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Several different drivers are contributing to climate change within the Amazon basin, 19 

including forcing from greenhouse gases and aerosols, plant physiology responses to rising 20 

CO2, and deforestation. Attribution among these drivers has not been quantified for 21 

shared socioeconomic pathway (SSP) climate simulations. Here, we identify the 22 

contribution of CO2 physiology and deforestation to future hydroclimate change in the 23 

Amazon basin by combining information from three experiments and eight different 24 

Earth system models in CMIP6. Together, forcing from CO2 physiology and deforestation 25 

account for about 44% of the projected annual precipitation decline, 48% of surface 26 

relative humidity decline, and 11% of warming over the Amazon basin by 2100 for SSP3-27 

7.0. Other CMIP6 SSP simulations have similar contributions from the two drivers. 28 

Insight from our attribution analysis can aid in identifying research priorities aimed at 29 

reducing uncertainty in future projections of water availability, carbon dynamics, and 30 

wildfire risk. 31 

 32 

 Climate change is a major threat to Amazon rainforests as warming and drying contribute 33 

to higher levels of tree mortality in intact forests1,2 and to more destructive fires that escape 34 

human control3,4. To explore both future climate change and its impacts within the Amazon 35 

basin, Earth system model (ESM) simulations from the 5th and the 6th Phases of the Coupled 36 

Model Intercomparison Project (CMIP)5-12 are widely used. Specifically, simulations from 37 

ScenarioMIP13 for different future shared socioeconomic pathway (SSP)14 scenarios have been 38 

analyzed extensively to assess climate change impacts on ecosystem composition15, carbon 39 

storage16, the hydrological cycle17, fire risk18, and socio-economic systems19, often with the 40 
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CMIP simulations serving as external forcing for a set of downstream models that resolve the 41 

basin with a higher spatial resolution or greater process representation (for example, Koch & 42 

Kaplan16). Another important application of the CMIP simulations is their use in the 43 

development of emergent constraints20, which allow for a better understanding of the individual 44 

models from the broader ensemble that are more likely to accurately predict the sign and 45 

magnitude of future change21-23. Despite the extensive use of SSP simulations for these purposes, 46 

we do not clearly understand how different forcing agents within the simulations contribute to 47 

projected future changes in climate and the hydrological cycle in the Amazon basin. 48 

 Identifying the forcing agents responsible for projected future changes in climate is 49 

important for identifying research priorities to reduce uncertainties in key model components. 50 

In CMIP6 SSP simulations, critical forcing agents include well mixed greenhouse gases, 51 

aerosols, and land use change. Particularly for the Amazon basin, it is well established that the 52 

surface evapotranspiration changes from plant stomatal responses to rising atmospheric CO2 53 

and deforestation are important drivers of the precipitation response24-29, yet studies analyzing 54 

SSP simulations may include an implicit assumption that most of the projected change in the 55 

basin is associated with the climate system response to radiative forcing from greenhouse gases 56 

and aerosols, since these are the main forcing agents at a global scale (for example, Zhao & 57 

Dai12). To ensure a successful and informative assessment for policy- and decision-makers, it 58 

is essential to provide comprehensive reports on both the magnitude of climate change and its 59 

consequences. Additionally, it is crucial to clearly quantify the factors that contribute to future 60 

regional change. Failing to fully understand these key drivers hinders progress in reducing 61 

uncertainties within climate models30. 62 
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 Future precipitation changes in Amazonia will likely be influenced by increased 63 

atmospheric CO2 and deforestation31,32. The CO2 impacts on Amazonian precipitation can be 64 

separated into radiative and plant physiological effects. The CO2 radiative effect alters physical 65 

and dynamical processes, with regional Amazonian precipitation responding to large-scale 66 

thermodynamical adjustments of the ocean-atmosphere system, including the “wet regions 67 

getting wetter” mechanism identified in past work33,34. By contrast, the plant physiological 68 

effect in response to rising CO2 is associated with a reduction in plant stomatal conductance 69 

and land surface evapotranspiration, that in turn, influence boundary layer processes, the 70 

frequency of deep convection, and interactions with the tropical jet35. Though sharing similar 71 

mechanisms of reducing surface evapotranspiration and boundary layer humidity, deforestation 72 

additionally increases surface albedo and reduces surface roughness, two processes that play 73 

major roles in altering precipitation patterns in various parts of the Amazon basin36-38. Across 74 

the basin as a whole, it has been suggested that increasing the deforestation fraction may cause 75 

a linear decline in regional average precipitation39, and that for some scenarios of future change, 76 

this decline in precipitation may be similar in magnitude to that caused by forcing from CO2 77 

physiology40.   78 

 Despite the well-understood mechanisms of the rainfall reductions due to CO2 79 

physiology25,35,40 and deforestation41, there remains a lack of comprehensive and quantitative 80 

understanding of their contributions to future rainfall and other climate variable changes in 81 

future (21st century) simulations conducted as a part of ScenarioMIP for different SSPs. This 82 

attribution is challenging, in part, because each SSP has a different level of atmospheric CO2 83 

and prescribed forest cover change. In this study, we attribute changes in Amazonian 84 
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precipitation, surface relative humidity, and climate warming in the SSP simulations to forcings 85 

from CO2 physiology and deforestation. For this purpose, we analyzed idealized model 86 

simulations from two model comparison projects (MIPs) that were undertaken as a part of 87 

