsonian Center for Astrophysics, Cambridge, MA


AMERICAN METEOROLOGICAL SOCIETY 104TH ANNUAL MEETING 28 JANUARY-1 FEBRUARY 2024 BALTIMORE, MD & ONLINE

U.S. Government sponsorship acknowledged.

TEMPO Scan Operations – August 29, 2023

 The NASA TEMPO mission will monitor air pollutants at high temporal (hourly during the daytime) and spatial (~2 x 4.8 km²) resolution from geostationary orbit ~22,000 miles above the equator at 91°W.

TEMPO Tropospheric NO₂ 20230829 1107 UTC

TEMPO performs **standard (nominal)** East-West hourly daytime scans across the Field of Regard (FoR) over North America and **optimized (sub-hourly)** scans over daylight portions of the FoR during the early morning and late afternoon.

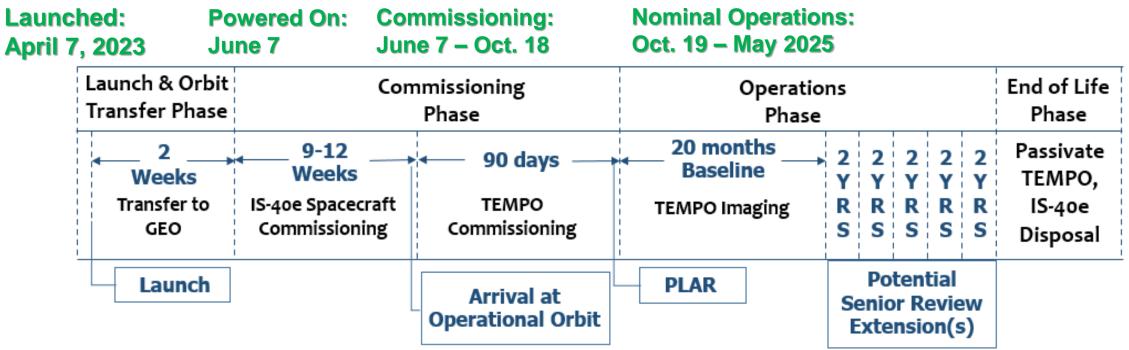
TEMPO L2+ Products: Baseline + SNWG TEMPO NRT

Leve	I Product	Key Variables	Resolution (km ²) **	Frequency/ Size		
L2	Cloud	Cloud Fraction, Cloud Pressure	2.0 x 4.75		** Center	
	O ₃ (Ozone) profile	O_3 profile, Tropospheric O_3 column, Total O_3 column, Stratosphere O_3 column, Cloud Fraction, O_3 a priori, O_3 Averaging Kernel		Per granule, ~ 6 min 40 sec	of Regard	
	Total O ₃	Total column O ₃ , Cloud Fraction, Aerosol Index	2.0 x 4.75	9 granules makeup the hourly TEMPO FoR	33.7°N 91.7°W	
	NO ₂ (Nitrogen Dioxide) NRT	Tropospheric Vertical Column Density (VCD), Total VCD , Slant Column Density (SCD), Cloud Fraction, Air Mass Factor (AMF), Data Quality Flag	2.0 x 4.75			
	HCHO NRT (Formaldehyde)	Total VCD, SCD, Cloud Fraction, AMF, Data Quality Flag	2.0 x 4.75			
	Aerosol NRT	UV & VIS Aerosol Optical Depth (AOD), Aerosol Optical Centroid Height (AOCH), Aerosol Absorption Index (AAI)	8.0 x 4.75 (TBD)			
L3	Same as L2 (Gridded)	Same as L2	0.02° x 0.02°	Per scan, hourly & sub-hourly		

Near real-time (NRT) products: Latency 2 - 3 hours Baseline (Offline) products: Latency 3 - 6 hours (except O₃ profile ~24 hours)

