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Progress in turbine disk alloys

Ni-Based Superalloys for Turbine Disks
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> Increase of the operating temperature of turbine engines is required to improve the efficiency and reduce the emissions.

> New deformation mechanisms (thermally activated) become important above 700 °C.

> Understanding the effects of microstructure and composition on functionality of these creep deformation mechanisms
will lead to design of new materials with improved creep resistance.
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Deformation mechanisms in Ni-based superalloys

Ni-Based Superalloys for Turbine Disks

COMBUSTION EXHAUST

COMPRESSION

INTAKE

Exhaust

Turbine

Combustion Chambers.

A

|

hase (L1,)

| Y Phase (FCC)

v

Hot Section




Deformation mechanisms in Ni-based superalloys

Ni-Based Superalloys for Turbine Disks
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The Kolbe mechanism for micro-twinning

» Micro-twinning is a major creep deformation mechanism in Ni-based superalloys
at intermediate temperatures.
» Many aspects of twin nucleation and growth remain unexplored.
» The Kolbe mechanism for micro-twinning, based on thermally activated reordering,
is currently widely accepted in the community to explain these processes.
Kovarik et al., PMS 2009
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Simulation geometry and procedure

Composite simulation system (Ni-Al), containing y phase (matrix) and y " phase (precipitate) regions
and two edge dislocation dipoles.

LAMMPS package; Ni-Al interatomic potential by Mendelev.

Simulation cell size: ~100%2.5%x30 nm?3 (~7x10° atoms). PBCs in all directions.

350 vacancies introduced in the system to simulate diffusion mediated reordering.

The system was equilibrated at T = 1300K, using hybrid MC/MD prior to introduction of dipoles.
The dipoles were positioned in such a way that individual dislocations of upper and lower dislocation
pairs would glide on adjacent {111} planes when a shear stress was applied.
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The Kolbe mechanism for micro-twinning
potential for NiAl by Mendelev; NPT, T=1300K; 350 vacancies; c,,= 600 Mpa, 6,,= 1039 Mpa; Ni atoms not shown
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The Kolbe mechanism for micro-twinning
Dislocations (green); Al atoms (blue); high energy (red); Ni not shown
~ 0.1 ps of MD deformation run (350 vacancies, T=1300K, oy, = 600 MPa c,,= 1039 Mpa G, = 1.2 GPa)

partial dislocation matrix (y)

unperturbed NizAl CSF

reshuffled

» Under applied stress, dislocations slowly move inside the precipitate. The reshuffling process
(double CSF -> L1,) is the major factor, determining the the speed of the propagation.



The Kolbe mechanism for micro-twinning: single reshuffling move

Single reshuffling move assisted by partial (vacancies are shown, Ni not shown)

strengthening prekcipitate (NizAl y " phase) ma'irix (v)

L . matrix (y)
partial dislocation vacancy reshuffled
unperturbed NisAl CSF



top view

The Kolbe mechanism for micro-twinning
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Borovikov, V. V., Mendelev, M. 1., Smith, T. M., & Lawson, J. W. (2023).
“Dislocation-assisted diffusion-mediated atomic reshuffling in the Kolbe mechanism

for micro-twinning in Ni-based superalloys from molecular dynamics simulation”.
Scripta Materialia, 232, 115475. 10
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Effect of Nb on the Kolbe mechanism for micro-twinning
potential for Ni-Al-Nb by Mendelev; dislocations (green); Ni atoms are not shown
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» Nb atoms suppress reordering, reducing deformation creep 1



Segregation of Cr at stacking faults in y*

Y. Rao et al. / Acta Materialia 148 (2018) 173—184
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Fig. 5. (a) An atomic resolution HAADF image of a superlattice intrinsic stacking fault terminating inside a v’ precipitate in the superalloy ME3. (b) An integrated line scan showing
the element segregation across the SISF in (a). (¢) Combined Cr, Co, Al, and Ni elemental maps of the entire SISF shown in (a). The white box represents the area integrated for the
quantified line scans in (b). A notable Co and Cr-rich Cottrell atmosphere is observed around the shearing Shockley partials on the right side of the EDX map.



Modeling the effects of Cr on the Kolbe mechanism for micro-twinning
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Effects of [@3on the Kolbe mechanism for micro-twinning
potential for Ni-Al-Cr by Mendelev; T=1300K; dislocations (green); Ni atoms are not shown

Simulation time: 0.1 us

0% Cr

> Cron Ni sites slows down deformation

> Cron Al sites significantly accelerates d\

eformation
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Effect of Cr (on Ni site) on migration barriers
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Experimental puzzle

A new disk superalloy was recently developed by NASA: NASA Alloy 1

Average alloy compositions in atomic percent

Alloy
NASA alloy 1
NASA alloy 2
NASA alloy 3
NASA alloy 4
NASA alloy 5
NASA alloy 6
LSHR
ME3

Ni
51.79476
52.60618
51.82529
52.35668
51.52865
50.91574
48.21
50.9

Cr
12.60713
11.57342
11.64886
12.74421
14.14501
12.45521
14.5

14.5

Co
19.31268
19.60531
20.23955
19.31623
18.88725
19.91644
20.67
17.8

Al
6.452026
6.289492
6.452008
5.973308
5.95665
6.462199
7.52

7.48

Ti
3.724641
3.77153
3.762253
3.567281
3.582297
3.401442
4.24

4.22

Nb
0.943347
0.932716
0.930422
0.857699
0.855307
0.889319
0.9365
0.86

Ta
1.599034
1.586344
1.595712
1.450271
1.423114
2.15549
0.51

0.86

Hf
0.124438
0.124744
0.117711
0.140982
0.1272
0.142955
0

0

Mo
1.633071
1.637093
1.626809
1.586217
1.581794
1.583087
1.63

2.28

w
1.374695
1.420634
1.348569
1.385089
1.348727
1.454043
1.36

0.6

Zr
0.031586
0.031664
0.029612
0.045975
0.039297
0.039958
0

0

Fe
0.016661
0.016164
0.015049
0.010729
0.010699
0.010879
0

0

B
0.136039
0.139158
0.133263
0.166259
0.165795
0.168585
0.161
0.16
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C

0.2499
0.265546
0.274889
0.399071
0.348214
0.404656
0.241
0.24



Distribution of elements at SISF in Ni;Al-based vy’

Atomic resolution characterization of a SISF in NASA Alloy 1
T. M. Smith et al., Communications Materials, 2 (2021) 1-9.
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Experimental puzzle

Creep (0.3%) - 760C / 552 MPa
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Conclusions

High temperature creep deformation in Ni-based superalloys was studied employing atomistic modeling.

Our results indicate that relatively small addition of Nb can significantly slow down creep deformation of Ni-superalloys.
Depending on the site preference of Cr in NizAl y ' phase, two drastically different deformation behaviors can be expected.
Cr on Al sites promotes twin growth via the Kolbe mechanism degrading the high temperature creep properties.

Cr on Ni sites, on the other hand, suppresses twin growth and slows down the high temperature deformation creep.

Our results explain the experimentally observed puzzling effects of elemental composition of the alloy on creep resistance.

Cr site preference in v ' phase of Ni based superalloys can possibly be manipulated by tuning the alloy composition, thus,
providing opportunity to design the next generation of Ni superalloys with improved creep resistance.
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