CMIP6 (see Methods), namely, the Coupled Climate–Carbon Cycle Model Intercomparison 88 

Project (C4MIP42) and the Land-Use Model Intercomparison Project (LUMIP43). Idealized 89 

experiments of the land surface response to rising CO2 in C4MIP (known as the 90 

biogeochemically coupled or BGC simulations) and to deforestation in LUMIP enabled us to 91 

first quantify the climate response of Amazon rainforest to these two mechanisms under 92 

uniform simulation protocols. We specifically analyzed transient simulations from eight models 93 

participating in C4MIP and six models participating in LUMIP (Supplementary Tables 1 and 94 

2). This analysis revealed that regional annual mean precipitation, surface relative humidity, 95 

and air temperature respond linearly to atmospheric CO2 concentration and forest cover fraction 96 

in the Amazon basin. In a second step, we applied linear models of the climate response to the 97 

absolute change in CO2 concentration or forest cover fraction to quantify the contribution of 98 

these mechanisms to climate change in the Amazon basin for different CMIP6 SSP simulations.  99 

 100 

Isolating climate response to rising CO2 or deforestation 101 

 We find that for the influence of rising CO2 on plant physiology, the models show a 102 

significant (and mostly linear) decline in mean annual precipitation of -0.91 ± 0.07% (P < 0.001, 103 

t-test) for a CO2 increase of 100 ppm (Fig. 1a). Multiplied by the quadrupling increase in CO2 104 

(that is, from 285 ppm to 1140 ppm between last and first 20 years of the C4MIP BGC 105 

simulations) and a basin-wide mean annual precipitation climatology of 6.1 mm d-1, this 106 
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precipitation response to the CO2 physiological forcing is equivalent to -0.47 mm d-1, which is 107 

broadly consistent with estimates for this response from the mean of previous CMIP5 models 108 

(for example, -0.48 mm d-1 in Kooperman et al. 25). We also find all the individual CMIP6 109 

models used in this study show a significant negative precipitation response to CO2 110 

physiological forcing (ranging from -0.5% to -1.6% per 100 ppm CO2 increase), highlighting a 111 

reasonably coherent response of Amazonian precipitation to CO2 physiological forcing within 112 

CMIP6 (Supplementary Table 2).  113 

 Deforestation also significantly decreases mean annual precipitation in the Amazon basin 114 

(Fig. 1b). The multi-model average response is -1.0 ± 0.3% per 10% deforestation (P < 0.001), 115 

relatively linear, and equivalent to about 10% or -0.61 ± 0.18 mm d-1 for 100% (complete) 116 

deforestation of the whole basin. The sign and magnitude of the multi-model average 117 

precipitation response from the fully coupled LUMIP simulations for complete deforestation is 118 

nearly identical and with a lower uncertainty compared to the mean estimate of -12 ± 11% (per 119 

100% deforestation) from a recent meta-analysis synthesizing information from climate models 120 

with various degrees of ocean, ice, and atmospheric coupling39. Moreover, we find all models 121 

agree on the sign of the response with their magnitude ranging from -0.15% to -2.3% in 122 

response to a 10% loss of forest cover, despite important structural differences in the CMIP6 123 

models with respect to the representation of vegetation-hydrology coupling and biophysical 124 

responses to land use change28,29.  125 

 Spatially, the precipitation response to forcing from a 100 ppm CO2 increment is strongest 126 

in the northeastern part of the basin (Fig. 2a), with a pattern consistent with previous reports34. 127 

Whereas the climate response to the basin-wide 10% deforestation is strongest in central and 128 
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western Amazonia, adjacent to the Andes Mountain range (Fig. 2b). Further, the CO2 129 

physiological forcing and deforestation also influence seasonality of the precipitation response. 130 

Across the annual cycle, the CO2 physiology impacts on precipitation are somewhat uniform, 131 

when expressed as a percent change. However, the precipitation response in the southeastern 132 

part of the basin is stronger toward the end of the dry season (August and September) than at 133 

the beginning of the dry season (June and July) (Supplementary Fig. 1). The negative 134 

precipitation response to deforestation appears to be most robust across the models during the 135 

wet season (December to May), although there is also a strong response and high level of 136 

agreement across models in the northern and eastern part of the basin during August, September, 137 

and October (Supplementary Fig. 2). 138 

 The negative precipitation response to forcing from CO2 physiology and deforestation 139 

implies greater future risks for meteorological drought and fire. To provide more insight into 140 

potential changes in these risks caused by CO2 physiology and deforestation forcing, we 141 

performed a similar regression analysis (see Methods) for surface relative humidity (RH) from 142 

the five models with available output from C4MIP and the four models with available output 143 

from LUMIP. Basin-wide RH decreases at a rate of -0.91 ± 0.02% (P < 0.001) in response to a 144 

