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Abstract 1 

Soil moisture reflects the amount of water available to crops in the top layer of soil. As such, 2 

considering soil moisture provides important insight into water availability and ultimately crop 3 

yields in agricultural settings. In studies of climate change, food security, and health, however, 4 

soil moisture is rarely empirically considered despite its connection to crop health and yields. In 5 

this project, we aim to advance understanding of climate impacts on food security by 6 

incorporating soil moisture into quantitative models of child health. Combining spatially 7 

referenced health survey data from the Demographic and Health Surveys for 2005 and 2010 in 8 

Senegal and 2007, 2011, and 2014 in Bangladesh, with soil moisture data from the Famine Early 9 

Warning System Network Land Data Assimilation System, we explore the linkages between sub-10 

annual and sub-seasonal climate conditions and child malnutrition in two rainfed agriculture 11 

dependent countries - Bangladesh and Senegal.  Results suggest that soil moisture, measured on 12 

very short time scales, may be associated with reductions in anthropometric weight-for-height z-13 

scores but the relationship is highly dependent upon geographic context. 14 

  15 

Introduction 16 

Food security is defined as having continued, stable access to safe, affordable, and nourishing 17 

food (Barrett, 2010). When one of these conditions are not met, the risk of food insecurity 18 

increases with impacts on human health and development in the short- and long-term (Pinstrup-19 

Anderson, 2009; Wheeler & Von Braun, 2013). When children experience food insecurity, they 20 

are at an increased risk for adverse health outcomes like increased risk of infections and 21 

mortality, as well as undernutrition, including wasting and stunting (Balk et al., 2005; Akresh et 22 

al., 2011; Black et al., 2013; Brown et al., 2020; Randell et al., 2020). Because of food 23 

insecurity’s importance on child health outcomes, global campaigns aimed to reduce hunger, 24 

such as the Sustainable Development Goals and Zero Hunger, maintain a large focus on 25 

decreasing child food insecurity. 26 

  27 

Local, rainfed agricultural production provides an important source of food and income for rural 28 

households in low-income countries when access to food markets is sparse (Di Prima et al. 29 

2022). Due to its increased availability and decreased cost, locally-produced food is important 30 

for ensuring food security of households and individuals and for providing a coping mechanism 31 
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of distress selling when growing season conditions are poor (Iizumi et al. 2013; Grace et al., 32 

2014; Musyoka et al., 2021). Farmers and farming reliant communities depend upon relatively 33 

consistent rainfall during key growing seasons for ensuring food and income security in 34 

communities and households where community-level food production is common. Climate 35 

change is associated with increased frequency and intensity of droughts and floods and with a 36 

shifting seasonality of precipitation leading to a potential for adverse impacts on agricultural 37 

yields (Verhagen et al. 2004; Easterling et al. 2007; Jalloh et al. 2013). When yields are poor, 38 

children may face an increased risk of undernutrition as the availability of local food decreases 39 

and as household income decreases (Brown et al., 2014; Grace et al., 2016). Yearly varying 40 

measures of community-level agricultural yield are not routinely collected in low-income 41 

countries, however, leaving researchers to rely on remotely sensed rainfall datasets to help 42 

determine the quality of the growing season (Lobell et al. 2019; Kugler et al., 2019).  Research 43 

that incorporates remotely-sensed data has found that excessive precipitation or a lack of 44 

precipitation may be associated with food insecurity in children (Chotard, 2011; Shively et al., 45 

2015; Randel et al., 2020). 46 

  47 

As part of early warning efforts to support health and agricultural interventions before food 48 

insecurity sets in, it is particularly important to understand the role of climate on localized 49 

production of agriculture (Grace et al., 2016). However, despite increased attention to child food 50 

insecurity and climate conditions, the mechanisms that link exposure to climate conditions and 51 

undernutrition remain confusing in the literature. Key measurement issues related to temporal 52 

and spatial data harmonization remain an ongoing challenge in this research.  In much of the 53 

previous literature of quantitative analyses on food insecurity climate measures are 54 

operationalized as seasonal totals or averages of precipitation and temperature (Balk et al., 2005; 55 

Grace et al., 2012; Davenport et al., 2017; Thiede & Strube, 2020). However, research of climate 56 

and soil science suggests that sub-seasonal measures with finer temporal scales may better 57 

capture environmental interactions that are more relevant to plant growth and agricultural 58 

production (De Camargo & Hubbard, 1999, Eggen et al., 2019). For acute and reversible child 59 

health outcomes, like wasting, improving scientific understanding of the role of climate in child 60 

health is vital. 61 

  62 
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In this paper, we explore the use of two different remotely sensed measures for approximating 63 

local agricultural yields and food availability, soil moisture, a measure of below-ground 64 

moisture, and Normalized Difference Vegetation Index (NDVI), a measure of above-ground 65 

moisture. We include these variables in quantitative models to explore the variability of 66 

indicators of acute child health across space and time in two different countries with relatively 67 

high levels of child undernutrition and a high reliance on rainfed agriculture, Senegal and 68 

Bangladesh.  To conduct this analysis we use spatially referenced, nationally representative data 69 

from the Demographic and Health Surveys (DHS) retrieved via IPUMS DHS linked to high 70 

spatial resolution data from the Famine Early Warning System Network Land Data Assimilation 71 

System (FLDAS) and NDVI (MODIS) datasets to explore temporal measures of growing season 72 

conditions on individual-level weight-for-height and wasting. 73 

  74 

Background 75 

Measuring food security 76 

Food security can be described using four pillars – availability, stability, utilization, and access 77 

(Barrett, 2010; Wheeler & VonBruan, 2013). Agricultural production is a major component of 78 

food availability, and in low-income countries like Senegal and Bangladesh where people 79 

depend on farming for livelihoods, food production, when combined with other pillars, is 80 

especially important for food security (Phalkey et al., 2015). While food stability, utilization, and 81 

access are influenced by many outside factors like the political, social, and economic 82 

environment of a community or country, food availability is directly affected by the climate in 83 

low income, rural, and rainfed agricultural settings. These four concepts – food availability, 84 

stability, utilization, and access are interrelated and all four must be satisfied for an individual or 85 

household to be considered food secure. Food insecurity occurs when one of these are 86 

insufficient and not meeting the needs of an individual or household.  87 

  88 

The measurement and conceptualization of food security in quantitative studies varies, 89 

highlighting the importance of understanding the local contexts of each analysis. As such, the 90 

choice of measure can influence the conclusions and policy implications of an analysis. It is 91 

important to ensure we are capturing the underlying mechanisms that relate these pillars to real-92 

world experiences of food security. While a direct measure of food security would be ideal for 93 
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these quantitative analyses (Jones & Thornton, 2003), researchers often rely on proxy measures 94 

of food security through anthropometric growth. Weight-for-height z-scores (WHZ), a measure 95 

of acute nutrition are often used to approximate experiences with short-term food insecurity 96 

(Black et al., 2013; Johnson & Brown, 2014; Shively et al., 2015; Grace et al., 2022) 97 

  98 

Much of the food security research is focused on food availability, especially studies of climate 99 

and food security, because it measures a direct effect on crop production, the amount of available 100 

food in communities, and the amount of available income a household can spend on food 101 

