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Abstract—In this paper, we investigate the dynamic emergence of
traffic order in a distributed multi-agent system, aiming to minimize
inefficiencies that stem from unnecessary structural impositions.
We introduce a methodology for developing a dynamically updating
traffic pattern map of the airspace by leveraging information about
the consistency and frequency of flow directions used by current
as well as preceding traffic. Informed by this map, an agent can
discern the degree to which it is advantageous to follow traffic by
trading off utilities such as time and order. We show that for the
traffic levels studied, for low degrees of traffic-following behavior,
there is minimal penalty in terms of aircraft travel times while
improving the overall orderliness of the airspace. On the other
hand, heightened traffic-following behavior may result in increased
aircraft travel times, while marginally reducing the overall entropy
of the airspace. Ultimately, the methods and metrics presented in
this paper can be used to optimally and dynamically adjust an
agent’s traffic-following behavior based on these trade-offs.

Keywords—disorder; order; entropy; autonomy; airspace oper-
ations; traffic pattern; distributed; multi-agent

I. INTRODUCTION

In order to accommodate growing demand and improve safety,
the airspace system is anticipated to increasingly include au-
tonomous vehicles that interact collectively and integrate with
other traffic sharing the same airspace. Initially, applications
will include non-passenger scenarios, such as fire fighting or
cargo delivery, using uncrewed aerial vehicles of different sizes.
Eventually, the scope will expand to passenger-carrying vehicles
for urban or regional air mobility. Successful implementation of
these collective autonomous multi-vehicle systems, requires us
to identify key characteristics that make these systems “good” in
terms such as safety and efficiency. After that, identifying met-
rics to quantify these characteristics becomes crucial, followed
by the design of agent behaviors and coordination mechanisms to
ensure we achieve these desired traits in a collective autonomous
multi-agent system.

To identify characteristics in the context of air mobility,
we interviewed pilots to gain insights on good collective au-
tonomous behavior, particularly under distributed visual flight
rules. A key takeaway from these discussions is that pilots, with

a primary focus on risk mitigation, actively seek to minimize
uncertainty while integrating with other traffic. Examples of such
efforts include planning to fly along commonly filed routes and
flown procedures, following aircraft flown by more experienced
operators, and following aircraft when finding paths through
weather systems. Pilots also integrate into airport arrival flows
while negotiating their sequence on the common communication
frequency and merging into the traffic pattern.

In air traffic management, fostering safe, orderly, and ex-
peditious traffic are key objectives [1]. Air traffic controllers
ensure safe separation distances between vehicles and often
expedite traffic to enhance system throughput. In maintaining
the orderliness of traffic, controllers ensure aircraft compliance
with established route structures and procedures, and they apply
equitable first-come, first-serve service. They also dynamically
organize traffic into patterns to effectively navigate complexity
and workload challenges, especially in airspaces with high traffic
densities [2] [3]. Order is often traded for expediency and safety,
for example, by deviating from the route structure to gain time
or resolve traffic conflicts.

Considerable efforts have focused on ensuring safety in dis-
tributed autonomous systems, through automated collision avoid-
ance systems, detect-and-avoid technology [4], and strategic self-
separation concepts [5]. There has also been ample research in
collaborative and distributed traffic flow management concepts
and technologies to ensure user priorities are traded effectively
with the collective safety and throughput of the airspace [6] [7].
In this paper we focus on the characteristics of orderly traffic,
a topic that has received relatively less attention but which we
believe will be increasingly critical for scaling collective multi-
vehicle autonomous systems to higher densities. In addressing
the need for orderly traffic behavior, the existing body of
research has delved into airspace complexity metrics from an
air traffic controller workload perspective such as in [8] or,
more intrinsically, such as in [9]. There were efforts to study the
emergence of orderly traffic patterns in distributed settings using
flexibility metrics designed to mitigate high risk [10] [11]. It was
shown that airspace complexity is reduced under such distributed
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schemes. Attempts were made to mimic collective behavior
from other social species such as ants for traffic management
[12]. Convoy formation has also been studied in the context
of maintaining vehicle-to-vehicle coherence and alignment for
energy saving and benefits such as flow structuring [13] [14].

Figure 1: An ownship can decide the degree to which it follows traffic,
and which traffic it follows, as it progresses towards its destination.