100 ppm CO2 increase and by -0.5 ± 0.1% (P < 0.001) in response to a 10% loss of tree cover 145 

in the Amazon basin (Fig. 1c, d). Regressions for each available model also confirm that the 146 

RH response is consistently negative in response to these drivers, although not every model 147 

exhibits a statistically significant trend (Supplementary Table 2). The spatial pattern of RH 148 

response to CO2 physiology and deforestation is more homogeneous than for precipitation, with 149 

the largest signal occurring in the central Amazon basin (Supplementary Fig. 3a, b). 150 
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 Similar to precipitation and RH, the surface air temperature response in the Amazon basin 151 

to forcing from CO2 physiology is mostly linear (Fig. 1e), with a regional average warming rate 152 

of 0.13 ± 0.01 °C per 100 ppm increase in CO2 (P < 0.001). All models agree on a significantly 153 

positive surface air temperature response to rising CO2 (Supplementary Table 2). This warming 154 

signal is likely to increase the saturation vapor pressure, which, combined with the declined 155 

surface moisture availability due to declined stomatal conductance, contributes to the RH 156 

declines for CO2 physiology.  157 

 The surface air temperature response to deforestation is considerably noisier than for the 158 

other climate variables shown in Figure 1f, with a 10% loss in forest fraction contributing to a 159 

basin-scale warming of 0.03 ± 0.02 °C (P = 0.058). Further regression analysis was performed 160 

for each model, revealing that the sign and magnitude of deforestation impacts on surface air 161 

temperature diverge considerably from model to model (-0.19 °C to 0.15 °C in response to 10% 162 

deforestation, Supplementary Table 2). Specifically, the CanESM2 and UKESM1 show 163 

decreases in surface air temperature from deforestation in contrast to the other models that show 164 

a warming trend (Supplementary Table 2). Some of this variation may be linked to cooling from 165 

deforestation in the extratropics in the LUMIP simulations (ref. 28). As a result, the mean 166 

estimate of climate warming from deforestation reported here is likely a lower bound (that is, 167 

CanESM2 and UKESM1 contribute negatively to the ensemble mean warming, Supplementary 168 

Table 2) and has a high level of uncertainty associated with model-to-model variability (see 169 

Discussion for further information). Compared to the spatial pattern of the precipitation 170 

response, the spatial patterns for the warming response to CO2 physiology and deforestation are 171 
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diffuse and broadly similar, with the strongest response in the central part of the basin 172 

(Supplementary Fig. 3c, d). 173 

 The climate responses to CO2 physiology and deforestation are not directly comparable in 174 

Figs. 1 and 2, with the slopes having different units. However, we can compare relative impacts 175 

of the two drivers by specifying a fixed increment of atmospheric CO2 and then identifying the 176 

equivalent level of deforestation necessary to generate the same magnitude of climate change. 177 

For precipitation, a 100 ppm CO2 increase is equivalent to a 9% increase in deforestation in 178 

terms of generating an equivalent amount of climate change for the set of CMIP6 models 179 

analyzed here. Similarly, for relative humidity a 100 ppm CO2 increase is equivalent to an 18% 180 

increase in deforestation, and for temperature, a 100 ppm CO2 increase is equivalent to a 43% 181 

increase in deforestation. 182 

 183 

Contributions of CO2 physiology and deforestation in SSPs  184 

 The analysis shown in Figure 1 provides evidence that the climate response to atmospheric 185 

CO2 concentration or deforestation is mostly linear in CMIP6 models for the domain of the 186 

Amazon basin. As a next step, we used these linear relationships to separately isolate climate 187 

change arising from these two drivers in widely used SSP scenarios13 by the end of the 21st 188 

century. We estimated their contributions as the product of the multi-model average climate 189 

response from Fig. 1 and the changes in future atmospheric CO2 concentration or deforestation 190 

fraction from each SSP simulation (Fig. 3, Methods). Contributions from the CO2 physiology 191 

and deforestation have not been systematically identified for ScenarioMIP SSP simulations that 192 

integrate the forcing from many different climate change drivers. 193 
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 SSP scenarios have different pathways of future atmospheric CO2 concentration and land 194 

use, depending on different assumptions about the strength of international cooperation, 195 

technology, and economic development14. SSP1-2.6 has been described as the most sustainable 196 

future with global temperature stabilizing below 2°C of warming by 2081-2100 (ref. 44). In this 197 

scenario, atmospheric CO2 increases slowly, reaching a maximum of 474 ppm in 2063, and 198 

then declining to a mean level of 456 ppm by 2081-2100. By contrast, atmospheric CO2 199 

concentrations under the other three scenarios keep rising throughout the 21st century, reaching 200 