(Wheeler & von Braun, 2013; Phalkey et al., 2015; Thiede & Gray, 2020). Since crop 102 

production, a measure of food availability, is not regularly assessed at nationally representative 103 

scales in low-income countries, proxies like Normalized Difference Vegetation Index (NDVI) 104 

can be used to indicate community or regional crop production (Shively etl., 2015; Grace et al., 105 

2021). 106 

  107 

Climate indicators, like time-lagged measures of seasonal rainfall and less commonly 108 

temperature, are often used to characterize the quality of the growing season assuming that 109 

poorer growing seasons climate conditions would lead to poorer agricultural yields (Dos Santos 110 

& Henry, 2008; Davenport et al., 2017). Climate anomalies such as drought, floods, or extreme 111 

heat can lead to perturbations in crop production, directly reducing the amount of and stability of 112 

crop yields that are available for households and communities (Frelat et al., 2016). For example, 113 

Shively et al. (2015) found that child nutrition and growth is sensitive to anomalies in vegetation 114 

and crop production in Nepal. Temperature is sometimes considered in tandem with precipitation 115 

as a climate variable that can influence crop yields (Brown et al., 2020). Higher temperatures 116 

combined with varying availability of moisture is expected to affect crop yields in a mostly 117 

adverse direction though uncertainty remains based on a variety of factors like agricultural 118 

management practices, crop type, and soil properties (Lobell et al., 2011). Grace et al. (2012) 119 

found that warming and drying was associated with poorer child nutrition in Kenya; however, 120 

Thiede & Gray (2020) did not find a statistically significant relationship with temperature and 121 

acute undernutrition in Indonesia. Weather and climate can also influence food insecurity 122 

indirectly through infectious disease, altered childcare practices, and changes in food prices 123 

(Grace et al., 2014; Brown & Kshirsagar, 2015). 124 
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  125 

Food security is also dependent upon a stable supply of food. Breastfeeding provides an 126 

important source of nutrition for infants and can play an important role in the stability of food for 127 

children. The World Health Organization recommends breastfeeding as the sole source of 128 

nutrition for children up to six months of age (WHO, 2018). In Bangladesh, breastfeeding is 129 

highly prevalent with about 98% of pregnant mothers expressing a desire to breastfeed and about 130 

65% of women exclusively breastfeeding until a child is six months of age (UNICEF, 2022). 131 

Breastfeeding is lower in Senegal where about 40% of mothers breastfeed until the child is 6 132 

months of age (World Bank, 2019-a). If mothers follow these recommendations of exclusive 133 

breastfeeding then it is possible that young breastfed babies may be buffered from some adverse 134 

climate impacts (Maxwell, 1995; Dos Santos & Henry, 2008). However, new research 135 

connecting breastfeeding with climate found that when growing season conditions are more 136 

favorable for crop growth, breastfeeding women spend more time with agricultural activities 137 

leading to a lower likelihood of exclusive breastfeeding (Randell et al., 2021). Breastfeeding is a 138 

critical source of nutrition for young children and may also be a source of instability brought on 139 

by climate and weather conditions.  140 

  141 

Challenges with measurements of food security 142 

While framing food security using these pillars helps researchers conceptualize certain measures 143 

in their quantitative analyses, in reality, experiences with food security are much more complex 144 

than can be captured by discrete pillars. Issues of temporal and spatial scale complicate the 145 

relationship between many indicators used in quantitative studies of food security. Certain 146 

measures often work across multiple scales to influence food security and can be correlated with 147 

each other which makes it difficult to statistically model (Shively, 2017). For example, 148 

researchers sometimes include a household variable of electricity to measure economic access to 149 

food (Davenport et al., 2017). However, electricity could also indicate the household’s ability to 150 

store food, indicating a measure of stability.  151 

 152 

In the case of acute measures of food insecurity, the temporal resolution of cross-sectional and 153 

observational data can limit the ability to use certain measures in analyses. This is especially 154 

relevant to time-varying climate indicators used to approximate food availability and food 155 
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stability. However, many countries worldwide do not collect spatially specific agricultural 156 

production information, even on an annual basis. Barrett (2010) discusses the issues related to 157 

using aggregated variables in that they often miss important heterogeneity that could explain the 158 

relationship between factors that affect food security. This highlights the importance of creating 159 

climate measures that reflect the complicated spatial and temporal dimensions of the climate and 160 

food security nexus. 161 

  162 

Strategies to overcome these limitations 163 

Remotely sensed or composite measures of proxy indicators of food availability are increasingly 164 

becoming a solution to address the need for spatially and temporally detailed data (Funk & 165 

Budde, 2009; Brown et al., 2015; Grace et al., 2021). These data types are recorded at daily time 166 

intervals and are often available at a relatively fine spatial resolution of less than one kilometer. 167 

The normalized difference vegetation index (NDVI) is most commonly used to estimate 168 

interannual food availability anomalies due to abiotic and biotic stress. NDVI provides an 169 

estimate of photosynthetic activity and can be used to predict crop yields. The greenness of 170 

vegetation, as measured by NDVI, is a direct correlate of precipitation (Lotsch et al., 2003) and 171 

temperature conditions (Lokupitiya et al., 2010) is a good indicator of food availability due to its 172 

ability to capture the effect of moisture and temperature of crop conditions. By measuring 173 

greenness of vegetation, NDVI can serve as a proxy measure of community-level food 174 

availability (Phalkey et al., 2015; Bakhtsiyarava et al., 2018; Brown et al., 2014; Shively et al., 175 

2015).  The climate pathways that we seek to define are highly variable across space and time, so 176 

these remotely sensed measures allow us to capture agricultural production at a relevant 177 

resolution. 178 

  179 

We also consider an additional remote sensing-derived climate measure, soil moisture, in our 180 

analysis. Soil moisture is defined as the amount of water in the unsaturated soil zone, or the soil 181 

that is above the groundwater table (Seneviratne et al., 2010). One major role of soil moisture in 182 

the climate system is that it provides a source of water for the atmosphere through direct soil 183 

evaporation. The moisture in soil influences the atmosphere through land-surface fluxes and is 184 

involved in local, regional, and global climate feedbacks (Seneviratne et al., 2010).  185 

  186 
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Soil moisture also provides the atmosphere with water through plant evapotranspiration 187 

(Seneviratne et al., 2010). This conceptually links soil moisture with crop yields as an important 188 

constraining factor on agricultural productivity. There is compelling evidence that soil moisture 189 

could potentially be a more accurate measure of crop-available moisture than precipitation as 190 

rainfall does not measure processes like runoff, drainage, and evaporation on crop water 191 

availability (Rigden et al., 2020; Proctor et al., 2022). In a retrospective study of crop yields in 192 

the United States, soil moisture and atmospheric demand model parameters significantly 193 

outperformed precipitation and temperature in their ability to predict crop yields (Rigden et al., 194 

2020). Despite this promise, users of soil moisture data have struggled to represent the spatially 195 

and temporally varying nature of soil moisture due to varying soil composition, organic matter, 196 

land cover and soil depth across regions, while also capturing variations in crop water demand. 197 

These challenges have limited the use of soil moisture in food security analyses. Rapidly 198 

improving soil moisture datasets which have recently become available offer the opportunity to 199 

demonstrate the potential of these data to estimate food security (McNally et al., 2017). 200 