SNWG: Satellite Needs Working Group **7** 3

TEMPO L2+ Products: SNWG NRT / Enhanced



Level	Product	Key Variables	Resolution (km²) _{**}	Frequency/ Slze	
L2	$C_2H_2O_2$ (Glyoxal)	Total VCD , SCD, Cloud Fraction, AMF, Data Quality Flag	2.0 x 4.75	Hourly, granule	** Center of Field of Regard 33.7°N
	H ₂ O (Water Vapor)		2.0 x 4.75		
	BrO (Bromine)		2.0 x 4.75		
	SO ₂ (Sulfur Dioxide) NRT	VCD (Total, Planetary Boundary Layer, & Lower / Middle / Upper Tropospheric, Lower Stratospheric), SCD	2.0 x 4.75	Hourly, granule	91.7°W
	TEMPO/GOES-R Synergistic	Aerosol , Fire / Hotspot, Cloud & Mask, Lightning, Snow / Ice, Precipitable Water, etc.	2.0 x 4.75	Hourly, granule	
	UVB	UV irradiance, erythemal irradiance, UVI	2.0 x 4.75	Hourly, scan	
L3	Same as L2 (Gridded)	Same as L2	0.02° x 0.02°	Hourly, scan	

List of products **being considered** for TEMPO NRT/Enhanced Productions starting in 2025 SPORT

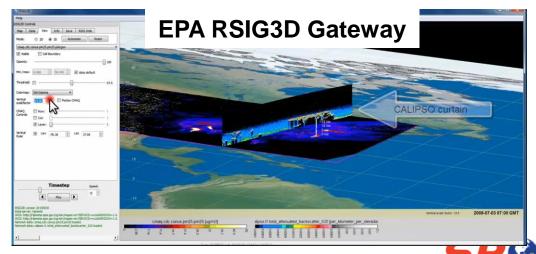
Mission Phases & Operational Timeline

- First light: July 31 August 2 with first Earth imaging on August 2
- Successfully passed Post Launch Acceptance Review (PLAR)
- Started nominal operations on October 19

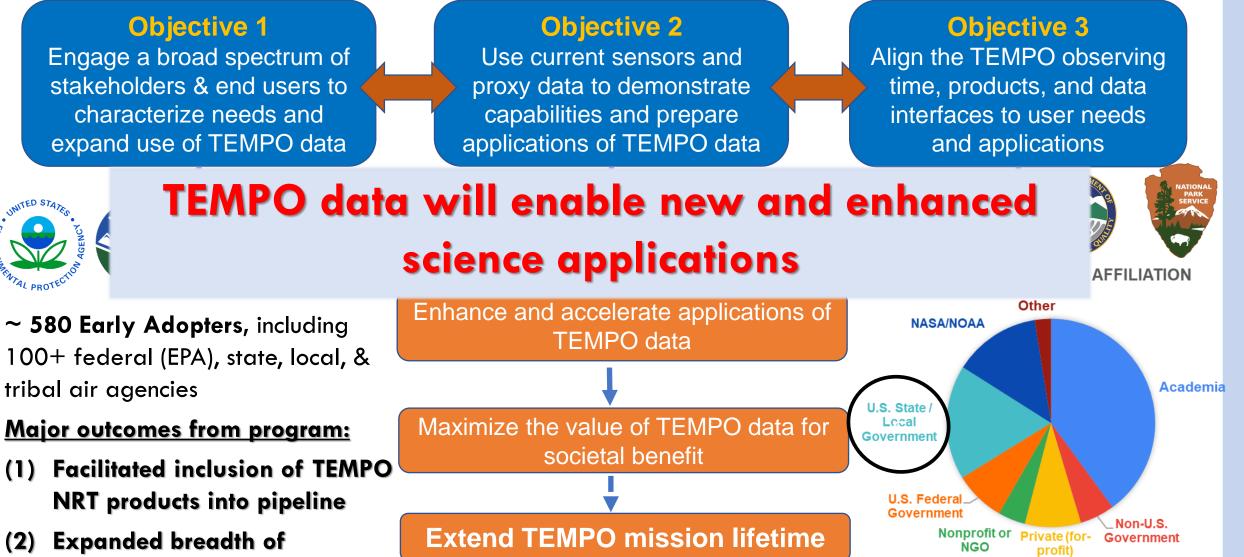
ASDC: Atmospheric Science Data Center

Baseline TEMPO data format: **NetCDF**

- Baseline mission length: 20 months (Oct 2023 May 2025) w/ extension through NASA's Senior Review
- Public release of Baseline products at ASDC: Level 1b data in Feb 2024, Level 2 & 3 data in April 2024
- Archive of baseline "offline" products will start from commissioning phase ~Aug 2023
- Initial public release of NRT products at ASDC ~Jan 2025