597 ppm for SSP2-4.5, 792 ppm for SSP 3-7.0, and 1005 ppm for SSP5-8.5. The CO2 201 

increments for these SSPs, relative to the background level in 1850 for the pre-industrial control, 202 

are summarized in Fig. 3.  203 

Although SSP5-8.5 has the highest atmospheric CO2 increase, its assumptions regarding 204 

global energy development are not closely coupled to land use change, and therefore the 205 

deforestation fraction in the Amazon basin remains nearly constant at 6.4% from 2021-2040 206 

through 2081-2100. This projection is similar to the 6.1% deforestation fraction for SSP1-2.6. 207 

For SSP2-4.5, Amazonian deforestation first increases to 8.3% during 2041-2060 and then 208 

decreases to 5.2% during 2081-2100 as a consequence of forest recovery (Fig. 3b). The greatest 209 

Amazonian forest cover loss occurs under SSP3-7.0 where deforestation increases to 12.4% by 210 

2081-2100 (Fig. 3c).  211 

 Precipitation decreases by 4.8% (-0.26 mm d-1) for SSP1-2.6 by 2081-2020 relative to the 212 

pre-industrial mean level in 1850 (5.5 mm d-1). For this scenario, we find that the sum of 213 

contributions from CO2 physiology and deforestation account for 46% (-0.12 mm d-1) of future 214 

precipitation decline over the Amazon basin (Fig. 4a). Similarly, of the 13.2% decline (-0.72 215 
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mm d-1) in Amazonia precipitation occurring by 2100 for SSP3-7.0, 44% of this decrease (-0.32 216 

mm d-1) can be attributed to the combined effect of CO2 physiology and deforestation. Across 217 

all the different future scenarios and time intervals shown in Fig. 4, the combined contributions 218 

of CO2 physiology and deforestation to Amazonian precipitation change vary between 34% and 219 

56% (Fig. 4). For surface RH, a key driver of fire risk45,46, the impact of CO2 physiology and 220 

deforestation is even greater in magnitude, accounting for 48% of the RH decline for SSP3-7.0 221 

and 52% for SSP5-8.5 (Supplementary Fig. 4). These findings highlight the importance of 222 

decreases in surface evapotranspiration due to both CO2 physiology and deforestation 223 

(Supplementary Fig. 5a, b) as key model drivers influencing the future hydroclimate of the 224 

Amazon basin (Fig. 5).  225 

 In contrast, for surface air temperature, the contribution from the two drivers to warming 226 

is relatively small, primarily because of the stronger regional and global temperature response 227 

to radiative forcing from greenhouse gases. For example, for SSP3-7.0 about 11% of future 228 

Amazonian warming can be attributed to forcing from CO2 physiology and deforestation by the 229 

end of the century (Fig. 5, Supplementary Fig. 6). 230 

 Solely considering contributions from the response of physiology to rising CO2, 231 

precipitation declines ranged between 33% for SSP1-2.6 to 46% for SSP5-8.5 (Fig. 4a, d). 232 

Deforestation contributions to precipitation declines varied between 4% for SSP5-8.5 to 13% 233 

for SSP1-2.6. CO2 physiology also had a much larger impact than deforestation for relative 234 

humidity and temperature changes within the different SSP simulations.  235 

 236 

Discussion 237 
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 CO2 physiology and deforestation are found to account for over 40% of the declines in both 238 

precipitation and surface relative humidity in the Amazon basin by the end of the 21st century 239 

(Fig. 4, Supplementary Fig. 4). These results indicate that a considerable amount of future 240 

Amazonian precipitation and meteorological drought7-12 can be attributed to drivers other than 241 

the radiative effects of greenhouse gases and aerosols. The important role of climate forcing 242 

from the land surface could enable a relatively fast (and positive) hydroclimate response in the 243 

Amazon basin if climate policies are enacted that allow for reforestation or a decline in 244 

atmospheric CO2 levels. This contrasts with the considerably slower (multi-decadal) response 245 

time of climate to radiative forcing from greenhouse gases as a consequence of long-term 246 

adjustments in ocean heating47. The estimated contributions of deforestation to future 247 

precipitation at the basin scale vary between 4% and 13% across the different SSPs. These 248 

estimates also serve as a range for the potential co-benefits in hydroclimate that could be 249 

achieved by preventing further deforestation, complementing carbon and ecological co-benefits 250 

reported in previous work48.  251 

 As a consequence of land-atmosphere interactions, past work has identified a loss of 40% 252 

of forest within the Amazon basin as a “tipping point”, beyond which hydroclimate changes 253 

would threaten the viability of remaining forests31. Our analysis also points to the negative 254 

consequences of deforestation for precipitation, but additionally suggests that at least for widely 255 

analyzed SSPs, threats to the future hydroclimate of the Amazon basin are even larger from the 256 

radiative effects of greenhouse gases and aerosols and from direct ecosystem responses to rising 257 

levels of atmospheric CO2. 258 
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The significant contributions of CO2 physiology to future Amazonian precipitation change 259 

in CMIP6 SSP simulations highlight the importance of improving our knowledge on key 260 

processes of vegetation effects on precipitation and meteorological drought within the Amazon 261 

basin49. We have shown in this study the model evidence of rising CO2 impacts on 262 

evapotranspiration, albedo, and leaf area index (Supplementary Fig. 5a, c, e). More 263 

observational and model explorations are needed to understand the resulting changes in 264 

boundary layer, deep convection, and regional circulation in order to reduce model uncertainties. 265 