  201 

We employ the utility of these remotely sensed measures in our analysis to address some of the 202 

challenges related to food security measurements discussed above. Both soil moisture and NDVI 203 

could be important measures of production because they are sensitive to the timing of climate 204 

variability. Instead of using seasonal totals of these measures which often do not consider 205 

phenologically important timing, we focus instead on using sub-annual and early growing season 206 

estimates to link variability in soil moisture and NDVI to estimates of child food insecurity. 207 

 208 

Data 209 

Population data 210 

We use population data from the Demographic and Health Surveys (DHS) via IPUMS DHS in 211 

Senegal and Bangladesh (Heger-Boyle et al., 2022). The cross-sectional Senegal surveys were 212 

taken in 2005 and 2010 and the Bangladesh surveys were taken in 2007, 2011, and 2014. 213 

Because of consistency across time periods and geographic coverage within countries, this data 214 

is widely used for research and policy related to global health and development in many low- to 215 

middle-income countries. The DHS also collects individual- and household-level information on 216 

educational attainment, health, demography, and household assets and attributes. The DHS also 217 
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collects retrospective information on children, as reported by their mother, related to health and 218 

anthropometric growth. 219 

  220 

The DHS are spatially referenced with the latitude and longitude of each sampling cluster. A 221 

cluster references the geographic center of the residential area in which the household is located. 222 

To de-identify the cluster locations and maintain confidentiality of the survey respondents, the 223 

DHS displaces the coordinates of each sampling cluster by up to 10 kilometers. Consistent with 224 

previous population and environment research, when merging the DHS data with other spatially 225 

referenced data we assume that the sampling cluster is located within a 10-kilometer buffer of 226 

the given cluster coordinate locations (Burgert et al., 2013). 227 

  228 

Environmental Data 229 

We retrieved soil moisture data from the Famine Early Warning Systems Network Land Data 230 

Assimilation System (FLDAS) (McNally et al., 2017). This is a globally gridded 0.1-degree 231 

spatial resolution monthly dataset ranging from 1982 to present. To create this simulated dataset, 232 

FEWS NET combined Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) 233 

rainfall data with reanalysis climate data from the Modern-Era Retrospective analysis for 234 

Research and Application, version 2 (MERRA-2). The FLDAS data is a product of several data 235 

types: satellite remote sensed, weather observations, and reanalysis data. Because of its global 236 

coverage and complete temporal record, this can be merged with DHS records.  237 

 238 

Soil moisture data through FLDAS is available in multiple soil depth layers up to 100 cm 239 

underground. We focus our analysis on using the top layer of soil (0-10 cm underground) to 240 

characterize the upper layer of soil moisture. We assume that the upper layer will be the most 241 

impacted by short-term changes in precipitation, and therefore the best indicator of food 242 

availability. While there are other indicators of soil health such as soil pH, respiration, and 243 

organic matter these data are not regularly collected with sufficient temporal and spatial scale in 244 

Senegal and Bangladesh to facilitate the linking of these environmental data with population 245 

data.  246 

  247 

Vegetation Data 248 
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We use Normalized Difference Vegetation Index (NDVI) derived from MODIS Terra satellite 249 

imagery (250km resolution) (Huete et al. 2002) as a measure of the effects of soil moisture on 250 

the health of vegetation, including crops and pastures (Assogba et al. 2022; Lokupitiya et al., 251 

2010; Islam & Mamun, 2015). While household-level crop yield data would be ideal, regularly 252 

collected yield data does not exist for households in our case study settings. Because the soil 253 

moisture dataset is available at a monthly time step, we chose to use a 15-day NDVI composite 254 

period from 2000-2020 so the data can be easily temporally connected with the DHS and soil 255 

moisture data (Huete et al., 2002). The variability in NDVI has been shown to be related to 256 

variations in crop yields in semiarid Senegal (Fensholt et al., 2004; Groten, 1992) and for 257 

potatoes (Bala & Islam, 2009) and Boro Rice (Refat Faisal et al 2019) in Bangladesh. We 258 

consider June root zone soil moisture and NDVI to be a proxy for growing season climate 259 

conditions, crop production, and food availability.  260 

  261 

Measures 262 

The climate and food security nexus is complex and multiple pathways can connect climate with 263 

child health both indirectly and directly. We conceptualize food security indirectly through an 264 

outcome variable measuring child anthropometry, specifically weight-for-height z-scores. Lower 265 

valued z-scores (z-score less than -2 SD away from the mean) indicate wasting (low WHZ) 266 

which reflects acute experiences of undernutrition. To account for the range of categories of 267 

factors (food availability, stability, utilization, and accessibility) that may influence food 268 

security, we incorporate child-, mother-, and household-level determinants of food security in 269 

our models following the literature (e.g., Brown et al., 2020). Table 1 summarizes the data, by 270 

country, for all the variables used in our analysis. For each variable, we report means or 271 

percentages depending on the type of variable. 272 

 273 

Outcome variable 274 

The outcome variable is a continuous measure of weight-for-height, which reflects a short-term 275 

experience of food security. Weight-for-height is measured through z-scores which are standard 276 

from the World Health Organization. Low weight-for-height z-scores (WHZ) are usually 277 

associated with food insecurity and insufficient caloric intake (Black et al., 2013). Because WHZ 278 

is a measure of short-term nutrition, it is very sensitive to recent changes in diet or illness, so we 279 
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focus on recent climate conditions that occur close in time to the survey date (within one year) 280 

(Grace et al., 2022). We consider WHZ for children ages 6-23 months. We restrict the analysis to 281 

these ages because the majority of growth faltering and wasting occurs in children 23 months 282 

and younger (Alderman & Headley, 2017). We further restrict our sample to exclude infants 283 

younger than six months. The complementary feeding period, which occurs after six months of 284 

age, is when a child transitions from exclusive breastfeeding to incorporating family foods like 285 

fruits, eggs, fish, and grains (Kuchenbecker et al., 2017; Aguayo 2017). As children transition 286 

away from the protective effects of maternal breastfeeding their diets become more vulnerable to 287 

the effects of climate variability on agricultural production.  288 

  289 

Independent Variables: food insecurity 290 

In this analysis we focus on sub-annual and sub-seasonal measures of growing season climate for 291 

three reasons 1) start of season/seasonal onset may better predict quality of growing season than 292 

seasonal averages 2) certain times of the growing season are more crucial to plant growth 3) 293 

short term climate indicators are more appropriate for early warning systems especially for 294 

wasting which is occurs on short time scales and can be improved if preventative interventions 295 

are in place.  296 

 297 

Research suggests that climate conditions at certain time periods within the growing season are 298 

significant indicators of the quality of seasonal yields. Emerging evidence suggests that seasonal 299 

onset may be a better measure of the quality of growing season yields. For example, Shukla et al. 300 

(2021) and Davenport et al. (2021) both found that late seasonal onset of precipitation was 301 

significantly related to poor seasonal food production. Lee et al. (2022) compared the 302 

performance of sub-monthly (10-day time periods) climate measures to monthly climate 303 

measures in Sub-Saharan Africa and found that sub-monthly measures were better at predicting 304 

yields throughout the growing season. Sub-seasonal climate measures can better capture 305 

variability in time periods of vegetative growth that would otherwise be missed by using 306 

seasonal averages.  307 

 308 

The sensitivity of the life cycles of certain crop varieties to the timing of seasonal precipitation is 309 

a possible mechanism to explain the importance of sub-seasonal climate in food security 310 
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analyses. In other words, too much or too little rain during certain periods of the growing season 311 

are more critical for plant growth and production than other periods (Ademe et al., 2021). For 312 

example, Sorghum yields are highly variable with respect to the timing of seasonal rainfall 313 