In this paper, we investigate the dynamic emergence of traffic
structure in a distributed multi-agent system. In doing so, we
attempt to minimize the inefficiencies stemming from applying
structure unnecessarily a priori. We introduce a methodology
for developing a traffic pattern map of the airspace by lever-
aging information about the consistency and frequency of flow
directions used by current as well as preceding traffic. Informed
by this map, an agent can discern the degree to which it is
advantageous to follow traffic by trading off utilities such as time
and order, as illustrated in Fig. 1. When agents follow traffic,
the outcome is the dynamic emergence or formation of specific
paths, or “airways”, that are used more frequently than others
without pre-imposed route structures.

This technique also enables an agent to customize its degree of
traffic-following behavior based on trading its own priorities with
the overall traffic concerns. For example, while traffic-following
behavior might come at an expense to aircraft, for instance, in
terms of travel time, the increased order afforded by this strategy
ultimately contributes to a more manageable and safe airspace
environment. In this paper, we quantify the trade-off between
order and time under low-density conditions, which provides a
base for quantifying the impacts of order on airspace operations.

The paper is organized as follows: Section II covers the
modeling framework, path planning algorithm, and quantitative
metrics for measuring order. Section III presents simulation
results demonstrating the emergent traffic order and its effect
on travel time, and Section IV concludes this paper outlining
avenues for further research.

II. METHODOLOGY

In order to study collective autonomous behavior that aims to
maintain orderly traffic in a distributed manner, we developed

the following models, algorithms and metrics: 1. A map of the
airspace that depicts the traffic pattern based on information from
preceding traffic in Section II-A. We assume that this information
is available to the vehicles either through their own sensors
covering the airspace region of interest or through a service that
gathers the information and broadcasts it to all vehicles. 2. A cost
function for each agent to use the traffic pattern map information
and calculate the amount of traffic-following behavior to apply
relative to other utilities in Section II-B. 3. A path planning
algorithm that minimizes the cost function in Section II-C. 4. A
metric to measure the order of the traffic based on entropy in
the traffic direction in Section II-D.

A. Traffic pattern map

Figure 2: We partition the airspace into a hexagonal grid, where each
cell is assigned edges numbered from 1 to 6. This numbering system
facilitates the indexing of the cost matrix associated with each cell.

We assume the airspace is two-dimensional and partition
it into regular hexagons, tiled and pairwise congruent [15],
as depicted in Fig.2. Since our objective is to capture traffic
directions, a hexagonal grid allows us to track more directions
than, for example, a square grid, at a reasonable computation
cost. The edges of each hexagon are numbered as shown in
the figure. For each possible traversal of a flight through the
hexagon, we specify a corresponding ordered pair of edges, in
the format (entry edge, exit edge). Such a pair will be referred
to as an edge pair for the given flight. Thus, for each hexagon,
a total of 36 edge pairs are possible. The number of traversals
through an edge pair (i, j) within a hexagon will be denoted by
ti,j . Thus, for each hexagon, a 6×6 matrix denoted by Eq. 1
records the number of aircraft that have traversed this edge pair
so far, where the diagonal entries represent U-turns.

T =


t1,1 t1,2 t1,3 t1,4 t1,5 t1,6
t2,1 t2,2 t2,3 t2,4 t2,5 t2,6
t3,1 t3,2 t3,3 t3,4 t3,5 t3,6
t4,1 t4,2 t4,3 t4,4 t4,5 t4,6
t5,1 t5,2 t5,3 t5,4 t5,5 t5,6
t6,1 t6,2 t6,3 t6,4 t6,5 t6,6

 (1)

For example, if a cell has had no aircraft traversals in the past,
the traffic matrix, T, is simply a 6×6 zero matrix. Then, by time
∆ if an aircraft has entered via the second edge and exited via
the fifth and another aircraft has entered via the fourth and exited
via the first, the updated corresponding T matrix of the cell is:
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T =


0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


It is important to note here that non-zero entries signify the

passage of traffic through the corresponding entry-exit pairing,
with the value indicating the number of aircraft that have used
the same pathway. By using this technique, we capture not
only the different directions of traffic through a cell, but also
the number of aircraft that are traversing the hexagon in these
directions. Additionally, in the current setup, traffic entries are
not differentiated on the basis of the when they occurred. In
future extensions, a time-decay factor may be introduced to
discount older information relative to newer information.

