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Key Points: 29 

(1) NBE anomalies over Amazonian rainforests induced by the 2015/16 El Niño were investigated 30 

based on thirteen atmospheric inversion models 31 

(2) The total positive NBE anomaly was estimated at about 0.4 PgC yr–1 in 2015/16, predominantly 32 

caused by higher temperature 33 

(3) The spatial pattern of NBE anomaly was regulated by soil water with larger anomalous NBE 34 

over the eastern and northern Amazonian rainforests 35 
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Abstract 37 

The magnitude and spatial pattern of anomalous net biome exchange (NBE) induced by the 38 

2015/16 El Niño over Amazonian rainforests remains uncertain. We here investigated them using 39 

multi-model posterior NBE products in the Orbiting Carbon Observatory-2 (OCO-2) version 10 40 

modeling intercomparison project (MIP). We find that relative to the annual NBE average in 41 

2017/18, larger anomalous carbon release occurred over the eastern and northern Amazonian 42 

rainforests in 2015/16, with a total flux of approximately 0.4 PgC yr–1 after assimilating satellite-43 

observed column CO2 concentrations (XCO2) over land. This total positive NBE anomaly was 44 

dominated by higher temperature with its contributions of approximately 60% in LNLG and 54% 45 

in LNLGIS experiments, respectively. However, its anomalous spatial pattern was predominantly 46 

determined by soil dryness with the highest spatial partial correlation coefficient. We believe that 47 

atmospheric inversions assimilating satellite-observed XCO2 can better decipher regional carbon 48 

flux variations although discrepancies exist among different models.  49 

Plain Language Summary 50 

We investigated the magnitude and spatial pattern of anomalous net biome exchange (NBE) 51 

induced by the 2015/16 extreme El Niño over Amazonian rainforests, based on multi-model 52 

posterior NBE products in the Orbiting Carbon Observatory-2 (OCO-2) version 10 modeling 53 

intercomparison project (MIP). The multi-model ensemble NBE anomalies showed larger carbon 54 

release over the eastern and northern Amazonian rainforests, which was predominantly regulated 55 

by soil water availability. Further, we estimated a total anomalous carbon flux of approximately 56 

0.4 PgC yr–1. Linear decomposition analysis revealed that this total NBE anomaly was controlled, 57 

however, by higher temperature. We believe that these atmospheric inversions assimilating 58 

satellite-observed XCO2 can better decipher regional carbon flux variations associated with their 59 

underlying mechanisms.  60 
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1. Introduction 64 

The interannual variability of tropical and global land-atmosphere carbon flux, linked to the El 65 

Niño-Southern Oscillation (ENSO), has been the topic of many scientific studies [Bowman et al., 66 

2017; Jung et al., 2017; Liu et al., 2017; Palmer et al., 2019; Peylin et al., 2013; Piao et al., 2020; 67 

Rodenbeck et al., 2018; J Wang et al., 2016; J Wang et al., 2018b; Zeng et al., 2005]. In particular, 68 

these year-to-year variations reveal how terrestrial ecosystems cope with the abiotic stresses 69 

induced by ENSO events, and may shed some light on the future changes of terrestrial carbon 70 

cycle under greenhouse warming [Arora et al., 2020; Cox et al., 2018; Friedlingstein et al., 2006]. 71 

The tropical rainforests, with the largest areas located over Amazonia, make the second largest 72 

contribution (approximately 28%) to the interannual variability of global net biome productivity 73 

(NBP) based on the TRENDY multi-model simulations [Ahlstrom et al., 2015]. Amazonia has 74 

been long recognized as a hot spot of carbon cycle research due to its interannual anomalies [Koren 75 

et al., 2018; Phillips et al., 2009; van Schaik et al., 2018] and long-term changes [Cox et al., 2004; 76 

Gatti et al., 2021; Green et al., 2020].  77 

During the recent 2015/16 extreme El Niño, the gross primary productivity (GPP) and solar-78 

induced fluorescence (SIF) were suppressed over Amazonia due to anomalously higher 79 

temperature and lower soil moisture [Koren et al., 2018; van Schaik et al., 2018]; however, forest 80 

canopy greenness showed a small increase due to enhanced solar radiation [Yang et al., 2018]. As 81 

for the net carbon flux to atmosphere, an inverse modeling study suggested approximately 0.5 PgC 82 

release anomaly from Amazonia from September 2015 to June 2016, by assimilating in situ 83 
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observations and vertical profile data in the Amazon [Gloor et al., 2018]. Liu et al. [2017] 84 

suggested 0.9±0.29 Pg more carbon into atmosphere in 2015 than in the previous La Niña year 85 

