Testing and Analyses of Advanced Composite Tow-Steered Shells with Cutouts

K. Chauncey Wu NASA Langley Research Center Hampton, Virginia k.c.wu@nasa.gov

Aerospace Engineering and Mechanics The University of Alabama Tuscaloosa, Alabama 26 April 2024

Talk Outline

- Introduction
- Baseline shells w/o cutouts
 - Design and manufacturing
 - Testing and analyses
- Shells with small cutouts
 - Cutout description
 - Compression tests and finite element analyses
 - Correlation of results
 - Global, local
- Shells with large cutouts
 - Correlation of global results
- Summary and concluding remarks

Study Objectives

- Assess structural performance of tow-steered composite shells with small cutouts
 - Shells with and w/o tow overlaps
 - Same nominal layup
- Test shells in quasi-static end compression
 - Prebuckling deflections and strains
 - Postbuckling deflections and strains
- Compare nonlinear structural analysis results with corresponding test data
 - Discrete locations on shell planform
 - Measured analog (LVDT, strain gage) and digital image correlation (DIC) deflections and strains
 - Shell postbuckling behavior

What Are Advanced Composites?

- In conventional composite laminates, all fibers in a ply are straight and parallel with a fixed orientation; structural tailoring is achieved by varying the numbers of plies and their relative orientations
- In advanced composites (a.k.a. *tow-steered* or *variable stiffness*) the fiber orientation within each ply can vary continuously over the structure's planform
- These configurations provide new opportunities for optimized design by tailoring load paths, thermal and mechanical properties, and damage tolerance
- Fiber placement systems that can precisely and accurately steer composite tows during manufacture are enabling technology for cost-effective fabrication of highly tailored structures

Baseline Shells w/o Cutouts Design, Manufacturing, Testing, and Analyses

Tow-Steered Shell Concept

Principal fiber path defined as a constant-radius **circular arc**

- start angle Θ_0 on crown/keel
- end angle Θ_1 on sides

Arc width = mandrel circumf./4

Design laminates to replicate "I-beam" bending response

- shell crown/keel carry axial compression/tension
- sides carry shear loads
- => Circumf. angle variation

Fiber placement system has minimum steering radius => manufacturing constraint

Design for Manufacturing

Tow-Steered Shell Fabrication

Shell Compression Test Set-up

Nominal shell dimensions

- Overall length = 35.00 inches
- Inner diameter = 16.290 inches

Measured shell weights

- Shell with overlaps = 5.23 lbs
- Shell without overlaps = 4.13 lbs

Epoxy potting compound cast on shell ends to prevent brooming

4 displacement transducers measure relative platen motion

- Average = end shortening
- Diff's = transv. bending

56 back-to-back strain gage pairs bonded to shell surfaces

Digital image correlation systems also used to image shells during tests

Shell with Overlaps Compression Test

Shell with Overlaps Nonlinear FEA

Shell w/o Overlaps Compression Test

Shell w/o Overlaps Nonlinear FEA

Six Shell Configurations Tested and Analyzed

Includes Cutouts?

Shell with Overlaps	No	<u>Small</u>	Large
Shell w/o Overlaps	No	Small	Large
	Baseline		

Shells with Small Cutouts Testing and Analyses

Description of Small Cutouts

- Small cutouts scaled to represent passenger doors on commercial aircraft fuselage barrel
- Cutouts are 3 in. (axial) x 4.88 in. (circumferential), with 0.50-in. corner radii
- Unreinforced cutouts machined into center of one side of each shell (layup ~ [±45]_{2s})
- 20 back-to-back strain gage pairs around cutout perimeter
- Digital image correlation (DIC) used for full-field visualization

Shell with small cutout installed in test stand

Finite Element Models

- ABAQUS analyses performed
 - Geometrically nonlinear analyses
 - Axial end shortening applied / removed
- S4R shell elements used
 - Acreage elements ~ 0.25 in.-square
 - Each constant thickness and fiber angles
 - Measured IM7/8552 material properties and predicted ply thickness
- Refined FE mesh around small cutouts
 - Parametric mesh refinement studied
 - Refined elements surrounding cutout are
 ~ 0.083 in.-square (1/3 nominal)
 - Refinements have same thickness and layup as parent element

Shell with overlaps laminate thicknesses

Finite Element Models (2)

- ABAQUS analyses performed
 - Geometrically nonlinear analyses
 - Axial end shortening applied / removed
- S4R shell elements used
 - Acreage elements ~ 0.25 in.-square
 - Each constant thickness and fiber angles
 - Measured IM7/8552 material properties and predicted ply thickness
- Refined FE mesh around small cutouts
 - Parametric mesh refinement studied
 - Refined elements surrounding cutout are
 ~ 0.083 in.-square (1/3 nominal)
 - Refinements have same thickness and layup as parent element

Steered ply 3 fiber orientation angles

Shells with Small Cutouts Shell with Overlaps

+ out / 0 / in -

+ out / 0 / in -

Shell with Overlaps Test and FEA (Global buckling results shown)