While CMIP models provided a coherent and robust response to CO2 forcing associated with 266 

plant physiology, the magnitude of this response remains highly uncertain mainly because there 267 

are relatively few ecosystem-level observations from tropical forests available for model testing. 268 

This highlights the importance of new, sustained stomatal conductance and evapotranspiration 269 

measurements at different CO2 levels, such as those planned as a part of the Amazon FACE 270 

experiment50. Additionally, acclimation of stomatal conductance responses to long-term 271 

increasing levels of atmospheric CO2 remains a key unresolved issue in this respect51.  272 

Other key process-based uncertainties include the representation of land-atmosphere 273 

coupling and atmospheric convection that influence the precipitation recycling ratio in the 274 

Amazon basin52, and the ability of the models to capture the influence of changing ocean 275 

dynamics on future atmospheric circulation (and precipitation). For example, a recent study 276 

reported there is a systematic bias in CMIP6 models in capturing the cooling signal over the 277 

eastern equatorial Pacific in the past four decades53. Such a cooling pattern resembles a La-278 

Niña-like condition that could increase the precipitation in the Amazon basin through changes 279 

in local Walker circulation54. Some of the model-to-model differences in the magnitude of the 280 
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SSP precipitation response (shown with the error bars in Fig. 4, Supplementary Table 3) can 281 

likely be traced back to the ocean response to radiative forcing from greenhouse gases and 282 

aerosols55,56, which also needs further exploration in future work.  283 

 For deforestation, paths for reducing uncertainty in coupled model estimates of the 284 

Amazonian climate response include more extensive comparison of models with observations 285 

and refinement of the LUMIP protocol for CMIP7. In this study, we report that the local 286 

biophysical temperature effects range from -0.19 °C to 0.15°C in response to 10% deforestation 287 

in the Amazon basin (Supplementary Table 2). Although the multi-model mean warming 288 

response is consistent with past work41, variability in the magnitude of the response across the 289 

different CMIP models is large and stems from at least three possible sources. First, there is a 290 

difference in the level of calibration and validation efforts from each modelling group to 291 

improve the biophysical temperature effects of deforestation. For example, land component of 292 

CESM2, the Community Land Model (CLM), has been improved through parameter 293 

optimization57 and benchmarking with satellite observations58. Second, there are still a limited 294 

number of observations in the Amazon basin to help with the model calibration. For instance, 295 

a recent comparison of biogeochemical and biophysical climate effects of deforestation59 296 

includes observational datasets from Bright et al. 60 and Duveiller et al. 61, which are still limited 297 

to a paucity of paired forested and non-forested eddy-covariance sites and relatively sparse 298 

satellite data coverage due to frequently cloudy conditions. Third, the CMIP6 LUMIP 299 

deforestation protocol is global in scope28. In designing the future LUMIP protocol for CMIP7, 300 

consideration of a tropical-only experiment with an increased number of ensemble members 301 

may provide a stronger basis for robustly characterizing regional climate responses. Further 302 
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analysis of drought and fire metrics in LUMIP simulations, including soil moisture and burned 303 

area, is also needed to understand better the processes of regional-scale dynamic vegetation 304 

feedbacks to Amazonian hydroclimate from changes in forest cover. 305 

 By recognizing the relatively fast adjustment time and linear relationship between land 306 

surface forcing and Amazonian climate response, we developed a first attempt to separate CO2 307 

physiology and deforestation contributions to climate change in CMIP6 SSP simulations. While 308 

the assumption of linearity and independence of the two forcing agents simplified our analysis, 309 

it is important to recognize potential interactions and feedback between these two drivers and 310 

target these interactions in future work. Further deforestation, for example, may weaken the 311 

regional climate response to rising CO2 as forests are replaced with pastures and grasslands that 312 

have a smaller roughness and canopy fraction for transpiration. Across the SSPs, the 313 

deforestation fraction is generally small, as predicted in the SSPs by the end of the 21st century 314 

and ranges from 5.2% in SSP-2-4.5 to 12.4% in SSP3-7.0. To estimate the potential magnitude 315 

of some of these interactions, we performed a back-of-the-envelope calculation. Specifically, 316 

for the SSP3-7.0 scenario, we reduced the CO2 physiological contribution by 12% to reflect the 317 

concurrent loss of total forest cover. With this simple assumption, which is likely an upper 318 

bound due to the largest deforestation fraction of 12%, the precipitation decline attributed to 319 