2011 over tropical South America, which was estimated by an atmospheric inversion constrained 86 

with CO2 observations from the Orbiting Carbon Observatory-2 (OCO-2), SIF, and carbon 87 

monoxide (CO) observations from Measurements of Pollution in the Troposphere (MOPITT). 88 

However, these two studies did not show the spatial characteristics of anomalous net land-89 

atmosphere carbon flux, and related climate drivers were mainly qualitatively discussed.  90 

Recently, net biome exchange (NBE) from the OCO-2 version 10 modeling intercomparison 91 

project (MIP) have become available. The NBE is sum of net ecosystem exchange (NEE) and 92 

wildfire-induced carbon emissions (𝐹𝑓𝑖𝑟𝑒). We expect that these models can better capture the 93 

characteristics of regional carbon flux anomalies after assimilating satellite-observed XCO2 data, 94 

compared with the traditional atmospheric inversions used in previous studies [Bastos et al., 2018; 95 

J Wang et al., 2018a]. Therefore, based on the posterior NBE optimized by these multiple inversion 96 

models, we revisit the magnitude and spatial pattern of anomalous NBE over Amazonian 97 

rainforests induced by the extreme 2015/16 El Niño. Further, we will attempt to quantitatively 98 

reveal the contributions of different climate drivers.  99 

 100 

2. Materials and methods 101 

2.1 Posterior NBE from multiple atmospheric inversion models 102 

This study used the posterior NBE optimized by thirteen atmospheric inversion models (Table 1) 103 

from the OCO-2 v10 MIP, which is an international collaboration of CO2 flux inversion modelers. 104 

Modelers performed a standard suit of inversion experiments, constrained by CO2 observations 105 
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from OCO-2 and in situ  [Byrne et al., 2022; Crowell et al., 2019; Peiro et al., 2022], reported 106 

results for years 2015–2020. We here adopted results from three experiments, including: (1) IS: 107 

Assimilation of in situ CO2 measurements from an international observational network; (2) LNLG: 108 

Assimilation of OCO-2 ACOS v10 land nadir and land glint XCO2 retrievals [OCO-2 Science 109 

Team/Gunson and Eldering, 2020]; (3) LNLGIS: Assimilation of in situ CO2 measurements and 110 

OCO-2 ACOS v10 land nadir and land glint XCO2 retrievals. For each inversion experiment, 111 

modelers prescribed a common fossil fuel emission, but adopted independent other prior surface 112 

carbon flux estimates (net ecosystem exchange, ocean, and wildfire emissions) [Peiro et al., 2022]. 113 

The common fossil fuel emission adopted the Open-source Data Inventory for Anthropogenic CO2 114 

(ODIAC) emission data product with the monthly gridded 1°×1° emissions up to 2019 [Oda et al., 115 

2018] and extrapolated emissions in 2020 with additional information from the Carbon Monitor 116 

(CM) emission product (https://carbonmonitor.org/). Specifications for each atmospheric 117 

inversion model are listed in Table 1. 118 

The posterior NBE provided by the OCO-2 v10 MIP community has a horizontal resolution at 119 

1°×1°. In order to lower the noise in space to some extent, we in this study performed the analyses 120 

at 2.5°×2.5° which were interpolated by using the Climate Data Operators (CDO) tool based on 121 

the approach of the first order conservative remapping scheme [Jones, 1999]: 122 

𝐹𝑘̅̅ ̅ =
1

𝐴𝑘
∫ 𝑓 𝐴                                                              (1) 123 

where 𝐹𝑘̅̅ ̅ represents the area-averaged destination terrestrial carbon flux. 𝐴𝑘 is the area of grid 𝑘, 124 

and 𝑓 is the original carbon flux. Additionally, we also provide the main results at 1°×1° in the 125 

supplementary (Fig. S1). By comparison, results at these two resolutions are consistent.  126 