B. Cost function model

In the distributed environment in this paper, any aircraft, called
“ownship”, makes its own path-planning decision using a cost
function. An ownship incurs a cost whenever it passes through
a hexagon from any one edge to another. This cost arises from
fuel burn, winds, and weather conditions, independent of any
traffic considerations. This will be referred to as the unimpeded
transit cost. Additionally, if other flights are traversing the grid,
the necessity to share the airspace results in an additional cost
to the ownship. This will be referred to as the traffic cost. The
sum of these two costs will be called the total cost of transit
from any one edge of a cell to another. These are detailed in the
following subsections.
Unimpeded transit cost through a cell: The cost of unimpeded
transit through an edge pair (i, j) is denoted by ui,j . It can be
adjusted based on how expensive it is for an ownship to transit
an edge pair based on winds, weather, and fuel burn within the
airspace. For example, edge pairs encompassing bad weather
are set up to have higher prices of transit to deter aircraft from
traveling through there. Therefore, less favorable transit pairs are
set up to have higher costs and vice-versa. For all simulations
conducted for this paper, the unimpeded cost of transit through
an edge pair is the simply distance between their midpoints,
without any adjustments for wind and weather. In the case of
U-turns, the cost is approximated to twice the size of a hexagon.

For a hexagon, there are 36 unique values denoting transit
cost between each edge pair. Again, for each individual hexagon,
these are best stored in a 6 × 6 matrix as follows.

U =


u1,1 u1,2 u1,3 u1,4 u1,5 u1,6
u2,1 u2,2 u2,3 u2,4 u2,5 u2,6
u3,1 u3,2 u3,3 u3,4 u3,5 u3,6
u4,1 u4,2 u4,3 u4,4 u4,5 u4,6
u5,1 u5,2 u5,3 u5,4 u5,5 u5,6
u6,1 u6,2 u6,3 u6,4 u6,5 u6,6

 (2)

Traffic cost through a cell: There are a number of ways that
traffic can affect an ownship. In this cost function we model the
inclination of an aircraft to follow traffic patterns if beneficial
to it. In the next subsection, we model how an aircraft can
maintain minimum horizontal separation distances from other
aircraft using a conflict resolution technique.

For each edge pair, we define a traversal cost based on the
number of aircraft that have used the pair. This cost is formulated
as (1− kt ∗ ˆti,j) where kt is the traffic-following factor and ˆti,j
is the normalized entry from Eq. 1. Subtracting the normalized
traffic count from 1 makes the edge pairs with more traffic in
them less costly to the ownship, thus making pairs with higher
traffic ”attractive” to the ownship. The traffic-following factor,
kt is adopted as a gain in order to tailor the degree to which
traffic is attractive to an ownship. The higher the value of kt,
the less costly it becomes to use the edge pair. Therefore, the
higher the value of kt, the more inclined an ownship is to follow
traffic.

Similar to previous setups, for each hexagon, there are 36 such
values, which are represented in a 6×6 matrix. Hence, the traffic
cost through different entry-exit pairs in a hexagon is given by:

[
16x6 − kt

T∑
i,j ti,j

]
(3)

where 16x6 is a 6 × 6 matrix of ones and
∑

i,j ti,j is the
grand sum of the traffic matrix of that hexagon.

The current approach for quantifying traffic costs considers
the direction of aircraft and vehicular count. In future work, we
plan to incorporate additional characteristics such as similarity
between traffic by considering speeds and sizes of different
agents.
Total cost of transit through a cell: Summing up the unimpeded
transit cost and the traffic costs of a cell, we get the total cost
of transit through a cell as follows:

C = U +

[
16x6 − kt

T∑
i,j ti,j

]
(4)

C. Path planning and conflict resolution

There are generally multiple paths an ownship can take to get
from one hexagon to another within the grid as illustrated in
Fig.3a. In this section we introduce an algorithm that uses
the cost function defined in Section II-B to plan an ownship’s
trajectory and a method for conflict resolution.
Least costly path calculation: For every possible path between
the initial and final position, we define a cost using the hexagonal
costs introduced in Eq. 4.
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Figure 3: (a). Illustrating different trajectories that a vehicle can take to
get from one edge in the grid to another. (b). Using Dijkstra’s algorithm,
an aircraft computes the total cost for each possible path, starting from
the initial edge. (c). The least costly edge that can lead to another
hexagon is picked for the next cost step calculation. (d). Again, the
least costly edge that has not been explored, starting from the base
edge, is picked for the next cost step calculation. This continues until
the next edge to be explored is the destination edge.