(Eggen et al., 2019). Failure of early growing season rains is likely to have a negative impact on 314 

yields even if there is a recovery of rainfall totals later in the season and even if these rainfall 315 

totals are not different from the long-term normal. Therefore, sub-seasonal measures may more 316 

accurately capture climate conditions associated with yields compared to seasonal rainfall totals.  317 

 318 

Finally, by focusing on short-term climate measures, this research can support early warning 319 

systems that can work to prevent undernutrition that occurs on shorter time scales. Wasting 320 

which reflects experiences of undernutrition on short time scales and is sensitive to recent 321 

climate variability (Shively et al., 2015). Brown et al. (2014) suggests that the most relevant 322 

climate time period may be just the month immediately prior to when the anthropometric 323 

measurement was taken. Grace et al. (2022) used the average temperature and precipitation 324 

conditions three months prior to the DHS survey when analyzing the environment/child health 325 

linkages in countries across sub-Saharan Africa finding that recent weather conditions are 326 

significantly correlated to WHZ in these geographic contexts. Further exploring how short-term 327 

climate measures may be connected to undernutrition could offer greater insight to inform early 328 

warning decisions to prevent food insecurity.  329 

  330 

Given this emerging body of evidence supporting the significance of timing of rainfall on crop 331 

yields, we build our food insecurity variables to investigate fine-scale temporal linkages of 332 

weather, seasonal yields, and child food security with the goal of capturing the heterogeneity in 333 

population-environmental exposures. Based on growing evidence, we assume that an increase in 334 

soil moisture or NDVI during the first month of the growing season corresponds to a greater 335 

amount of food produced during the full growing season. Because we want to capture the quality 336 

of the completed growing season closest in time to when the DHS survey was recorded, we link 337 

the DHS data to the most recently completed growing season’s soil moisture and NDVI 338 

conditions. For example, the growing season in Senegal is generally from June-August. If an 339 

anthropometric measurement was taken in July we link the soil moisture and NDVI conditions 340 
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from the previous year’s growing season since this is the most recently completed growing 341 

season. 342 

 343 

We then explore the utility of sub-annual measures by building models that link average soil 344 

moisture and NDVI conditions 1-3, 1-2, and 1 months prior to the month of the survey. By 345 

constructing weather variables close in time to the survey collection these measures are 346 

motivated and build upon the methods described by Grace et al (2021). Our goal in creating 347 

these measures is to compare how they perform to sub-seasonal climate measures. Since wasting 348 

occurs on short time scales, it may be possible that sub-seasonal measures are not sufficiently 349 

close in time to the anthropometric measurement.  350 

  351 

Analytic Approach 352 

We use a suite of regression models to explore the relationship between acute child 353 

undernutrition (WHZ) and sub-seasonal and sub-annual climate indicators via soil moisture, and 354 

NDVI. The main model we use in our approach is a linear fixed effects regression with clustered 355 

standard errors with a continuous WHZ outcome variable. The equation below describes our 356 

regression modeling approach. 357 

  358 

 359 

𝑌𝑖𝑗𝑘 = 𝛽0 + 𝛽1(𝑐𝑙𝑖𝑚𝑎𝑡𝑒𝑘) + 𝛽𝑛(𝑋𝑖𝑗𝑘) + 𝑢𝑘 + 𝑣𝑧 + 𝑒𝑘  360 

  361 

 362 

In the equation, Y is a continuous WHZ score for a child i from a mother j in a DHS cluster k. 363 

Parameter B1 is the term for soil moisture or NDVI. These variables are dependent upon the 364 

survey date and the cluster location. The model also controls for child-, mother-, and household- 365 

level variables (Xcn) including sex of child, age of child in months, birth order, mother’s age, 366 

recent fever, recent diarrhea, mother’s education, household floor type, urban/rural, and month of 367 

interview. We account for fixed effects of the survey year and DHS cluster as represented by the 368 

parameter uz and vz respectively.  We adjust our standard errors to the DHS cluster level.  369 

 370 
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To account for possible collinearity between these climate variables and to see how soil moisture 371 

and NDVI perform separately, we consider each variable in separate models. The soil moisture 372 

dataset is created using precipitation and other meteorological inputs like temperature, humidity, 373 

radiation, and wind (McNally et al., 2017). NDVI is a direct reflection of temperature and 374 

precipitation conditions on vegetation health (Lotsch et al., 2003). Since soil moisture and NDVI 375 

have similar inputs, we tested for collinearity and found a correlation coefficient of .85. 376 

Additionally, soil moisture sees the impact of wetness over very large areas (25km) whereas 377 

NDVI shows the effect of changes in wetness on the overlying canopy. Therefore, the two vary 378 

at different time steps, have different intensities, and are highly correlated so we choose to model 379 

them in separate models.  380 

 381 

Our conceptual framework presented in Figure 1 (see appendix) explains the specific pathways 382 

that we model in this analysis.  In this conceptual framework, we connect soil moisture, 383 

precipitation, and temperature to food insecurity through their effects on crop production and 384 

food availability. These weather variables can affect each other and lead to increases or 385 

decreases in crop production. These increases and decreases in crop yields, in part, determine the 386 

amount of food that is available for consumption and the amount of income available to 387 

households to purchase food. Other variables like individual, maternal, and household factors 388 

that are measured by the DHS also affect WHZ and are accounted for in our models. We also 389 

incorporate measures of recent (within the past two weeks) diarrhea and febrile illness since 390 

these factors can affect a child’s ability to physiologically uptake nutrients and can acutely affect 391 

a child’s nutrition (De Sherbinin, 2011). 392 

 393 

Finally, we explore the sensitivity of our primary regression approach when considering the most 394 

undernourished children in Senegal and Bangladesh. We create a binary outcome variable using 395 

the World Health Organization’s guidelines for which any child with a weight-for-height z-score 396 

below -2 is considered wasted. We estimate the parameters of the model using this binary 397 

outcome variable of wasted/not wasted and compare these results to those using a continuous 398 

outcome variable. 399 

  400 

Geographic setting 401 
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We use Senegal and Bangladesh, where subsistence agricultural livelihoods are prevalent, as 402 

case studies to explore how growing season climate conditions affect child health. In these low-403 

input agricultural settings farmers are more heavily reliant on climate and weather patterns for 404 

the success of their crops, and in subsistence settings where most crops are grown for household 405 

consumption and income there are direct connections between climate and health (Kim & Bevis, 406 