 127 

 128 

https://carbonmonitor.org/
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Table 1. Specifications for atmospheric inversion models participated in OCO-2 v10 MIP.  129 

No. 
Inverse 

model 
Inverse method Transport model Meteorology Resolution References 

1 Ames 4D-Var GEOS-Chem MERRA-2 4°×5° Philip et al. [2022] 

2 Baker 4D-Var PCTM MERRA-2 4°×5° Baker et al. [2006] 

3 CAMS Variational LMDZ ERA5 1.9 x 3.75 
Chevallier et al. 

[2005] 

4 CMS-Flux 4D-Var GEOS-Chem MERRA-2 4°×5° J Liu et al. [2021] 

5 COLA EnKF GEOS-Chem MERRA-2 4°×5° Z Liu et al. [2022] 

6 CSU 
Bayesian 

synthesis 
GEOS-Chem MERRA-2 4°×5° Schuh et al .[2010] 

7 CT EnKF TM5 ERA5 
2°×3° / 1° 

×1° 

Jacobson et al. 

[2020] 

8 JHU 
geostatistical/4D-

Var 
GEOS-Chem MERRA-2 4°×5° Chen et al. [2021] 

9 NIES 4D-Var 
NIES-TM/ 

FLEXPART 

ERA-5/JRA-

55 

3.75°× 3.75° 

/ 0.1°×0.1° 

Maksyutov et al. 

[2021] 

10 OU 4D-Var TM5 ERA-Interim 4°×6° 
 Crowell et al. 

[ 2018] 

11 
TM5-

4DVar 
4D-Var TM5 ERA-Interim 2°× 3° Basu et al. [2013] 

12 UT 4D-Var GEOS-Chem GEOS-FP 4°×5° Deng et al. [2016] 

13 WOMBAT 
Synthesis with 

MCMC 
GEOS-Chem MERRA-2 2°×2.5° 

Zammit-Mangion et 

al. [2022] 

 130 

2.2 Meteorological and land cover datasets 131 

We used land surface air temperature from the Climatic Research Unit gridded Time Series (CRU 132 

TS) v.4.05 at 0.5°×0.5° [Harris et al., 2020], which was generated by the interpolation of monthly 133 

climate anomalies from global weather station observations.  134 

The soil dryness condition was indicated by the terrestrial water storage (TWS) from a 135 

reconstructed product of the Gravity Recovery and Climate Experiment (GRACE-REC) which 136 

was generated by a statistical model trained with GRACE observations [Humphrey and 137 

Gudmundsson, 2019]. The GRACE-REC product was provided in six reconstructed TWS datasets 138 
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of 100 ensemble members each at both daily and monthly timesteps over the period of 1901 to 139 

present with a 0.5°×0.5° resolution, based on two different GRACE products (JPL and GSFC 140 

mascons) and three meteorological forcing datasets. Considering the time span and product 141 

evaluation [Humphrey et al., 2021], this study adopted the ensemble mean of the GSFC-ERA5 142 

monthly product which had the time span from January 1979 to July 2019. In order to 143 

independently assess this product, we further compared it with other three soil moisture products, 144 

and found that they consistently have high spatial correlation coefficients in pairs over Amazonian 145 

rainforests (Table S1).   146 

The vapor pressure deficit (VPD) was first calculated based on the ERA5 hourly data on single 147 

levels at 0.25°×0.25°  [Hersbach et al., 2020]. Specifically, we used the following equations: 148 

𝑉𝑃𝐷 = (𝑆𝑉𝑃 − 𝐴𝑉𝑃)/1000                                               (2) 149 

where SVP and AVP represented the saturated and actual vapor pressure in pascals, respectively. 150 

The derived VPD was in kPa. And SVP and AVP were calculated with a commonly used 151 

parameterization as follows: 152 

{
𝑆𝑉𝑃 = 610.78 × 𝑒

17.27𝑇𝑎𝑠
𝑇𝑎𝑠+237.29

𝐴𝑉𝑃 = 610.78 × 𝑒
17.27𝑇𝑑

𝑇𝑑+237.29

                                             (3) 153 

where Tas and Td were surface air temperature and dew-point temperature in degrees Celsius, 154 

respectively. Then we aggregated calculated hourly VPD into monthly and annual averages.  155 