We cast the path planning problem by introducing an undi-
rected graph [16] whose nodes are all the edges of the hexagons1.
There are only two sets of possible arcs defined in this setup. 1.
Two nodes corresponding to two edges of the same hexagon are
connected by an arc that equals the total cost of traversal of that
edge pair. 2. Two nodes corresponding to the coincident edges
of neighboring hexagons are connected by an arc that equals the
cost of 0.

An ownship computes its trajectory using this weighted graph
setup. To calculate the least costly path, we now use Dijkstra’s
algorithm [17]. As illustrated in sub-figures b, c and d of Fig. 3,
starting from the initial input edge, the algorithm traverses the
hexagonal grid moving from one edge of a cell to all other edges
in the cell, finding the least costly path. To dynamically account
for updated costs due to changes in traffic, an ownship re-
calculates its least costly path to its destination from its current
position periodically. This enables it to choose the least costly
path throughout the course of its trajectory. For all simulations
conducted for this paper, an ownship recalculated its best path
forward every time it entered a new hexagon.
Conflict resolution: Since the ownship is navigating an airspace
with multiple other vehicles, we utilize a non-communicative,
negotiation-free algorithm for local collision avoidance [18].

In this setup, a repulsion modeled as an angular impulse
“pushes” the ownship away from other aircraft by making
deviations to its heading. Consider two aircraft m and n, in the

1In the graph theoretic approach used here, the terms nodes and arcs are used,
instead of the more commonly used terms vertices and edges, to avoid confusion
with the hexagonal grid’s geometry.

Figure 4: (From left to right) Progression of a head-on scenario
diversion where aircraft enter from opposite edges of a hexagon and
head towards the edge the other aircraft entered from.

North-East-Down coordinate frame. The instantaneous distance
between them is given by rmn and the rate at which this distance
between the two aircraft is changing is given by ṙmn. The
instantaneous repulsion R on an ownship m is given by:

Rm =

S∑
n=1

[
kr

|rmn|2
+kṙmax

(
0,− ṙmn · rmn

|rmn|

)]
,∀n ̸= m (5)

where S is the total number of aircraft in the grid, and kr
and kṙ are the repulsion gain constants. An example of how
this repulsion works is showcased in Fig. 4. For this work, the
conflict resolution for each aircraft is done sequentially and at
every time step.

Figure 5: Demonstrating the effect of kt for a single ownship: Aircraft
are introduced into the airspace at staggered intervals, originating from
the bottom-left with destinations in the top right. Only the last aircraft
(orange) is designated to be an ownship here, i.e., has the option to
follow or not. (a). kt = 0, i.e., no traffic-following is permitted. (b). kt
= 3, i.e., traffic-following is permitted.

Updates to Ownship State: Every time an ownship enters a
hexagon, it determines the next best edge to travel to by using the
path planning algorithm from its current position in the grid to its
destination. Locally, it uses the collision avoidance algorithm to
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maintain horizontal separation from other aircraft in the system.
Updates to an ownship’s trajectory are made in the form of
a cumulative heading change, ∆ψ, (due to path planning and
conflict resolution) while speed and altitude are kept constant. In
a simulation with multiple ownships, each ownship’s trajectory
is updated sequentially, with no coordination or negotiation, at
every time-step [18].

Examples

We now demonstrate traffic-following and non traffic-following
behavior using the airspace setup, cost functions and navigation
techniques described above in two example scenarios: single-
ownship and multiple-ownships. In the single-ownship case, we
introduce a convoy of four aircraft (different colors) into the grid
as shown in Fig. 5. They enter from the bottom left corner, and
their destination is the top right corner. A fifth aircraft is offset
(orange) and is the ownship, i.e, can either choose to follow the
convoy or not. Fig.5 a. depicts the case for when kt is set to 0,
and Fig.5 b. depicts the case for when kt is set to 3.

