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Motivation/Background 3

Traditional manufacturing of refractories remains difficult 
due to demanding fabrication processes and costs

➢Additive manufacturing (AM) allows for near net shape 
fabrication, therefore reduces the need for machining 
and post-processing

Refractory alloys are known for high melting temperature, 
high corrosion resistance, and elevated mechanical 
property performance up to 1400-1800 °C

C103 (Nb-10Hf-1Ti wt%) is a refractory metal with BCC 
crystal structure, but remains ductile at room temperature

C103 Applications:
• Green Propulsion Thrusters

• Thrust augmenter flaps in jet engines 

• Rocket nozzles
AM C103 MSFC Green Propulsion Thruster 

and Stand-off.

Examples of L-PBF and EBAM C103 components.

AM C103 Hot Fire Test

AM is an appealing manufacturing technique for refractory metals

Photos: Additive Manufacture C103 for In-Space Propulsion - NASA Technical Reports Server (NTRS)

https://ntrs.nasa.gov/citations/20205006135
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Background – Heat Treat Prob

HIP greatly improves density, but in the case of C103, fatigue life is decreased after HIP
• The associated grain growth results in a reduction in mechanical properties
• HIP is required to meet NASA Standard 6030 Section 5.4.3.3

Stress Relief

Hot Isostatic 
Pressing (HIP)

Solution or Anneal

Aging

Reduce or mitigate residual stresses

Reduce porosity to increase 
density and fatigue life

Alloy Specific

Alloy Specific

As-Built HIP

L-PBF AM C103 100X

Heat treatment affects material properties

BDBD



Motivation/Background 5

Uniform Rapid Cooling, URC®, is a Quintus 
invention that enables high speed, uniform 
cooling of the payload 

• Cold gas in the HIP is exchanged with hot gas in the 
furnace at a high rate, effectively quenching the 
payload in a uniform way with minimal induced 
stress

• Cooling rate depends on the furnace 
• Max cooling rate for a Mo URC is ~200 °C/min

Photo Courtesy of Quintus Technologies: Quintus HIP Machine
High Pressure Technology | Quintus Technologies

HIP-Q Heat Treatment 

HIP-Quench (HIP-Q) may address the problem of 
grain growth. It introduces a “quench” to limit 
grain size enlargement during post-processing

https://quintustechnologies.com/
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All specimens are sonicated in IPA, compressed air dried, and wrapped in Ta foil (twice) before heat treatment

Heat 
Treatment

Temperature 
(°C)

Hold Time
(hour)

Pressure
(MPa)

Cooling Rate 
(°C/min)

SR [1] 1100 1 Vacuum -

HIP [2] 1600 3 104 -

HIP-Q 1400-1500 3 150-200 200

[1]      Mireles, Omar, et al. “Additive manufacture of refractory alloy C103 for propulsion applications.” AIAA Propulsion and Energy 2020 Forum, 17 Aug. 2020, https://doi.org/10.2514/6.2020-3500. 
[2]      Wadsworth, J., et al. “Creep behaviour of hot isostatically pressed niobium alloy powder compacts.” Journal of Materials Science, vol. 17, no. 9, Sept. 1982, pp. 2539–2546, https://doi.org/10.1007/bf00543885. 

Heat Treatment Schedule

C103 Specimens & Ta wrap 
(pre-SR) [1]

Post-HIP Ta wrap brittle from C &O [1]

*HIP required to meet NASA Standard 6030 Section 5.4.3.3.



Metallographic Results 7

As-Built Condition Stress Relieved Condition

HIP Condition HIP-Q Condition

BDGrain size changes after HIP

Average Grain Size: 1803.82 µm²
Standard Deviation: 7255.57

Average Grain Size: 2029.17 µm²
Standard Deviation: 15144.10

Average Grain Size: 55730.29 µm²
Standard Deviation: 102168.11

Average Grain Size: 49928.08 µm²
Standard Deviation: 85288.67



Metallographic Results 8

Heat 
Treatment

Average Grain Size - µm2

(µ ± σ)

AB 1803.2 ± 7255.57

SR 2029.17 ± 15144.10

HIP 55730.29 ± 102168.11

HIP-Q 49928.08 ± 85288.67

No significant grain size reduction observed 
when comparing HIP and HIP-Q microstructures

Current HIP-Q Schedule Ineffective 
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Mechanical Property Results 9

Current HIP-Q Schedule Ineffective
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Meso-scale Tensile Testing of L-PBF AM C103 Specimens
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No statistically different UTS, YS, or %E between HIP and HIP-Q specimens



Low-Cycle Fatigue Results 10

Current HIP-Q Schedule Ineffective

• SR condition exhibits higher cycles to failure and the 
largest variation amongst heat treatments

• SR condition remains relatively constant until end of life
• HIP & HIP-Q exhibit hardening behavior until end of life

Low Cycle Fatigue (LCF) Testing 
of L-PBF C103 – Cycles to Failure

Maximum Stress observed under LCF Testing of L-PBF C103

Lower LCF life in HIP and HIP-Q conditions compared to SR condition
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Future Work and Conclusions
Goal of this work is to look at the potential 
benefit of leveraging HIP followed by rapid 
cooling to minimize grain growth

Current HIP-Q schedule (varying temperature) 
is ineffective

• No significant grain size reduction 

• Mesoscale tensile tests reveal no statistically 
different UTS, YS, or %E between HIP and 
HIP-Q specimens

• LCF life reduced following HIP and HIP-Q heat 
treatments

Updated HIP-Q schedule to reduce hold-time
• Expect grain size difference after shorter hold

Summary and On-Going Work 
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Maximum Stress observed under LCF Testing of L-PBF C103

Questions: toren.j.hobbs@nasa.gov
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Future Work and Conclusions
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Backup Slides
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As- Built Condition
Preferential texture parallel to <111> in the 
XZ plane (parallel to build direction)

Average Grain Size: 1803.82 µm²
Standard Deviation: 7255.57

Grains are oriented on the <111> direction along the build direction.
Material shows a highly <111> texture along the build direction
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Stress Relieved Condition

Average Grain Size: 2029.17 µm²

Preferential texture parallel to <111> in the 
XZ plane (parallel to build direction)-
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HIP Condition
No preferential texture, the sample has 
homogenized

Average Grain Size: 55730.29 µm²
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HIP-Q Condition No preferential texture, the same has 
homogenized. Visually smaller grains than the 
HIP condition

Average Grain Size: 49928.08 µm²



18

0 1

×105

0.0

0.5

1.0

 

 L-PBF AM C103 Grain Size Distribution 

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Area (µm²)

Normal

mu sigma

AB 1803.82 7255.57

 AB

0 1 2 3

×105

0.0

0.5

1.0

 

 L-PBF AM C103 Grain Size Distribution 

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Area (µm²)

 SR

Normal

mu sigma

SR 2029.17 15144.10

−1 0 1 2 3 4 5 6

×105

0.0

0.5

1.0

 

 L-PBF AM C103 Grain Size Distribution 

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Area (µm²)

 HIP

Normal

mu sigma

HIP 55730.29 102168.11

0 1 2 3 4

×105

0.0

0.5

1.0

 

 L-PBF AM C103 Grain Size Distribution 

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Area (µm²)

 HIP-Q

Normal

mu sigma

HIP-Q 49928.08 85288.67



19

Comparisons - LCF
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