The Oceanic Niño Index (ONI) was adopted here to infer the ENSO conditions, which was the 156 

running 3-month area-averaged sea surface temperature anomalies (SSTA) for the Niño3.4 region 157 

(5°S–5°N, 120°W–170°W). 158 

In order to retrieve the domain of Amazonian rainforests in this study, we adopted the Terra and 159 

Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Climate 160 



manuscript will be submitted to GRL       @ Nanjing University 

 

 9 

Modeling Grid (CMG) (MCD12C1) Version 6 data product [Friedl et al., 2015], which were also 161 

consistently resampled into 2.5°×2.5° by the approach of the largest area fraction remapping.  162 

 163 

2.3 Calculation of NBE and climate anomalies  164 

According to the ONI table 165 

(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php), an 166 

extreme El Niño occurred in 2015/16 with the maximum ONI of 2.6℃, followed by two weak La 167 

Niña events in 2016/17 and 2017/18. Owing to the short period of posterior NBE products, the 168 

climatology cannot be accurately derived which can be greatly influenced by the extreme El Niño 169 

event. Hence, we derived the anomalies of NBE and climate factors in each grid over Amazonian 170 

rainforests by calculating the difference between the averages during 2015/16 and those during 171 

2017/18. This simple method is analogous to the approach used by Liu et al. [2017] in which they 172 

calculated the anomaly in 2015 relative to the value in 2011.  173 

 174 

2.4 Contributions of climate drivers to NBE anomalies  175 

Surface air temperature, soil moisture, and VPD are the main climate factors, driving the 176 

interannual variability of land-atmosphere carbon flux [He et al., 2022; Humphrey et al., 2018; 177 

Jung et al., 2017; J Wang et al., 2016; W Wang et al., 2013]. In order to quantitatively calculate 178 

the contributions of these three climate drivers to NBE anomalies over Amazonian rainforests 179 

induced by the 2015/16 extreme El Niño, we calculated their second-order partial correlation 180 

coefficients and adopted the multiple linear regression to decompose NBE anomalies in space. To 181 

derive the second-order partial correlation coefficient, we first calculated the first-order partial 182 

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
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correlation (denoted as r12,3) which is a measure of the relationship between variable X1 and X2, 183 

controlling for the other variable X3: 184 

𝑟12,3 =
𝑟12−𝑟13𝑟23

√(1−𝑟13
2 )(1−𝑟23

2 )

                                                        (4) 185 

Then, we can derive the second-order partial correlation (denoted as r12,34) which is a measure of 186 

the relationship between variable X1 and X2, controlling for the other two variables X3 and X4: 187 

𝑟12,34 =
𝑟12,3−𝑟14,3𝑟24,3

√(1−𝑟14,3
2 )(1−𝑟24,3

2 )
                                                    (5) 188 

Decomposition of NBE anomalies in space into individual contributions was achieved as 189 

follows: 190 

𝑁𝐵𝐸 = 𝛽𝑇𝑇 + 𝛽𝑆𝑀𝑆𝑀 + 𝛽𝑉𝑃𝐷𝑉𝑃𝐷 + 𝜀                                         (6) 191 

where 𝛽𝑇, 𝛽𝑆𝑀, and 𝛽𝑉𝑃𝐷 represent the sensitivities of NBE to temperature, soil moisture, and 192 

VPD anomalies, respectively. This method needs to assume the same climate sensitivities in 193 

space. Of course, it seems reasonable because we here focus on Amazonian rainforests (broadleaf 194 

forests in MODIS land cover). The term of 𝜀 represents the residual. We can further rewrite 195 

Equation 6 using the more compact symbols: 196 

𝑁𝐵𝐸 = 𝑁𝐵𝐸𝑇 + 𝑁𝐵𝐸𝑆𝑀 + 𝑁𝐵𝐸𝑉𝑃𝐷 + 𝜀                                   (7) 197 

where 𝑁𝐵𝐸𝑇 , 𝑁𝐵𝐸𝑆𝑀 , and 𝑁𝐵𝐸𝑉𝑃𝐷  denote the NBE anomalies induced by temperature, soil 198 

moisture, and VPD, respectively.  199 

 200 
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3. Results and discussion 201 