CO2 physiology decreases from 35% to 31%. Some additional non-linearities are likely to be 320 

introduced from interactions between the radiative effects of greenhouse gases and the land 321 

surface forcing mechanisms explored here. Supplementary Fig. 7, for example, shows that CO2 322 

physiology effect on precipitation is largely independent of the deforestation effect but has a 323 

weak relationship with precipitation response to CO2 radiative effect. These illustrative 324 



16 
 

calculations and analysis suggest that interactions may slightly reduce our estimated magnitude 325 

of precipitation effects but are unlikely to change our study’s main findings qualitatively. This 326 

also highlights the need to explore feedback between forcing agents in future work. One 327 

effective way to accomplish this in CMIP7 would be to add a CO2 physiology simulation (for 328 

example, a BGC simulation) and a land use simulation to the DAMIP62 for historical and 1-2 329 

SSPs to 2100. 330 

 In this study we provide an attribution analysis of Amazonian climate change in widely 331 

used SSP simulations by isolating contributions from the plant physiological response to rising 332 

CO2 and deforestation. We accomplish this by combining information from two different 333 

idealized experiments from CMIP6. From the idealized (biogeochemically-coupled) CO2 334 

experiment from C4MIP and the idealized deforestation experiment from LUMIP, we identify 335 

that the climate change response to feedbacks from changes in the land surface are rapid and 336 

mostly linear across the basin and across the dynamic range of CO2 concentration and land 337 

cover change captured by the SSPs. The combined effects from the two drivers account for 338 

more than 40% of future basin-wide precipitation and surface relative humidity declines, but 339 

less than 11% of warming over the Amazon basin by the end of the 21st century. This implies a 340 

substantial contribution from CO2 physiology and deforestation to increasing risk of future 341 

meteorological drought and wildfire. Our findings provide insight about the sources of 342 

uncertainty of climate model projections and may help with identifying the full scope of climate 343 

benefits associated with forest conservation policies in the Amazon basin.  344 



17 
 

Methods 345 

We isolated the climate change response in the Amazon basin to CO2 physiology and 346 

deforestation using output from two idealized CMIP6 experiments. From C4MIP42 we analyzed 347 

the idealized 140-year simulations (1pctCO2-bgc) in which CO2 concentrations increase by 1% 348 

per year, but the CO2 increases are not radiatively active (that is, all models’ radiation code uses 349 

a constant atmospheric CO2 concentration that was held constant at the pre-industrial level). 350 

The 1pctCO2-bgc experiment from C4MIP allows for the isolation of the climate response 351 

resulting from plant physiological responses to rising CO2. From LUMIP43 we analyzed a 352 

global idealized deforestation experiment (deforest-glob). The LUMIP deforest-glob simulation 353 

has an 80-year duration with a total forest area of 20 million km2 linearly removed from each 354 

model’s top 30% of forest grid cell across the globe during the first 50 years. This results in 355 

about a 0.9% per year decline in tree cover fraction across the Amazon basin as a whole (that 356 

is, the deforestation was mostly spatially homogeneous in the simulations). Since there are only 357 

deforestation effects in this experiment, changes in Amazonian climate can be attributed solely 358 

to this driver.   359 

In a second step, we identified the contribution of plant physiology responses to rising CO2 360 

and deforestation to Amazonian climate change within CMIP6 future scenario experiments 361 

(ScenarioMIP)13. We focused on CMIP6 simulations for 4 widely used shared socioeconomic 362 

pathways (SSPs)14. These SSP simulations have different radiative forcing levels by 2100. They 363 

are: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The number behind each future scenario (for 364 

example, 8.5 for SSP5-8.5) indicates the radiative forcing level (unit: W/m2) that occurs in the 365 

scenario by 2100. To quantify the relative change in Amazonian climate in the future, we also 366 
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include the pre-industrial control (piControl) experiment of CMIP6 that uses fixed radiative 367 

forcing identical to the level during the year of 1850. The year of 1850 is also the reference year 368 

in our study. 369 

Monthly air temperature (tas), precipitation (pr), surface relative humidity (hurs), and tree 370 

cover (treeFrac) during the historical and future periods from the above CMIP6 experiments 371 

were downloaded from the archive of Earth System Grid Federation (ESGF). Before analysis, 372 

all variables were remapped to a 1-degree grid using the bilinear interpolation method from 373 

Climate Data Operator (CDO63). Because not all CMIP6 modeling centers participated in all 374 

four experiments as described above, we chose to use eight models that have the maximum 375 

availability of these variables (Supplementary Table 1). They include BCC-CSM2-MR (Wu et 376 

al. 64), CanESM5 (Swart et al. 65), CESM2 (Danabasoglu et al. 66), CNRM-ESM2-1 (Seferian 377 

et al. 67), IPSL-CM6A-LR (Boucher et al. 68), GISS-E2-1-G (Kelley et al. 69), UKESM1-0-LL 378 