Data Access and Visualization Tools

Langley ASDC (Atmospheric Science Data Center) is the DAAC (Distributed Active Archive Center) for TEMPO



https://www.epa.gov/hesc/remote-sensing-information-gatewa

TEMPO Early Adopters Program & Applications

application concepts

TEMPO Application Focus Areas & Special Operations

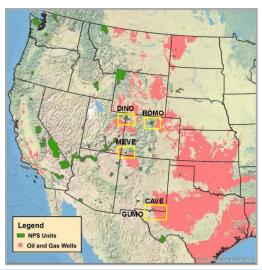
- Up to 25% of TEMPO's observing time can be devoted to <u>special operations</u> over a slice of the FoR (e.g., ≤ 10 min frequency)
- Focus areas include air quality hazards (e.g., wildfires, volcanoes), chemistry studies (e.g., lightning NO_x), & field campaigns
- Involvement from Early Adopters including air quality agencies

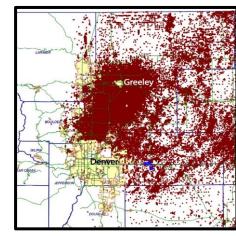
Subset of special experiments

Lightning NOx

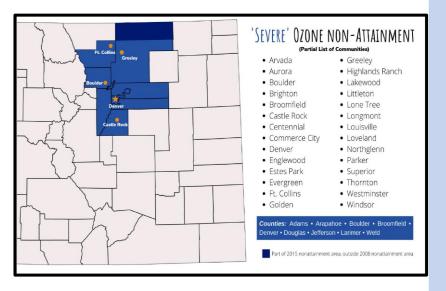
- 2023 Coastal Texas Air Quality Observations
- Formation of ozone along the Colorado Front Range
- High Resolution Scanning over the New York City area
- Sub-city scale AQ forecasting system from data fusion
- Air Quality Impacts from Oil & Gas Activities in West U.S.
- Monitoring volcano emissions and plume transport
- Observing smoke from wildland fires and air quality impacts

Weights of the second state of the second s


Focus Areas:



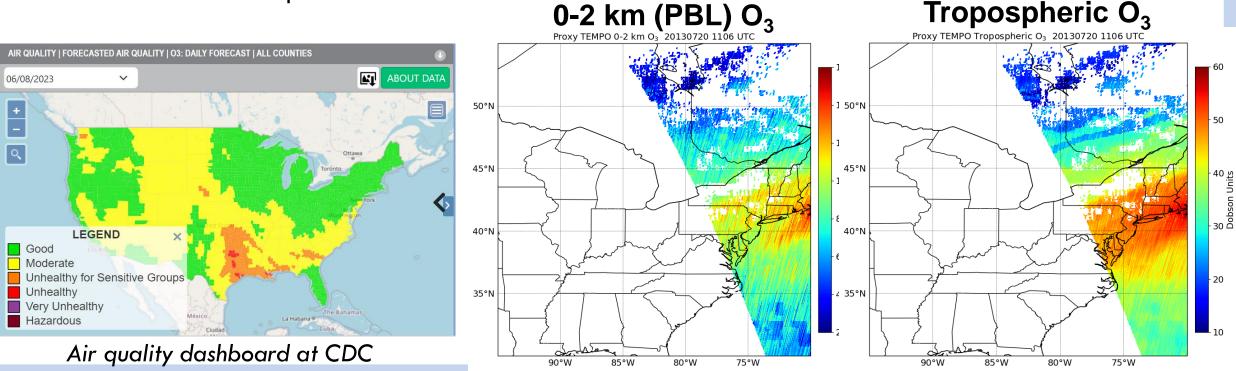
- COLORADO Department of Public Health & Environment
- Colorado Front Range O₃ nonattainment area is now classified as severe with repeated downgrades since 2008
- National Park Service Units Emissions from oil & gas activities have been contributing to degraded air quality across National Parks
- \circ **California** O_3 nonattainment areas continue to persist across much of the state
- Goal: Use TEMPO data for better characterizing emissions and O₃ precursors and production in exceptional event analyses and reporting



8-hr O ₃ DV Years	CAVE	Carlsbad, NM	DFW	Houston
2014-2016	67	67	80	79
2015-2017	66	68	79	81
2016-2018	71	74	76	78
2017-2019	74	79	77	81
2018-2020	73	78	76	79
2019-2021	74	77	76	77
2020-2022*	77	77	77	74

Location of NPS units (left) and O₃ design values at NPS units and Dallas and Houston (above)

Oil & gas wells (red dots)



Advancing Public Health Applications at CDC

- Objective: Define and establish a routine process for transforming and transferring TEMPO data, particularly ozone, to CDC's National Environmental Public Health Tracking Program and its partners in an automated and near real-time fashion
 - Tracking Program identifies priority environmental health issues and evaluates the utility of existing data for answering questions and informing various issues.
- **Goal**: Enable health practitioners to access critical air quality data needed to understand and respond to health risks.