Figure 6: Demonstrating the effect of kt on traffic patterns when
all aircraft are ownships: Order emerges when aircraft follow traffic
patterns.

Similarly, in the multi-ownship case depicted in Fig.6, all
aircraft are ownships and have randomly assigned initial and
final destinations on opposite sides of the grid. Fig. 6a. shows
the trajectories (at the middle and end of the scenario) of aircraft
for the case when kt = 0, and Fig. 6b. depicts when kt = 3.

Both of these examples show reduced disorder in the airspace
when aircraft follow traffic patterns.

D. Entropy

This section describes the utilization of entropy within the
context of our paper. To measure the disorder in our system,
we use a popular formula used to measure entropy in the field
of information theory [19]. For a discrete random variable X,
that is distributed according to p : X → [0, 1], the entropy is

H(X) = −
∑
x∈X

p(x) log p(x) (6)

where x is a value from set X, p(x) is the probability of
x occurring in X, and

∑
denotes the sum over the variable’s

possible values.
It is important to note here that Eq.6 can be used for measuring

the entropy of various factors in an airspace. Options include
metrics such as the magnitude of total heading changes within
an airspace, transit time for an aircraft, etc. For the scope of this
analysis, we focus on studying differences in the number and
directions of pathways that aircraft travel across an airspace.

More specifically, consider the airspace configuration com-
posed of hexagonal cells, as discussed in previous sections.
In the case of a single cell, we quantify entropy considering
the following two factors: 1. the diversity of directions (entry-
exit pairings) through which traffic flows and 2. the number of
aircraft utilizing these pathways. As stated earlier, the traffic
matrix, T, stores information about the number and directions
of crossings between each entry-exit pairing in a cell over
time. This information is then leveraged to calculate the entropy
within that individual cell. Subsequently, by aggregating this
uncertainty across all cells within a grid, we obtain a metric
that encapsulates the overall entropy of the airspace.

Next, we discuss an example of measuring entropy in the
context of the variety of directions in a cell. We evaluate entropy
for the following cases, to see how well it corresponds with
intuition. Consider three cases of 10 aircraft moving across a
cell, one after the other. For the first case, all 10 aircraft traverse
the same entry and exit pairing numbers, say 4 and 2. For the
second case, 10 aircraft enter the airspace one after the other
from the same edge (edge 4) but have two different options for
their exit (edges 1 and 2). In the final case, assume all 10 aircraft
enter and exit from a previously unused entry-exit pairing.

Disorder, in terms of the number of directions, is most
pronounced in the last case given the multitude of options for
aircraft to choose entry-exit pairings. Conversely, it is lowest in
the first case since each aircraft is restricted to a single edge
pair. Now looking at this, for the first case, the traffic matrix,
T1, and the corresponding normalized matrix, T̂1, are:
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T1 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 10 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ; T̂1 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


The entropy for this cell, H(X), using Eq. 6 is then = −(1 ×
log(1)) = 0. The entropy in this case is 0 since it is deterministic,
i.e., all aircraft only have one choice available. For the second
case, the traffic matrix, T2, and the corresponding normalized
traffic matrix, T̂2, are:

T2 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
5 5 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ; T̂2 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1
2

1
2 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0


Therefore, the entropy, H(X), for this cell is −( 12× log( 12 ))×(2)
= 0.6931. For the third case, let’s assume the traffic matrix, T3,
and the corresponding normalized traffic matrix, T̂3, are:

T3 =


1 0 0 1 0 1
0 0 0 1 0 0
0 0 0 0 0 1
1 1 0 0 0 0
0 0 0 1 0 0
0 1 0 0 1 0

 ; T̂3 =



1
10 0 0 1

10 0 1
10

0 0 0 1
10 0 0

0 0 0 0 0 1
10

1
10

1
10 0 0 0 0

0 0 0 1
10 0 0

0 1
10 0 0 1

10 0


H(X), for this cell is − 1

10 × log( 1
10 ) ∗ 10 = 2.3026. Hence, the

lowest entropy occurs in the first case, where aircraft all have
the same entry-exit edges. The highest entropy is observed in the
last case, where each aircraft has different entry-exit pairings.
A similar approach can be used to understand entropy in the
context of the number of aircraft traversing a cell. Between the
following two traffic matrices case A has a higher entropy than
case B.