Shell with Overlaps Crown & Keel Deflections

(Prebuckling results shown)

Shell with Overlaps Crown Strains

(Prebuckling results shown)

Shell with Overlaps Crown Strains (2) (Postbuckling results shown) **Inner surface** strains not shown 30 Compr. load, 20 klbf **FEA** Analysis Test/DIC 10 **Axial outer** Transv. outer DIC 0 -2 2 -6 -4 0

Strain, millistrain

Shell with Overlaps Cutout Top (2) (Postbuckling results shown)

Shell with Overlaps Cutout LH Side

(Prebuckling results shown)

Shells with Small Cutouts Shell w/o Overlaps

Shell w/o Overlaps Test and FEA

Shell radial deflections

Results Summary

- Shells with small cutouts evaluated globally and at discrete locations
 - Crown/keel, cutout perimeter
- Loads, deflections and strains measured and computed using nonlinear finite element analyses
- Test-analysis correlation assessed during prebuckling, to global buckling, to stable postbuckling
 - Digital image correlation
 - Displacement transducer
 - Strain gage
- Excellent to very good correlation between FEA and test through buckling, and very good to good correlation at stable postbuckling

Shells with Large Cutouts Testing and Analyses

Description of Large Cutouts

- Large cutouts scaled to represent cargo doors on commercial aircraft fuselage barrel
- Cutouts dimensions are 8 in. (axial) x 5.25 in. (circumferential), with 0.75-in. corner radii
- Unreinforced cutouts machined into center of one side of each shell (layup ~ [±45]_{2s})
- 24 back-to-back strain gage pairs around cutout perimeter
- 2 displacement transducers centered on vertical edges

Detail of shell with large cutout

Shell with Overlaps Test and FEA

Shell w/o Overlaps Test and FEA

+ out / 0 / in -

+ out / 0 / in -

Concluding Remarks

- Structural performance of tow-steered composite shells with cutouts assessed using tests and analyses
- Shells tested in end compression through global buckling, into stable postbuckling, and elastic unloading
- Cutouts cause small reductions in axial stiffness (10%) and global buckling load (15%) vs. shells w/o cutouts
- Geometrically nonlinear finite element analyses performed for detailed comparisons with test results
- Detailed comparisons of local deflections and strains performed from prebuckling to stable postbuckling
- Planning for corresponding detailed comparisons of local behavior for shells with large cutouts

Acknowledgments

Thanks to Dr. Rainer Groh (University of Bristol, UK) and Dr. Nate Gardner (NASA Langley Research Center) and my many colleagues for their contributions to this research.

> Thank you! Questions?

References

Baseline shells design, manufacture, testing, and analyses

-- K. C. Wu: *Design and Analysis of Tow-Steered Composite Shells Using Fiber Placement*. Proceedings of the American Society for Composites 23rd Annual Technical Conference. Memphis, Tennessee, September 9-11, 2008. Paper no. 125.

-- K. C. Wu, B. F. Tatting, B. H. Smith, R. S. Stevens, G. P. Occhipinti, J. B. Swift, D. C. Achary, and R. P. Thornburgh: *Design and Manufacturing of Tow-Steered Composite Shells Using Fiber Placement*. Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Palm Springs, California, May 4-7, 2009. Paper no. AIAA 2009-2700.

-- K. C. Wu, B. K. Stanford, G. A. Hrinda, Z. Wang, R. A. Martin, and H. A. Kim: *Structural Assessment of Advanced Composite Tow-Steered Shells*. Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Boston, Massachusetts, April 8-11, 2013. Paper no. AIAA 2013-1769.

-- S. C. White, P. M. Weaver, and K. C. Wu: *Post-Buckling Analyses of Variable-Stiffness Composite Cylinders in Axial Compression*. Composite Structures, Vol. 123, May 2015. Pages 190-203.

Shells with cutouts testing and analyses

-- K. C. Wu, J. D. Turpin, B. K. Stanford, and R. A. Martin: *Structural Performance of Advanced Composite Tow-Steered Shells with Cutouts*. Proceedings of the 2014 AIAA Science and Technology Forum. National Harbor, Maryland, January 13-17, 2014. Paper no. AIAA 2014-1056.

-- K. C. Wu, J. D. Turpin, N. W. Gardner, B. K. Stanford, and R. A. Martin: *Structural Characterization of Advanced Composite Tow-Steered Shells with Large Cutouts*. Proceedings of the 2015 AIAA Science and Technology Forum. Kissimmee, Florida, January 5-9, 2015. Paper no. AIAA 2015-0966.

-- R. M. J. Groh and K. C. Wu: *Nonlinear Buckling and Postbuckling Analysis of Tow-Steered Composite Cylinders with Cutouts*. AIAA Journal, June 2022. DOI: 10.2514/1.J061755.

-- K. C. Wu, R. M. J. Groh, and N. W. Gardner: *Local Analysis-Test Correlation of Tow-Steered Composite Shells with Small Cutouts*. Proceedings of the 2023 AIAA Science and Technology Forum. National Harbor, Maryland, January 23-27, 2023. Paper no. AIAA 2023-1906.