ALABAMA IN HUNTSVILLE

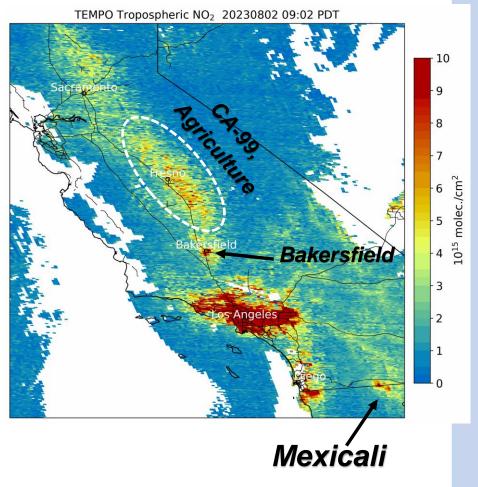
SPQRT

TEMPO First Light

TEMPO data products are at beta level, meaning little is known on the data quality

https://svs.gsfc.nasa.gov/5175/

Preliminary NO₂ Data! NASA TEMPO Tropospheric NO₂ 20230802 11:25 EDT - 10 - 9 Coal 8 Plants molec./cm² Fire 6 5 10¹⁵ 3 **MODIS Terra True Color** 2 **Power Plants** Power Plants Coal https://www.arcgis.com/apps/dashboai TEMPO Tropospheric NO₂ 20230802 11:25 EDT TEMPO Tropospheric NO₂ 20230802 15:35 EDT Biomass 11:25 LT 15:35 Geothermal Hydro Natural Gas Nuclear Fire Oil Other Solar Wind


First Light – Mid Atlantic Zoom

Summary of TEMPO strengths (non exhaustive)

- O_3 profile for new capabilities to monitor tropospheric ozone
- Understanding small-scale emission sources that have not been adequately resolved by current satellites
- Capability to observe sharp pollutant gradients and transport
- Monitor rapidly evolving pollutants from episodic events such as wildland fires
- Robust monitoring of industrial operations, regulatory monitors may miss peak emissions!
- Hourly scans for observing gaps in clouds, mitigate impact of clouds on air quality monitoring from space
- Aerosol optical depth and aerosol layer height for aerosol plume monitoring and PM2.5 estimates
- Near real-time NO₂, HCHO, and aerosol products for air quality monitoring & forecasting!

First Light Zoom over California

Preliminary data has provided early insight into advanced TEMPO capabilities **5P P**

Geostationary Air Quality Constellation!

Launched Feb 2020 Launched April 2023 Launch 2025 **GEMS** (hourly) **TEMPO** (hourly) **Geostationary Environmental** Sentinel-4 (hourly) Tropospheric Emissions: Monitoring Spectrometer Monitoring of Pollution

Sentinel-5P (once per day)

GaoFen-5 (once per day)