TA =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
5 5 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ;TB =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 9 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


This is because the uncertainty in the exit edge an aircraft will
pick is higher in case A.

III. COMPUTATIONAL EXPERIMENTS

In this section we present experiments that were conducted
to demonstrate the emergence of order using the models and
algorithms presented in the methodology. For these simulations,

we introduce aircraft into a hexagonal grid using the same
approach described in the example in Section II-C. Each vehicle
enters the airspace a certain time-period after the preceding
one. This traffic-staggering approach allows for the accumulation
of data in the traffic pattern map, which can be leveraged by
subsequent aircraft for path planning.

In this analysis, the size of each hexagonal cell is 2.65 miles
and all aircraft are assumed to be traveling at a constant speed
of 250 miles per hour. The repulsion constants, kr and kṙ, used
in Eq. 5, are both set at 0.01, and the “repulsion” only sets in
when the horizontal distance between two aircraft is less than
or equal to 10 miles.

In the next two subsections, we examine the impact of traffic-
following behavior and the amount of information available on
airspace entropy. The third subsection delves into the effects
of traffic-following behavior on aircraft travel times within an
airspace and we finish the discussion section by discussing trade-
offs for entropy gain versus travel times.

A. Effect of kt on airspace entropy

In this experiment, the objective is to study the effects of varying
the traffic-following factor, kt, on the entropy of an airspace.

Figure 7: Influence of the traffic-following factor, kt, on airspace
entropy: Analysis of 100 cases for each data point with staggered
aircraft entries at fixed time intervals.

For the hexagonal grid airspace configuration presented in
Section II, we explore various scenarios for each value of
kt. Specifically, we test values of kt on the same set of 100
scenarios, where a scenario is defined by randomly generated
initial and final coordinates for different numbers of aircraft
denoted as N = {5, 10, ...100}. This ensures a fair comparison
across different cases. In each scenario, aircraft enter the airspace
sequentially, with a 40-second separation between each entry.
This deliberate timing of 40 seconds is chosen because, in this
setup, it takes an aircraft approximately 40 seconds to traverse
a cell (based on the chosen cell size and aircraft speeds for
this experiment) and begin contributing data to the traffic map.
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Subsequent aircraft entering the airspace can then leverage these
insights into the flow of traffic within the airspace. This enables
them to make informed decisions on the best path forward,
depending on which cells are most cost-effective to traverse
when taking into account prevailing traffic conditions and their
assigned kt. It should be noted here that, due to this staggered
introduction of aircraft into the airspace, N is the total number
of aircraft that have traversed the airspace over a given period
of time, rather than the total number of vehicles at a specific
instance in time.

Results obtained from this experiment are shown in Fig.7. For
the case of no traffic-following, i.e., when kt is set to 0, airspace
entropy is highest. This agrees with intuition because when
aircraft are not following other traffic, they are simply moving
in the direction that suits them best, resulting in the traversal
of an increasing number of new pathways in the airspace. For
any given aircraft number, we see a decrease in the entropy
of an airspace as the traffic-following factor increases. This
corresponds to what one might expect intuitively, since as aircraft
follow traffic, they are more likely to align their movements with
other vehicles, naturally creating more pronounced “airways”
without the need for any predefined route structure.

The anticipated leveling off of the curves at the end of the
plots is due to the staggered entry method, explained at the be-
ginning of Section III. As we move along the horizontal axis, the
total number of aircraft input into the system is increasing, where
some aircraft reach their destination by the time subsequent
ones enter the airspace. Since subsequent aircraft entering simply
follow pre-established pathways, they settle on a structure, and
there is a resulting saturation in airspace entropy.

We observe that the marginal increase in traffic order (cor-
responding to a decrease in entropy) diminishes as we increase
the traffic-following behavior. For example, a higher increase
in airspace order is observed when kt is increased from 2 to
3 than when it is increased from 4 to 5. This is attributed
to a higher number of aircraft following established pathways
in the airspace when kt is increased from 2 to 3. In contrast,
increasing the degree of traffic-following to 5 instead of 4 does
not yield as substantial an increase in order, as the majority of
aircraft are already following other traffic - once airways are
established, all subsequent aircraft tend to adhere to the same
pathways established by prior aircraft, with increasingly smaller
added benefit in terms of more structure.