3.1 Anomalous posterior NBE over Amazonian rainforests 202 

The geographical distributions of calculated annual NBE anomalies over Amazonian rainforests 203 

related to the extreme 2015/16 El Niño are presented in Fig. 1. The ensemble NBE anomalies in 204 

OCO-2 v10 MIP Prior were nearly neutral (Fig. 1a), indicating that the obvious posterior NBE 205 

anomalies originated from the information of the in situ and satellite-observed atmospheric CO2 206 

concentration. The ensemble NBE anomalies constrained by in situ CO2 observations (IS 207 

experiment) showed moderate anomalous carbon release (positive values) with the slightly 208 

stronger magnitudes over the eastern Amazonia (Fig. 1b). Compared to the limited stations of in 209 

situ CO2 observations, the OCO-2 XCO2 product largely increases the coverage of atmospheric 210 

CO2 observations over the tropical South America, even though it is limited to clear areas and 211 

much hampered by the cosmic rays from the South Atlantic Anomaly [Byrne et al., 2022]. The 212 

ensemble posterior NBE anomalies in LNLG and LNLGIS had the similar spatial patterns, 213 

showing the much stronger carbon release over the eastern and northern parts of Amazonian 214 

rainforests (Figs. 1c and d). 215 

More specifically, longitudinal changes of NBE anomalies showed that although large inter-216 

model spread existed, the ensemble posterior NBE anomalies in LNLG and LNLGIS had 217 

significantly stronger carbon release (approximately double, 0.05 PgC yr–1) from 57.5°W to 218 

67.5°W than results in IS (p < 0.1) (Fig. 1e). The ensemble NBE anomalies over the entire 219 

Amazonian rainforests were 0.02±0.09 PgC yr–1 in Prior and 0.28±0.22 PgC yr–1 in IS. After 220 

assimilating OCO-2 XCO2 observations over land, the total ensemble NBE anomalies were 221 

0.42±0.14 PgC yr–1 in LNLG and 0.39±0.15 PgC yr–1 in LNLGIS, showing their enhanced carbon 222 

release by approximately 50% and 39%, respectively, relative to the estimated magnitude in IS 223 
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(Fig. 1f). The NBE anomaly composed of NEE and 𝐹𝑓𝑖𝑟𝑒 anomalies, in which 𝐹𝑓𝑖𝑟𝑒 anomaly was 224 

estimated at 0.05 PgC yr–1 based on GFEDv4.1s product (Fig. 1f), suggesting the dominant 225 

contribution of NEE to NBE anomaly. Additionally, the inter-model spread in the total NBE 226 

anomalies in IS was obviously larger than that in LNLG, indicating that larger discrepancies 227 

existed in assimilating in situ observations in these atmospheric inversion models.  228 

 229 

Figure 1. Geographical distributions of anomalous annual net biome exchange (NBE) induced by 230 

the 2015/16 El Niño over the Amazonian rainforests. Prior (a) and posterior ensemble NBE 231 

anomalies at 2.5°×2.5° grids in inversion experiments of IS (b), LNLG (c), and LNLGIS (d) in the 232 
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OCO-2 v10 MIP. These annual anomalies were calculated by their differences between averaged 233 

annual NBE during 2015–2016 and that during 2017–2018. The unit of NBE anomalies in (a–d) 234 

is gC m–2 yr–1. The red stars in (b) show the locations of in situ observations in this focused domain. 235 

(e) Longitudinal total ensemble NBE anomalies in the unit of PgC yr–1. The shaded areas represent 236 

the standard deviation (1-𝜎) of multi-model inversion results in each experiment. The bigger dots 237 

in LNLG and LNLGIS represent that they are significantly different from those in IS with 238 

statistical significance at p < 0.1 level estimated by the two-sided Student’s t test. (f) Violin plots 239 

of multi-model total NBE anomalies over entire Amazonia rainforests. The total NBE is in the unit 240 

of PgC yr–1. The red line represents the anomalous carbon emissions induced by wildfires 241 

estimated by the GFEDv4.1s dataset.  242 

 243 

3.2 Climate drivers 244 

Interannual NBE anomalies were predominantly controlled by climate variations, mainly by 245 

temperature, soil moisture, and VPD [He et al., 2022; Humphrey et al., 2018; Jung et al., 2017; J 246 