(Sellar et al. 70), and MPI-ESM1-2-LR (Mauritsen et al. 71). To obtain the most robust climate 379 

response to CO2 physiology and deforestation as possible, climate variables were averaged for 380 

each model across ensemble members based on their availability in both the C4MIP and LUMIP 381 

experiments (Supplementary Table 1). The ensemble mean approach helps improve the signal-382 

to-noise ratio of the climate response either to CO2 physiology or deforestation in the Amazon 383 

basin considering the different influences from interannual variability from each model. Yet, it 384 

also relies on the mechanism coherence and traceability across these models. For future SSP 385 

scenarios, atmospheric CO2 concentrations during the 21st century were obtained from the input 386 

datasets for Model Intercomparison Projects (input4MIPS) and their land use including the 387 
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fraction of forest in the Amazon basin was obtained from the Land Use Harmonization dataset 388 

version 2 (LUHv2f, ref. 72). 389 

To isolate the precipitation response to either plant physiological response to increasing 390 

CO2 or deforestation within the eight CMIP6 models, the relative precipitation changes in 391 

percent were computed relative to the pre-industrial average for each model in each experiment 392 

before determining the average across models. We used simple linear regression equations to 393 

describe the response of precipitation, surface relative humidity, and surface air temperature to 394 

CO2 concentration and forest cover percentage. 395 

Y = α + β×x 396 

where y indicates the climate variables such as precipitation, surface relative humidity, or 397 

surface air temperature, x indicates either CO2 concentration change or deforestation fraction 398 

over the Amazon basin. Β and α are the slope and y-intercept as estimated from the above 399 

equation, respectively. As shown in Fig. 1, the estimated β at the basin scale was used as the 400 

climate sensitivity to either CO2 concentrations in C4MIP 1pctCO2-bgc or deforestation 401 

fraction in LUMIP deforest-glob. The y-axis intercept value in Fig. 1 may not be identical to 402 

100% for precipitation and to 0 for surface air temperature, probably from the influence of the 403 

internal variability. We chose not to force the regressions through a specified y-axis intercept to 404 

avoid overestimating contributions from CO2 physiology and deforestation in our attribution 405 

analysis. To assess the spatial pattern of the Amazonian climate response, we also performed 406 

the linear regression analysis for each model pixel. 407 

To estimate the contribution of plant physiological response to CO2 to future climate 408 

change in the Amazon basin, we first computed the changes in the atmospheric CO2 409 
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concentration from the pre-industrial era (that is, 1850) to different future periods (that is, 2021-410 

2040, 2041-2060, 2061-2080, and 2081-2100). We then multiplied this CO2 change with the 411 

slope derived from the linear regression describing the response of each climate variable to 412 

atmospheric CO2 concentration from the C4MIP 1pctCO2-bgc simulations (left column in Fig. 413 

1). In the 1pctCO2-bgc simulations, land cover was held constant throughout the simulations at 414 

1850 levels. Similarly, the deforestation contributions were computed as the product of the 415 

basin-scale average deforestation fraction from each of the future SSPs scenarios relative to 416 

1850 forest cover, and the slope derived from the linear regression describing the response of 417 

each climate variable to Amazonian deforestation fraction from the LUMIP deforest-glob 418 

simulations (right column in Fig. 1). In the LUMIP simulation atmospheric CO2 concentration 419 

was held constant at 1850 levels43. The regression approach was applied for the purpose of 420 

deriving the sensitivity of the climate response to CO2 concentration or deforestation fraction, 421 

respectively, using the different C4MIP and LUMIP simulations. The contribution by either 422 

CO2 physiology or deforestation was estimated for the whole Amazon basin as shown in Fig. 4, 423 

Supplementary Figs. 4 and 6.  424 

We assumed that the climate response to CO2 physiological forcing and deforestation could 425 

be isolated from the CMIP6 simulations because climate responses to land surface forcing, 426 

including adjustments in boundary layer height and convection from changes in surface 427 

evapotranspiration, are known to be relatively fast, occurring over timescales of days to weeks35. 428 

 429 

Data availability 430 
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All CMIP6 simulations used in this study are publicly available at https://esgf-431 

node.llnl.gov/projects/cmip6/. Atmospheric CO2 concentrations for future SSP scenarios were 432 

downloaded from https://esgf-node.llnl.gov/projects/input4mips/. Future land use datasets 433 

LUHv2f were downloaded from https://luh.umd.edu/data.shtml.  434 
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 439 

Acknowledgement 440 

Y.L. and J.T.R. acknowledge support from the U.S. Department of Energy (DOE) Office of 441 

Science, Biological and Environmental Research (BER), Earth and Environmental Systems 442 

Modeling program to study dust and fire (DE-SC0021302) and the RUBISCO Scientific Focus 443 

Area. J.T.R. and D.C.M. received funding support from NASA’s SERVIR and MAP research 444 

programs. A.L.S.S. recognizes funding support from DOE BER Regional and Global Model 445 