It should be noted that this initial analysis is conducted in a
deterministic setting and intended to demonstrate the emergence
of traffic patterns and stable structure with traffic following. In
future work we will add disturbances such as weather cells which
would invoke a dynamic change in the emergent patterns. Under
such uncertainties, the traffic pattern maps should be extended to
be predictive over time and each agent traffic-following behavior
would adapt dynamically to mitigate these uncertainties.

B. Effect of kt on aircraft travel times

In this experiment, we examine how aircraft travel time is af-
fected while following other traffic. To analyze this, we monitor
how long it takes each aircraft to get from its initial position to
the destination using the same setup described in Section III-A.

Figure 8: The effect of kt on aircraft travel times.

The results obtained from this experiment are shown in Fig.8.
From this plot it is evident that, as expected, travel time increases
when aircraft follow traffic patterns. As expected, increases in
travel time are more pronounced with a higher kt as aircraft
make more deviations to follow traffic. The plateau observed in
these plots (starting at around 50 aircraft), can be attributed to
the staggered introduction of aircraft into the system and the
stabilizing of the traffic structure observed from the entropy
saturation in Fig.7. We also observe an increase in the marginal
effect of increasing traffic-following behavior on travel time;
where increasing kt from 1 to 2 increases the travel time slightly,
while increasing kt from 4 to 5 increases travel time much more.

Note that in this experiment, some aircraft reach their destina-
tions by the time subsequent ones enter the system. Given that
the travel time remains almost at the same value in the case of
no traffic-following, we can infer that we are observing aircraft
travel times unaffected by congestion-induced increments. In
future work, we intend to study the trade off between order and
travel time under high density where congestion is in effect.

C. Trade-off between airspace entropy and aircraft travel times

In this section we combine the effects on entropy and travel
time from Figs. 7 and 8, respectively, under conditions where the
traffic structure in the airspace has stabilized. Considering this
occurs at approximately 60 aircraft, as discussed in the previous
subsection, we select this number of aircraft for the plot shown
in Fig.9. For scenario with a total number of aircraft exceeding
60, similar plots are observed, as both the entropy and travel
time values exhibit a plateau. The trade off between entropy
and travel time is clear in the figure, where it is observed that
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for low values of the traffic-following constant, such as kt = 1,
2, the increases in travel time are minimal with notable gains
in entropy. The reverse is observed at high kt values where
additional traffic following behavior results in excessive penalty
in terms of travel time with minimal additional order benefits.
The plot demonstrates how the methods presented in this paper
can be used to select appropriate traffic-following gains to trade
off order against other priorities.

Figure 9: Exploring the trade-off between entropy and travel time across
different degrees of traffic-following behavior for 60 aircraft.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the emergence of traffic order
in a distributed autonomous multi-vehicle system and its ef-
fect on travel time. To conduct this study, we constructed a
dynamically updating traffic pattern map of the airspace based
on the directions of traffic and the number of aircraft in these
traffic flows. We developed an algorithm for each aircraft to
adjust the degree to which it follows traffic patterns in the
map versus other priorities such as travel time. Our analysis of
entropy effects for varying levels of traffic-following revealed
that, for low traffic-following behavior, there is minimal penalty
for average travel times, accompanied by simultaneous benefits
in improving airspace orderliness. Conversely, continuing to
increase traffic-following behavior results in prolonged travel
times, yet produces marginal reduction in the overall entropy
of the airspace.

For the next chapter of this work, insights gained at low densi-
ties considered in this work are being extrapolated to investigate
the trade off between order and travel time under high density
situations. By developing a methodology to study the importance
of order in distributed, multi-agent systems, we have taken an
initial step that can be extended to broader metrics for collective
autonomous aerial systems. While this preliminary work was
deterministic, future extensions will explore the dynamic emer-
gence of order under more-realistic dynamic uncertainties such

as weather disturbances and limited agent information about the
traffic. This entails incorporating predictive techniques for the
traffic pattern estimation and robust agent behavior to mitigate
the effects of uncertainty. Overall, this methodology can be used
to determine the ideal traffic-following factor for each agent,
taking into consideration the relative importance of travel times
and airspace entropy. This will ultimately create airspace order
with as few rules and as little structure as possible.
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