Wang et al., 2016; W Wang et al., 2013; Zeng et al., 2005]. Regression analysis revealed that 1K 247 

increase of ONI in the preceding December can increase the annual temperature by 0.1 K (R2 = 248 

0.51, p < 0.01), enhance VPD by 0.02 kPa (R2 = 0.41, p < 0.01), and reduce TWS by 0.16 TtH2O 249 

(R2 = 0.84, p < 0.01) over the entire Amazonian rainforests (Fig. 2a). Accordingly, the climate 250 

conditions showed the higher temperature and VPD, and drier soil moisture in 2015/16, but in 251 

contrast the lower temperature and VPD, and wetter soil moisture in 2017/18 (Fig. 2a). Relative 252 

to the averages in 2017/18, temperature showed the positive anomalies over the entire Amazonian 253 

rainforests with the higher temperature anomalies located over the central part (Fig. 2b), which 254 

can potentially inhibit the vegetation photosynthesis and enhance soil respiration [Crowther et al., 255 
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2016; Zeng et al., 2005]. The soil and atmospheric dryness mainly occurred over the northeastern 256 

Amazonia albeit with differences in their spatial patterns (Figs. 2c and d), which both can reduce 257 

vegetation photosynthesis [Lopez et al., 2021; Stocker et al., 2019; Werner et al., 2021; Yuan et 258 

al., 2019].  Therefore, these three climate drivers simultaneously contributed to the positive NBE 259 

anomalies (Figs. 1c and d).  260 

 261 

 262 

Figure 2. Anomalous climate factors over the Amazonian rainforests. (a) Relationship between 263 

detrended climate anomalies, including surface air temperature (Tas, red), terrestrial water storage 264 

(TWS, green), and vapor pressure deficit (VPD, blue), and Oceanic Niño Index (ONI) in the 265 

preceding December from 2000 to 2018. Anomalous climate patterns of Tas (b), TWS (c), and 266 

VPD (d) linked to the 2015/16 El Niño were consistently calculated by their differences between 267 

annual mean during 2015–2016 and that during 2017–2018.  268 

 269 
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  In space, the stronger positive ensemble NBE anomalies over the eastern and northern parts of 270 

Amazonian rainforests (Figs. 1c and d) were visually more consistent with the pattern of TWS 271 

anomaly (Fig. 2c). Quantitatively, the partial correlation coefficients between gridded NBE and 272 

TWS anomalies, controlling for the temperature and VPD, reached −0.37 (confidence interval 273 

from −0.53 to −0.18, p < 0.05) in LNLG and −0.44 (confidence interval from −0.59 to −0.25, p < 274 

0.05) in LNLGIS, respectively, which were followed by the partial correlation coefficients 275 

between NBE and temperature anomalies with 0.35 (confidence interval from 0.15 to 0.52, p < 276 

0.05) in LNLG and 0.19 (confidence interval from −0.02 to 0.38, p = 0.08) in LNLGIS, 277 

respectively (Fig. 3a). Consistently, these higher values of the partial correlation coefficients 278 

between NBE and TWS anomalies both in LNLG and LNLGIS confirmed that TWS anomalies 279 

predominantly shaped the anomalous NBE pattern related to the extreme 2015/16 El Niño.  280 

  However, linear decomposition analysis (Equation 7) revealed that the total NBE anomaly over 281 

the entire Amazonian rainforests of 0.42±0.14 PgC yr−1 in LNLG composed of 0.25±0.18 PgC yr−1 282 

induced by temperature, 0.11±0.11 PgC yr−1 induced by TWS, and 0.05±0.12 PgC yr−1 induced 283 

by VPD, respectively, with the approximately 60% contribution from temperature (Fig. 3b). 284 

Similarly, the total NBE anomaly of 0.39±0.15 PgC yr–1 in LNLGIS was predominantly 285 

contributed to by temperature-induced anomaly of 0.21±0.16 PgC yr−1 with the approximately 54% 286 

contribution. Our result of temperature-dominated total NBE anomaly was different from the 287 

finding by Liu et al. [2017] that the NBE anomaly over tropical South America was largely 288 

controlled by extreme precipitation anomalies, where of course there were some differences in the 289 

anomaly calculation and research domain. 290 

 291 
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 292 

Figure 3. Associations between ensemble annual NBE anomalies and climate factors over 293 