Analysis program (DE-SC0021209). The funders had no role in study design, data collection 446 

and analysis, decision to publish or preparation of the manuscript. 447 

 448 

Author Contributions Statement 449 

Y.L. and J.T.R. designed the research; Y.L. performed data analysis and figure illustrations; 450 

Y.L. and J.T.R. drafted the manuscript, with discussions and contributions from J.C.A.B., 451 

https://esgf-node.llnl.gov/projects/cmip6/
https://esgf-node.llnl.gov/projects/cmip6/
https://esgf-node.llnl.gov/projects/input4mips/
https://luh.umd.edu/data.shtml
https://github.com/YueLi92/Contributions_CO2Phys_Def_SSP


22 
 

P.M.B., F.M.H., D.M.L., D.C.M., A.L.S.S., M.R.U.; All authors reviewed and revised the 452 

manuscript. 453 

 454 

Competing Interests Statement 455 

The authors declare no competing interests. 456 

 457 

Figure Captions 458 

 459 

 460 

Figure 1. Transient response of annual mean precipitation, surface relative humidity, and 461 

air temperature to CO2 physiology and deforestation in the Amazon basin. The 462 

precipitation changes were computed in percentage from each model, and then averaged across 463 
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eight CMIP6 models. Each data point represents the cross-model regional average that was 464 

computed for each year from their 140-year and 50-year simulations from the C4MIP and 465 

LUMIP experiments, respectively (see Methods). Climate changes are solely due to CO2 466 

physiology (no radiative effects) in the left column and deforestation in the right column. The 467 

exact P values for regression slope by t-test are 4.5×10-28 for (a), 2.1×10-4 for (b), 8.8×10-73 for 468 

(c), 6.0×10-6 for (d), 9.4×10-51 for (e), and 0.058 for (f). 469 

 470 

 471 

Figure 2. Spatial distribution of the mean annual precipitation response to forcing from 472 

CO2 physiology and deforestation. Precipitation response to (a) 100 ppm CO2 increase, (b) 473 

10% loss in forest fraction. The precipitation changes were computed in percent from each 474 

model, and then averaged across CMIP6 models. Linear regressions were performed for the 475 

precipitation at each pixel against (a) atmospheric CO2 concentrations and (b) basin-scale 476 

average in forest cover loss from their 140-year and 50-year simulations of the C4MIP and 477 

LUMIP experiments, respectively (see Methods). Dotted area indicates the model agreement, 478 
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with at least six out of eight models agreeing on the sign of the precipitation response. 479 

 480 

 481 

Figure 3. Changes in CO2 concentrations and deforestation fraction of the Amazon basin 482 

in Shared Socioeconomic Pathways (SSPs). Both CO2 increase (light brown) and loss in forest 483 

fraction of the Amazon basin (red brown) were computed as the difference between future 484 

projections and the preindustrial levels for (a) SSP1-2.6, (b) SSP2-4.5, (c) SSP3-7.0, and (d) 485 

SSP5-8.5. Future projections were derived from CMIP6 ScenarioMIP for different future shared 486 

socio-economic pathways (SSPs). 487 
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 489 

Figure. 4 Climate contributions of CO2 physiology and deforestation to future changes in 490 

precipitation over the Amazon basin. Future changes in Amazonian precipitation (%) due to 491 

CO2 physiological effects (light brown) and deforestation (red brown) were computed from the 492 

precipitation response from these two drivers (see Methods). Light grey indicates the future 493 

Amazonian precipitation changes under the four Shared Socioeconomic Pathways (SSPs) 494 

during different periods. They are: (a) SSP1-2.6, (b) SSP2-4.5, (c) SSP3-7.0, and (d) SSP5-8.5. 495 

Red numbers indicate the percentage of total precipitation changes for each time period and 496 

SSP attributed to CO2 physiology and deforestation. Each error bar indicates 1 standard 497 

deviation (SD) being added to the mean values across the CMIP6 models with available output 498 

(n = 8 for CO2 physiology and SSP simulation, n = 6 for deforestation). Data point for each 499 

model has been shown along with the bar as indicated by plus sign. Relative precipitation 500 
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changes in percent can be converted to absolute changes in mm d-1 by being multiplied by a 501 

multi-model mean annual precipitation of 5.5 mm d-1 for the pre-industrial period. 502 

 503 

 504 

Figure 5. Schematic diagram of the mechanisms by which CO2 physiology and 505 

deforestation influence climate change in the Amazon basin. Taking the SSP3-7.0 as an 506 

example, the contributions of CO2 physiology and deforestation to Amazonian climate change 507 

by the end of the 21st century (2081-2100) were quantified using CMIP6 idealized experiments 508 

as described in the methods. More information about evapotranspiration, albedo, and leaf area 509 

index model responses, which play a key role in regulating the integrated climate response, can 510 

be found in Supplementary Fig. 5. Additional analysis of the underlying mechanisms can be 511 

found in previous work by Swann et al. 24, Zhou et al. 27, and Boysen et al. 28. 512 
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