2019). In fact, despite improvements in nutrition outcomes in Bangladesh, the percentage of 407 

children experiencing wasting remains at about 10% (World Band, 2019-b). In Senegal there has 408 

been negligible improvement in child wasting and has remained about 8-9% at the national level 409 

since the early 2000s (World Band, 2019-c). We use these two countries as cases to explore how 410 

well soil moisture and vegetation health explain child wasting in countries with different climate 411 

settings but similar prevalence of wasting.  412 

 413 

Senegal, as displayed on the top row of figure 2, is on average, drier than Bangladesh. There is a 414 

steep north/south precipitation gradient in Senegal, where the northern portion of the country has 415 

a dry, Sahelian climate, and the southern portion has a more temperate climate. Bangladesh is 416 

generally much wetter with more vegetation compared to Senegal. The low-lying plains that 417 

cover the majority of Bangladesh are primarily covered with perennial vegetation which has a 418 

high NDVI value, and is associated with higher agricultural output than regions with lower 419 

agroecological potential (Brown, 2006, Ritzema et al 2017). The more mountainous northeastern 420 

region of Bangladesh is where there is the least amount of green vegetation (corresponding to 421 

lower NDVI values). 422 

  423 

In Senegal, the seasonal rains begin in June (FEWSNET, 2022). According to crop calendars it is 424 

during this month that the main rainfed crops, groundnuts, cereals, and cowpeas are planted 425 

(FEWSNET, 2022). In Bangladesh where rice is the staple crop, there are three planting 426 

seasons—aman, boro, and aus. While the boro and aus rice planting seasons rely primarily on 427 

irrigation, aman rice grows during the monsoon season when precipitation is plentiful (Ruane et 428 

al., 2013). The aman rice season accounts for 40% of the country’s rice production and is 429 

typically planted in June and July (USDA, 2020). Because the aman rice season relies on 430 

seasonal weather patterns and may be vulnerable to climate variability we focus our analysis on 431 

this rice planting season.  We use the start of the monsoon season, June, to conceptualize the sub-432 
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seasonal soil moisture and NDVI variables for Senegal and Bangladesh in our quantitative 433 

models. 434 

  435 

Results 436 

We first present the results for models 1-4 which solely look at the start of season soil moisture 437 

and NDVI for Senegal and Bangladesh. We then summarize the results for models 5-8 which use 438 

average soil moisture and NDVI for 1-3 months prior to when the surveys were taken in Senegal 439 

and Bangladesh. Models 9-12 use average soil moisture and NDVI conditions 2 months prior to 440 

the survey and finally models 13-16 consider the soil moisture and NDVI conditions for the 441 

month prior to when the survey was collected.  442 

 443 

Table 2 shows the regression results for child-, mother-, and household, and cluster-level 444 

variables using the IPUMS Demographic and Health Survey data in Senegal and Bangladesh. In 445 

these models presented in table 2, the main climate variable of interest is the June (start of 446 

season) soil moisture and NDVI. We do not see a statistical relationship between soil moisture or 447 

NDVI and WHZ for our samples in Senegal or Bangladesh. For both models 1 and 2 which show 448 

the associations of June soil moisture and NDVI on WHZ respectively, in Senegal we find that 449 

certain child-level and maternal characteristics are significantly related to WHZ. When 450 

interpreting WHZ values, the lower the WHZ, the poorer the child’s health and the more likely 451 

the child is to be wasted. We find a strong negative association (p <.05) between birth order and 452 

WHZ when considering either soil moisture or NDVI in the model. In other words, as a child’s 453 

order of birth increases, their WHZ decreases within our samples in Senegal. We also find recent 454 

fever to be negatively associated with WHZ. In terms of maternal characteristics, we find that 455 

compared to a child’s mother with no formal education, a child with a mother who has secondary 456 

education is more likely to have higher WHZ.  457 

 458 

Within table 2, models 3 and 4 reflect results of considering June soil moisture and NDVI on 459 

WHZ in Bangladesh. Similar to Senegal we do not see any statistical relationship between our 460 

June climate measures and WHZ. Here, many of the same demographic control variables are 461 

statistically associated with WHZ as they are in Senegal. Notably, in Bangladesh, recent diarrhea 462 

is negatively associated with WHZ in addition to recent fever. In other words, children with 463 
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recent diarrhea when the survey was taken were more likely to have lower WHZ. Children who 464 

were currently breastfeeding at the time of the survey were found to have lower WHZ than 465 

children without recent diarrhea. We also found several positive associations with WHZ in our 466 

samples in Bangladesh. As a mother’s age increases, a child’s WHZ in our sample also increases. 467 

We also find floor type, a household characteristic that is a proxy measure for household wealth, 468 

is positively associated with WHZ. In other words, compared to children in households with 469 

unfinished and rudimentary floors, children in households with finished floors had higher WHZ 470 

in our samples.  471 

 472 

We then compare our results in table 2 with results of models using averages of soil moisture and 473 

NDVI 1-3, 1-2, and 1 months prior to the survey date in Senegal and Bangladesh. Table 3 shows 474 

the results of models with the average soil moisture and NDVI 3 months prior to the survey date. 475 

We find that soil moisture averaged 3 months before the survey date is associated with lower 476 

WHZ in our samples in only Bangladesh but this relationship is not statistically significant. 477 

There are again statistically significant associations between the demographic control variables 478 

and WHZ for both Senegal and Bangladesh. Notably birth order, recent fever, and rural 479 

households are consistently negatively associated with WHZ while a mother’s formal secondary 480 

education is consistently positively associated with WHZ across all models for Senegal and 481 

Bangladesh.  482 

 483 

We then move to models using soil moisture and NDVI averaged 2 months prior to the survey 484 

date as the main climate variable of interest in table 4. Model 11 shows the results of average soil 485 

moisture 2 months prior to the DHS survey in Bangladesh. We again do not see any statistically 486 

significant relationships between the soil moisture or NDVI variables. The statistical 487 

relationships between WHZ and demographic control variables remain. 488 

 489 

Finally, we test the utility of soil moisture and NDVI measured one month prior to the survey 490 

date in Senegal and Bangladesh in table 5. The magnitude of the effect of soil moisture on WHZ 491 

in Bangladesh has increased compared to previous models (-.04) and the relationship has become 492 

statistically significant (p < .04) compared to all previous models. Using this very short timescale 493 

of soil moisture and NDVI one month prior to the survey we see statistical significance of a 494 
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negative relationship with soil moisture and WHZ in Bangladesh but not in Senegal. Further, we 495 

continue to see statistical relationships with demographic control variables (birth order, age, 496 

breastfeeding, fever, mother’s education) and WHZ.  497 

 498 

Categorical wasting analysis 499 

Finally, to test the sensitivity of our models by isolating the most undernourished children in the 500 

samples we construct the outcome as a binary variable, comparing wasted children to children 501 

with healthy weight-for-height z-scores. We focus our dichotomous analysis on soil moisture 502 

conditions in Bangladesh since it is in this context that we find a statistically significant 503 

relationship using the continuous outcome variable, WHZ. We do not find a statistically 504 

significant relationship between soil moisture and the binary outcome variable for June soil 505 

moisture, 1-3, 1-3, or 1 month averages leading up to the anthropometric measurement.  506 

 507 

The results (available in the supplementary material) show that some of the same individual-, 508 

maternal-, and household-level characteristics are statistically associated with wasting in the 509 

same way they are associated with a continuous outcome variable. At the individual level we 510 

find that recent fever and recent diarrhea increases the odds of being wasted. We find that formal 511 

maternal education decreases the odds of being wasted. 512 

  513 

Discussion and conclusion 514 

Given the predicted increase in severity and variability of global climate patterns, there is an 515 

increasing focus on understanding the implications of climate variability through the relationship 516 

between climate and weather and health outcomes. The risk of food insecurity in children may 517 

especially be modified by climate and weather patterns in low- and middle-income countries 518 

where farming systems are predominantly rainfed. In this analysis, we explored the associations 519 

between sub-seasonal and sub-annual soil moisture and NDVI conditions and continuous 520 

measures of acute nutrition in children in two farming centric countries, Senegal and 521 