Amazonian rainforests. (a) Partial correlation coefficients in space between ensemble annual NBE 294 

anomalies and individual climate factor, controlling for the other two factors. The error bars 295 

represent 95% parametric confidence intervals. The symbol of ** denotes the statistical 296 

significance at p < 0.05 level. (b) Decomposed contributions of individual climate factors to total 297 

NBE anomalies induced by the 2015/16 El Niño over entire Amazonian rainforests. The error bars 298 

represent the 1-𝜎 of multi-model inversion results. 299 

 300 

3.3 Uncertainty in multi-model inverted NBE anomalies 301 

This study mainly focuses on the multi-model ensemble NBE anomalies, but we should realize 302 

that inter-model spread existed in magnitudes and spatial patterns of NBE anomalies (Figs. 3b, S2, 303 

and S3). Although these inversion models performed experiments following the same protocols in 304 

the OCO-2 v10 MIP, the uncertainties among different models can be mainly attributed to the 305 

settings of errors in prior surface carbon fluxes, the errors in the atmospheric transport induced by 306 

different transport models and meteorological products used, and choices in the optimization 307 

techniques (Table 1) [Basu et al., 2018; Chevallier et al., 2010; Schuh et al., 2019]. Here, a Taylor 308 
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diagram for NBE anomalies in individual inversion models from LNLG and LNLGIS relative to 309 

their respective ensemble NBE anomalies is presented in Fig. 4. In LNLG, except CT and NIES, 310 

most of models show high spatial correlation coefficients with their ensemble NBE anomalies (> 311 

0.30) in which Ames has the highest correlation coefficient of 0.80 (p < 0.05). In other words, 312 

these models can capture the main characteristics of the spatial pattern of the ensemble NBE 313 

anomalies. But most of them have stronger standard deviation in space than that of ensemble NBE 314 

anomalies, indicating larger spatial difference of NBE anomalies in these individual models over 315 

Amazonian rainforests (Fig. 1 and S2). For example, obvious positive NBE anomalies occurred 316 

over northern Amazonia and negative anomalies occurred over southwestern Amazonia in UT (Fig. 317 

S2), making it have the highest normalized standard deviation of 4.86. Similar performance is 318 

exhibited in LNLGIS. Interestingly, the spatial correlation coefficient in JHU decreased from 0.36 319 

in LNLG to −0.13 in LNLGIS, while correlation coefficient in CT increased from −0.04 in LNLG 320 

to 0.42 in LNLGIS. More detailed spatial characteristics of posterior NBE anomalies induced by 321 

the extreme 2015/16 El Niño for each model in LNLG and LNLGIS can be referred to in Figs. S1 322 

and S2.  323 

 324 
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 325 

Figure 4. Taylor diagram for NBE anomalies in individual inversion models from LNLG and 326 

LNLGIS relative to their respective ensemble NBE anomalies. The values in the arc and x-axis 327 

represent the spatial correlation coefficients and normalized standard deviation, respectively. The 328 

red and blue dots show the individual inversion result in LNLG and LNLGIS, respectively.  329 

 330 

4. Conclusions 331 

Based on the posterior NBE anomalies provided by thirteen atmospheric inversion models 332 

participated in OCO-2 v10 MIP, we find a total NBE anomaly of 0.42±0.14 PgC yr–1 in LNLG 333 

and 0.39±0.15 PgC yr–1 in LNLGIS induced by the extreme 2015/16 El Niño relative to the 334 

baseline of 2017/18, showing the stronger carbon release over the eastern and northern parts of 335 

Amazonian rainforests. These anomalous spatial patterns of NBE in LNLG and LNLGIS were 336 

consistently controlled by the soil water availability with the highest partial correlation coefficients 337 
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between NBE and TWS of −0.37 (p < 0.05) in LNLG and −0.44 (p < 0.05) in LNLGIS, respectively. 338 

However, linear decomposition analysis suggested the dominant role of temperature in the total 339 

NBE anomaly over the entire Amazonian rainforests with its contributions of approximately 60% 340 

in LNLG and 54% in LNLGIS, respectively.  341 
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849. The ERA5 hourly data on single levels are stored at 363 
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