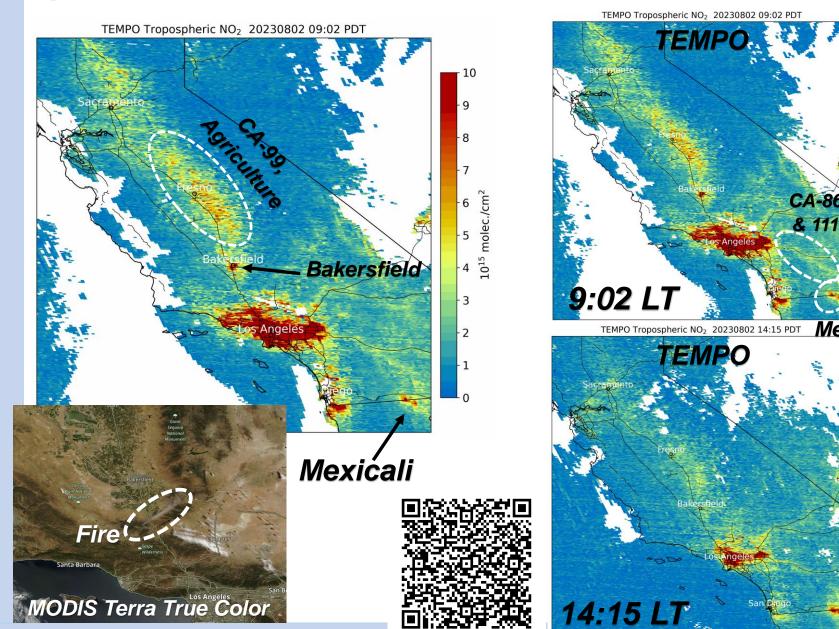
Current & Upcoming Work on TEMPO

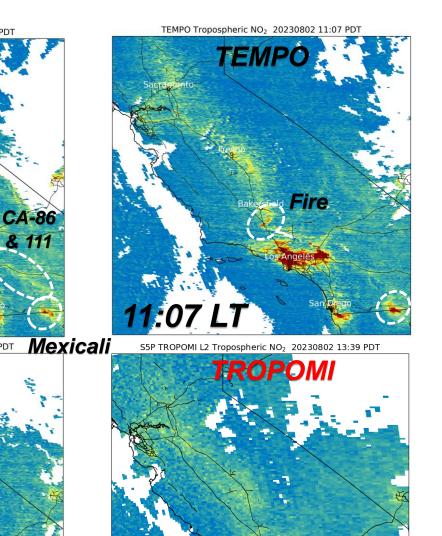
- Article on TEMPO to be published this month in A&WMA EM Plus magazine
- Continue to engage users and stakeholders on TEMPO products and applications
 - \circ Identify and produce value-added products and tools tailored to stakeholder needs
 - \odot Development of codes, user guides, and training items to enable effective use of TEMPO data
- Early evaluation / validation of TEMPO data
 - Coordinate between different projects and initiatives to most effectively evaluate TEMPO data in areas throughout the Field of Regard
 - \odot Provide feedback to TEMPO retrieval team to improve future versions of data products
- Coordination of TEMPO special operations
 - \circ Align TEMPO special operations with important initiatives between projects

Join EA Program here! TEMPO Mission Applications Lead

aaron.naeger@nasa.gov

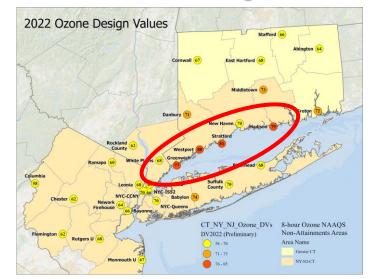
🔇 @NaegerAaron

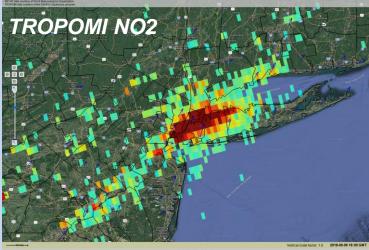


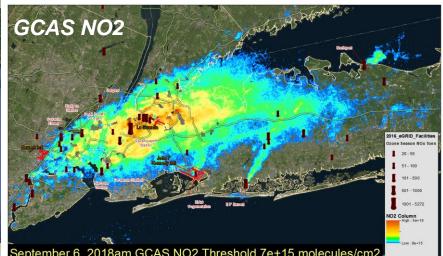

Additional Slides

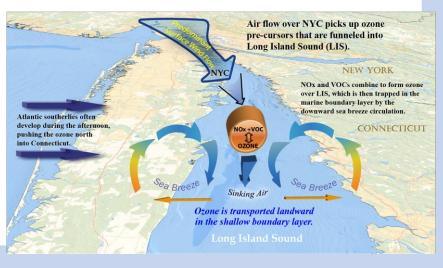
Preliminary NO₂ Data!

13:40 Li




Monitoring Air Pollution Transport over East Coast


- **Problem:** Connecticut coastal sites continue to record the highest ozone design values on the east coast.
 - O₃ precursors from NYC are funneled into the Long Island Sound, trapped in marine boundary layer, then transported into Connecticut.
 - To develop better NOx control strategies, we need to know where emissions come from on high ozone days.
- **Goal:** Use TEMPO data in conjunction with oversampling techniques to characterize point emission sources and monitor strength and movement of NO2 plumes across land/sea interface


Credit: Michael Geigert

September 6, 2018am GCAS NO2 Threshold 7e+15 molecules/cm2