Bangladesh. We merged soil moisture and NDVI data to population data using the Demographic 522 

and Health Surveys which include information on individual children, mothers, and household 523 

characteristics and we used linear regression models with clustered standard errors to explore the 524 

associations between these variables. We employed two approaches to link soil moisture and 525 
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NDVI to the DHS data and to further explore the effect of choice of temporal scale in studies of 526 

child health and climate 1) using the start of growing season as an indicator to summarize the 527 

soil moisture and NDVI conditions of each sampling cluster  2) using a series of models that link 528 

average soil moisture and NDVI 1-3, 1-2, and 1 months prior to the survey date. 529 

  530 

Pathways supported in this analysis 531 

This study demonstrates the complexity of quantitative population-environment research.  While  532 

the start of growing season indicators were not significantly related to weight-for-height z-scores 533 

in our samples, we did find evidence that soil moisture, when operationalized on very short time 534 

scales relative to the survey date, is statistically associated with WHZ in the DHS samples in 535 

Bangladesh. We found that in our samples in Bangladesh an increase in soil moisture one month 536 

before a DHS survey is associated with lower WHZ. These results are consistent with previous 537 

research from Grace et al. (2021) who found that recent average precipitation and temperature 538 

averaged 1-3 months prior to DHS surveys were negatively associated with WHZ in Nigeria and 539 

Kenya.  540 

 541 

In Bangladesh where our sample was generally younger and had a lower WHZ than the samples 542 

in Senegal we expect to see a stronger effect on recent weather conditions and child health. In 543 

their study in Niger, Kohlmann et al. (2021) found wasting in children to peak at 11 months of 544 

age. Additionally, since we are considering children ages 6-23 months, we can also assume that 545 

the number of exclusively breastfed children is low and therefore the children’s diets in these 546 

DHS samples may be more vulnerable to external factors modified by changes in soil moisture 547 

conditions. Another explanation as to why we may be seeing the negative association with WHZ 548 

and soil moisture in Bangladesh is due to disruptions in breastfeeding practices while mothers 549 

partake in agricultural labor while soil moisture conditions are favorable.  550 

 551 

The associations between climate conditions and breastfeeding have been previously described 552 

by Randell et al. (2021) who found that increased rainfall during the primary agricultural season 553 

in Ethiopia was associated with a greater number of days women spend in agricultural labor and 554 

was associated with a decreased likelihood of exclusive breastfeeding in infants. The 555 

associations that we found between WHZ and soil moisture in Bangladesh could be explained by 556 
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disruptions in breastfeeding brought on by changes in labor demand. This may be especially 557 

plausible for Bangladesh where breastfeeding is more prevalent than in Senegal. In the context of 558 

our study, short-term increases in soil moisture could require women to spend more time in 559 

income-earning roles and less time breastfeeding and caring for their children which may explain 560 

the negative associations between soil moisture and WHZ in the Bangladeshi DHS samples.  561 

 562 

While indicators of sub-seasonal vegetation and moisture and child health are not consistent 563 

across settings, we find that fine temporal scale soil moisture measure close in time to the DHS 564 

survey is consistently related to acute undernutrition in Bangladesh. We interpret these 565 

inconsistent findings as suggesting there are local strategies that households and individuals use 566 

to manage the risk to their child’s health. These strategies may be rooted in place-based historical 567 

contexts and may not be measured by common survey questions (Grace et al., 2022). 568 

Additionally, it is likely that soil moisture in Bangladesh is not measuring total food produced 569 

but the ability of households to access food. In the case of the climate measures in this study we 570 

are measuring interannual variability due to weather which affects how much income households 571 

and individuals earn from year to year (Ritzema et al., 2017). It is possible that families in 572 

Bangladesh have less diverse income-earning opportunities and thus their income stability is 573 

more vulnerable to changing climate and weather patterns.  574 

 575 

There are several factors that could explain the lack of consistency in our results. Our goal in 576 

measuring the start of season soil moisture and NDVI is to capture an indicator of the quality of 577 

growing season harvests and subsequent lean season food stores. These findings could suggest 578 

that month-long intervals measuring the start of season vegetation do not capture the impact of 579 

crop yields on acute child health that is measured at very short-term scales. Other mechanisms 580 

like household economic characteristics and illnesses may instead be driving the risk of a child 581 

experiencing wasting. It is possible that the child-, mother-, and household-level demographic 582 

factors that influence a child’s ability to access and utilize food are important mediators of the 583 

relationship between climate and acute food insecurity.  584 

 585 

Soil moisture and NDVI as climate indicators in population and environment studies 586 
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Although NDVI has been used in previous studies of climate and health (Johnson & Brown, 587 

2014; Shively et al., 2015; Grace et al., 2021) soil moisture is an uncommon climate indicator to 588 

be used in population and environment studies compared to temperature and precipitation. While 589 

these results suggest that soil moisture may provide insight into the linkages of climate and child 590 

health, more research is needed to understand how soil moisture and NDVI vary both spatially 591 

and temporally compared to temperature and precipitation. For example, the moisture in soil can 592 

reflect a many month’s worth of cumulative precipitation while observed precipitation will only 593 

reflect the measurement in that point in time. How we operationalize these variables across time 594 

may be different compared to temperature and precipitation and more research is needed to 595 

investigate these temporal linkages.  596 

 597 

Our dichotomous wasting analysis illustrates the importance of linking the correct timing of the 598 

climate indicator variable with the outcome of interest. Our analysis did not provide significant 599 

results for soil moisture. We believe that a dichotomous relationship may be stronger for longer-600 

time frames seen in stunting (Cooper et al., 2019) since a child may recover from wasting 601 

quickly and these relationships may not be captured by a dichotomous variable at one point in 602 

time.  603 

 604 

Future steps in climate and health research 605 

The inconsistency in our results demonstrates the importance of quantitatively defining climate 606 

variables to match the temporal scale at which these population-environment interactions occur. 607 

When temporally aggregating climate data to operationalize parameters within a quantitative 608 

model, finer-scale spatial and temporal aggregations may better capture relevant time- and space-609 

varying attributes of explanatory climate variables. This is especially apparent when the 610 

processes that are being modeled occur at small time scales as in the case of wasting. As wasting 611 

occurs on shorter time scales and is reversible, it is often difficult to capture the relationship with 612 

external factors like soil moisture and NDVI. We demonstrate here that temporal linkages 613 

between climate variables and child health vary and more research is needed to understand how 614 

these relationships operate on different time-scales. 615 

 616 
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While this study provides a first glimpse into the relationship between sub-annual and sub-617 

seasonal growing conditions and child food insecurity, it is important to consider the limitations. 618 

WHZ information was reported for approximately 63% of children across our samples, with a 619 

disproportionate amount of missing WHZ data for children in Senegal. While we estimated our 620 

models separately for Senegal and Bangladesh to account for this, a bias could still remain and 621 

this would most likely skew the results towards the null and underinflate significance with our 622 