Baseline Shell Structural Performance

(1) Test Results

Prebuckling axial stiffness, klb/in. 1st global buckling load, klbs Postbuckling load, klbs	Shell with Overlaps 531.2 38.8 17.3	Shell w/o Overlaps 328.7 17.2 12.6
(2) I	inear FEA	
Prebuckling axial stiffness, klb/in. 1st global buckling load, klbs	Shell with Overlaps 503.2 37.3	Shell w/o Overlaps 306.7 15.6
(3) Tes	t / Linear FEA	
Prebuckling axial stiffness 1st global buckling load	Shell with Overlaps 1.06 1.04	Shell w/o Overlaps 1.07 1.10

Avg. shell radius, ply thickness and adj. E_1 used. No geometric imperfections.

Shells with Cutouts Linear FEA

(1) Baseline Shells

	Shell with Overlaps	Shell w/o Overlaps
Prebuckling axial stiffness, klb/in.	503.2	306.7
1st global buckling load, klbs	37.3	15.6

(2) Shells with Small Cutouts

	Shell with Overlaps	Shell w/o Overlaps
Prebuckling axial stiffness, klb/in.	495.2	298.8
1st local buckling load, klbs	19.3	10.4
1st global buckling load, klbs	36.6	15.2

(3) Shells with Large Cutouts

	Shell with Overlaps	Shell w/o Overlaps
Prebuckling axial stiffness, klb/in.	491.0	294.7
1st local buckling load, klbs	14.4	8.0
1st global buckling load, klbs	36.3	14.9

Avg. shell radius, ply thickness and adj. E_1 used. No geometric imperfections.

Normalized Shells with Cutouts Linear FEA

Performance metric: Cutout / Baseline

(1) Baseline Shells

	Shell with Overlaps	Shell w/o Overlaps
Prebuckling axial stiffness, klb/in.	503.2	306.7
1st global buckling load, klbs	37.3	15.6

(2) Shells with Small Cutouts

	Shell with Overlaps	Shell w/o Overlaps
Prebuckling axial stiffness	0.98	0.97
1st local buckling load*	0.52	0.67
1st global buckling load	0.98	0.97

(3) Shells with Large Cutouts

	Shell with Overlaps	Shell w/o Overlaps
Prebuckling axial stiffness	0.98	0.96
1st local buckling load*	0.39	0.51
1st global buckling load	0.97	0.96

Avg. shell radius, ply thickness and adj. E_1 used. No geometric imperfections. * Divided by baseline 1st global buckling load

Shells with Cutouts Test Results

(1) Baseline Shells

	Shell with Overlaps	Shell w/o Overlaps
Prebuckling axial stiffness, klb/in.	531.2	328.7
1st global buckling load, klbs	38.8	17.2
Postbuckling load, klbs	17.3	12.6

(2) Shells with Small Cutouts

	Shell with Overlaps	Shell w/o Overlaps
Prebuckling axial stiffness, klb/in.	497.1	299.5
1st local buckling load, klbs	19.9	10.5
1st global buckling load, klbs	31.8	15.5
Postbuckling load, klbs	20.2	10.5

(3) Shells with Large Cutouts

	Shell with Overlaps	Shell w/o Overlaps
Prebuckling axial stiffness, klb/in.	488.6	295.6
1st local buckling load, klbs	12.5	7.6
1st global buckling load, klbs	33.0	14.6
Postbuckling load, klbs	20.4	11.5

Normalized Shells with Cutouts Test Results

Performance metric: Cutout / Baseline

(1) Baseline Shells

	Shell with Overlaps	Shell w/o Overlaps
Prebuckling axial stiffness, klb/in.	531.2	328.7
1st global buckling load, klbs	38.8	17.2
Postbuckling load, klbs	17.3	12.6

(2) Shells with Small Cutouts

	Shell with Overlaps	Shell w/o Overlaps
Prebuckling axial stiffness	0.94	0.91
1st global buckling load	0.82	0.90
Postbuckling load	1.17	0.83

(3) Shells with Large Cutouts

	Shell with Overlaps	Shell w/o Overlaps
Prebuckling axial stiffness	0.92	0.90
1st global buckling load	0.85	0.85
Postbuckling load	1.18	0.91

Normalized Test and Linear FEA Results

Performance metric: **Test / Linear FEA**

(1) Baseline Shells

	Shell with Overlaps	Shell w/o Overlaps
Prebuckling axial stiffness, klb/in.	1.06	1.07
1st global buckling load, klbs	1.04	1.10

(2) Shells with Small Cutouts

	Shell with Overlaps	Shell w/o Overlaps
Prebuckling axial stiffness	1.00	1.00
1st local buckling load	1.03	1.01
1st global buckling load	0.87	1.02

(3) Shells with Large Cutouts

	Shell with Overlaps	Shell w/o Overlaps
Prebuckling axial stiffness	1.00	1.00
1st local buckling load	0.87	0.95
1st global buckling load	0.91	0.98