Senegal results. Furthermore, because wasting is a short-term experience with food insecurity, it 623 

is not always captured with cross-sectional survey designs. For example, there may be a child 624 

who experienced wasting because of a recently poor growing season but has since recovered at 625 

the time the survey is taken so that statistical relationship between climate variability and WHZ 626 

will not be captured in the DHS survey round.  When we created our binary variables to explore 627 

the sensitivity of our models about 11% and 19% of children in the Senegal and Bangladesh 628 

surveys were considered wasted, respectively. Further research should explore the utility of this 629 

conceptualization of sub-seasonal soil moisture and vegetation indices in different geographic 630 

contexts and with multiple rounds of DHS surveys. 631 

  632 

We see that children who share similar environmental exposures often have very different 633 

outcomes. It is clear from this study and from previous quantitative research (Grace et al., 2012; 634 

Johnson & Brown, 2014; Shively et al., 2015; Davenport et al., 2017; Cooper et al., 2019; 635 

Randell et al., 2020) that anthropometric growth in children is a product of interrelated factors 636 

that affect a child’s ability to consistently access and utilize a sufficient amount of food. Using 637 

gridded climate data and integrating a novel soil moisture dataset into our analyses we find that 638 

sub-annual soil moisture indicators may be associated with acute measures of undernutrition but 639 

more research is needed to the significance of this indicator across geographic contexts. While 640 

this analysis proposes a method to refine the conceptualization of food security measures in 641 

quantitative population-environment research, it is clear that identifying key timing intervals that 642 

link real-world experiences with climate remains an ongoing goal to support early warning 643 

interventions. 644 
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Appendix 

 

Figure 1 

 

 
Figure 1: Conceptual framework to demonstrate the pathways used in our modeling approach. 

Precipitation and temperature not directly modeled but rather included to show how soil moisture 

and NDVI are inherently related to precipitation and temperature.  

 
 
 
 
 
 
 
 



 
 

 
 
 
 
 
 

Figure 2 

 

 
 
Figure 2: Average June soil moisture and NDVI for Senegal and Bangladesh. Senegal is 

displayed on the top row with panel A showing average June soil moisture and panel B showing 

average June NDVI. Bangladesh is displayed on the bottom row with panel C showing average 

June soil moisture and panel D showing average June NDVI. Figure was created in ArcGIS Pro.  

 
 
 
 
 



 
 

Table 1 

 

  Senegal (n=6408) Bangladesh (n=5978) 

Variables Mean (SD) % Mean (SD) % 

Child level      

Weight-for-height Z-score -0.55(1.3)  -.88(1.3)   

Child sex: Male  53  51 

Child sex: Female  47  49 

Birth order 4(2)  2(2)   

Age (months) 14(5)  14(5)   

Not current breastfed  17  7 

Current breastfed  27  91 

Breastfeeding not recorded  45  2 

Recent fever  31  42 

Recent diarrhea  28  9 

Mother level      

Age (years) 28(7)  24(6)   

No education  74  18 

Primary education  20  29 

Secondary education  6  53 

Household level      

Natural floor  43  72 

Rudimentary floor  1  1 

Finished floor  56  28 

DHS survey cluster level      

Urban  32  33 

June soil moisture (m3/m3) 0.21(.05)  .40(.03)   

June NDVI 0.23(.10)  .50(.14)   

1-3 month average soil 

moisture .19(.07)  .35(.07)   

1-3 month average NDVI .31(.13)  .46(.10)   
1-2 month average soil 

moisture .18(06)  .36(.07)   

1-2 month average NDVI .28(.11)  .46(.12)   

1 month average soil moisture .17(.05)  .37(.07)   

1 month average NDVI .27(.10)   .47(.13)   

 
Table 1: Descriptive statistics of the study samples for Senegal and Bangladesh.  

 

 

 



 
 

Table 2 

 

Independent Variables Coefficient Standard error p-value Coefficient Standard error p-value Coefficient Standard error p-value Coefficient Standard error p-value

DHS survey cluster level

June climate measure of most 

recent completed growing 

season -0.02 0.03 0.51 0.01 0.03 0.85 -0.01 0.02 0.49 0.03 0.02 0.06

Urban (ref)

Rural -0.20 0.07 0.01 -0.20 0.07 0.01 -0.13 0.04 0.00 -0.13 0.04 0.00

Child level

Male (Ref)

Female 0.10 0.06 0.07 0.11 0.06 0.07 0.05 0.03 0.12 0.05 0.03 0.12

Birth order -0.05 0.02 0.02 -0.05 0.02 0.02 -0.06 0.02 0.00 -0.06 0.02 0.00

Age (months) -0.01 0.01 0.30 -0.01 0.01 0.29 -0.02 0.00 0.00 -0.02 0.00 0.00

Not current breastfeeding (ref)

Current breastfeeding -0.02 0.12 0.89 -0.02 0.12 0.86 -0.26 0.08 0.00 -0.26 0.08 0.00

Breastfeeding not recorded -0.06 0.13 0.66 -0.06 0.13 0.67 -0.46 0.50 0.35 -0.47 0.50 0.34

Recent fever -0.19 0.06 0.00 -0.19 0.06 0.00 -0.15 0.03 0.00 -0.15 0.03 0.00

Recent diarrhea -0.01 0.07 0.92 -0.01 0.07 0.93 -0.21 0.06 0.00 -0.21 0.06 0.00

Mother level

Age (years) 0.01 0.01 0.06 0.01 0.01 0.05 0.02 0.00 0.00 0.02 0.00 0.00

No education (Ref)

Primary education 0.16 0.08 0.05 0.15 0.08 0.05 0.11 0.05 0.03 0.11 0.05 0.04

Secondary education 0.30 0.12 0.02 0.29 0.12 0.02 0.35 0.05 0.00 0.35 0.05 0.00

Household level

Natural floor (Ref)

Rudimentary floor -0.41 0.73 0.57 0.10 0.06 0.13 0.15 0.31 0.63 0.15 0.31 0.63

Finished floor 0.09 0.06 0.18 -0.54 0.57 0.34 0.18 0.04 0.00 0.19 0.04 0.00

Model 3: Soil MoistureModel 2: NDVIModel 1: Soil Moisture Model 4: NDVI

Senegal Bangladesh

 
 

Table 2: Estimates of linear regression models considering the effect of June soil moisture and NDVI on continuous measures of child growth in Senegal and 

Bangladesh. Bold text indicates statistical significance. 

 

 

 

 

 



 
 

 

 

Table 3 

 

Independent Variables Coefficient Standard error p-value Coefficient Standard error p-value Coefficient Standard error p-value Coefficient Standard error p-value

DHS survey cluster level

Average climate measures 1-3 

months before survey month -0.05 0.05 0.36 0.01 0.04 0.88 -0.02 0.03 0.40 0.02 0.02 0.17

Urban (ref)

Rural -0.19 0.07 0.01 -0.20 0.07 0.01 -0.14 0.04 0.00 -0.13 0.04 0.00

Child level

Male (Ref)

Female 0.10 0.06 0.07 0.10 0.06 0.07 0.05 0.03 0.12 0.05 0.03 0.13

Birth order -0.05 0.02 0.02 -0.05 0.02 0.02 -0.06 0.02 0.00 -0.06 0.02 0.00

Age (months) -0.01 0.01 0.30 -0.01 0.01 0.29 -0.02 0.00 0.00 -0.02 0.00 0.00

Not current breastfeeding (ref)

Current breastfeeding -0.02 0.12 0.86 -0.02 0.12 0.87 -0.25 0.08 0.00 -0.26 0.08 0.00

Breastfeeding not recorded -0.06 0.13 0.65 -0.06 0.13 0.67 -0.46 0.50 0.35 -0.48 0.50 0.33

Recent fever -0.19 0.06 0.00 -0.19 0.06 0.00 -0.15 0.03 0.00 -0.15 0.03 0.00

Recent diarrhea -0.01 0.07 0.88 -0.01 0.07 0.93 -0.22 0.06 0.00 -0.21 0.06 0.00

Mother level

Age (years) 0.01 0.01 0.05 0.01 0.01 0.05 0.02 0.00 0.00 0.02 0.00 0.00

No education (Ref)

Primary education 0.15 0.08 0.05 0.15 0.08 0.05 0.11 0.05 0.04 0.11 0.05 0.03

Secondary education 0.29 0.12 0.02 0.29 0.12 0.02 0.35 0.05 0.00 0.36 0.05 0.00

Household level

Natural floor (Ref)

Rudimentary floor -0.40 0.73 0.58 -0.40 0.73 0.58 0.12 0.31 0.71 0.15 0.31 0.64

Finished floor 0.09 0.06 0.14 0.10 0.06 0.13 0.18 0.04 0.00 0.18 0.04 0.00

Model 7: Soil MoistureModel 6: NDVIModel 5: Soil Moisture Model 8: NDVI

Senegal Bangladesh

 

Table 3: Estimates of linear regression models considering the effect of soil moisture and NDVI averaged 3 months prior to the DHS on WHZ in Senegal and 

Bangladesh. 

 

 

 

 



 
 

Table 4 

 

Independent Variables Coefficient Standard error p-value Coefficient Standard error p-value Coefficient Standard error p-value Coefficient Standard error p-value

DHS survey cluster level

Average climate measures 1-2 

months before survey month -0.05 0.06 0.37 0.01 0.03 0.87 -0.03 0.03 0.20 0.02 0.02 0.23

Urban (ref)

Rural -0.19 0.07 0.01 -0.20 0.07 0.01 -0.14 0.04 0.00 -0.13 0.04 0.00

Child level

Male (Ref)

Female 0.11 0.06 0.07 0.11 0.06 0.07 0.05 0.03 0.13 0.05 0.03 0.12

Birth order -0.05 0.02 0.02 -0.05 0.02 0.02 -0.06 0.02 0.00 -0.06 0.02 0.00

Age (months) -0.01 0.01 0.29 -0.01 0.01 0.29 -0.02 0.00 0.00 -0.02 0.00 0.00

Not current breastfeeding (ref)

Current breastfeeding -0.02 0.12 0.86 -0.02 0.12 0.89 -0.25 0.08 0.00 -0.26 0.08 0.00

Breastfeeding not recorded -0.06 0.13 0.64 -0.06 0.13 0.67 -0.46 0.50 0.36 -0.48 0.50 0.33

Recent fever -0.19 0.06 0.00 -0.20 0.06 0.00 -0.15 0.03 0.00 -0.15 0.03 0.00

Recent diarrhea -0.01 0.07 0.89 -0.01 0.07 0.93 -0.21 0.06 0.00 -0.21 0.06 0.00

Mother level

Age (years) 0.01 0.01 0.05 0.01 0.01 0.05 0.02 0.00 0.00 0.02 0.00 0.00

No education (Ref)

Primary education 0.15 0.08 0.05 0.15 0.08 0.05 0.11 0.05 0.04 0.11 0.05 0.03

Secondary education 0.29 0.12 0.02 0.29 0.12 0.02 0.35 0.05 0.00 0.36 0.05 0.00

Household level

Natural floor (Ref)

Rudimentary floor -0.40 0.73 0.59 -0.40 0.73 0.58 0.10 0.31 0.74 0.14 0.31 0.64

Finished floor 0.09 0.06 0.15 0.10 0.06 0.13 0.18 0.04 0.00 0.18 0.04 0.00

Model 11: Soil MoistureModel 10: NDVIModel 9: Soil Moisture Model 12: NDVI

Senegal Bangladesh

 
 

Table 4: Estimates of linear regression models considering the effect of soil moisture and NDVI averaged 2 months prior to the DHS on WHZ in Senegal and 

Bangladesh. 

 

 

 

 

 

 



 
 

Table 5 

Independent Variables Coefficient Standard error p-value Coefficient Standard error p-value Coefficient Standard error p-value Coefficient Standard error p-value

DHS survey cluster level

Average climate measures 1 

month before survey month -0.04 0.05 0.36 0.01 0.03 0.88 -0.05 0.02 0.04 0.02 0.02 0.38

Urban (ref)

Rural -0.20 0.07 0.01 -0.20 0.07 0.01 -0.14 0.04 0.00 -0.13 0.04 0.00

Child level

Male (Ref)

Female 0.11 0.06 0.07 0.10 0.06 0.07 0.05 0.03 0.13 0.05 0.03 0.11

Birth order -0.05 0.02 0.02 -0.05 0.02 0.02 -0.06 0.02 0.00 -0.06 0.02 0.00

Age (months) -0.01 0.01 0.29 -0.01 0.01 0.29 -0.02 0.00 0.00 -0.02 0.00 0.00

Not current breastfeeding (ref)

Current breastfeeding -0.02 0.12 0.86 -0.02 0.12 0.86 -0.25 0.08 0.00 -0.27 0.08 0.00

Breastfeeding not recorded -0.06 0.13 0.65 -0.06 0.13 0.67 -0.45 0.50 0.36 -0.50 0.50 0.31

Recent fever -0.19 0.06 0.00 -0.19 0.06 0.00 -0.14 0.03 0.00 -0.15 0.03 0.00

Recent diarrhea -0.01 0.07 0.90 -0.01 0.07 0.93 -0.21 0.06 0.00 -0.21 0.06 0.00

Mother level

Age (years) 0.01 0.01 0.07 0.01 0.01 0.05 0.02 0.00 0.00 0.01 0.00 0.00

No education (Ref)

Primary education 0.15 0.08 0.05 0.15 0.08 0.05 0.11 0.05 0.03 0.11 0.05 0.03

Secondary education 0.29 0.12 0.02 0.29 0.12 0.02 0.35 0.05 0.00 0.36 0.05 0.00

Household level

Natural floor (Ref)

Rudimentary floor -0.40 0.73 0.58 -0.40 0.73 0.58 0.10 0.31 0.75 0.15 0.31 0.64

Finished floor 0.09 0.06 0.15 0.10 0.06 0.13 0.18 0.04 0.00 0.18 0.04 0.00

Model 15: Soil MoistureModel 14: NDVIModel 13: Soil Moisture Model 16: NDVI

Senegal Bangladesh

 
 
 

Table 5: Estimates of linear regression models considering the effect of soil moisture and NDVI averaged 2 months prior to the DHS on WHZ in Senegal and 

Bangladesh. 

 

 

 

 

 

 

 

 

 

 


