
1

Agile Software Engineering in 
NASA’s Waterfall World

David Swartwout
GW Production Software Lead

20 February 2024



2

• Agenda: 
• NASA Procedural Requirements
• Lifecycles
• Process Rigor
• JSC Engineering’s Agile Process Evolution
• Toolchain
• Following the NPR Lifecycle

• SRR to PDR
• PDR to CDR
• CDR to TRR
• TRR to SAR

• Closing Thoughts

Overview



3

NASA Procedural Requirements

NASA projects are governed by NASA Procedural Requirements (NPR)

• NPR 7120.5, NASA Space Flight Program and Project Management Requirements
• NPR 7120.7, NASA Information Technology Program and Project Management Requirements
• NPR 7120.8, NASA Research and Technology Program and Project Management Requirements

And the overarching Systems Engineering NPR

• NPR 7123.1 NASA Systems Engineering Processes and Requirements

All of these NPRs describe a reasonably rigid Waterfall lifecycle

• The Systems Engineering “V”
• Milestone Gate Reviews

• SRR, PDR, CDR, etc.
• Tailorable Entrance/Exit Criteria
• Products required at each review



4

NASA’s Software Engineering Requirements

Software Engineering process and product requirements, as a component of the overall 
project execution are then detailed in
• NPR 7150.2, NASA Software Engineering Requirements

Guidelines are described in
• NASA Software Engineering and Assurance Handbook, NASA-HDBK-2203

• NPR 7150.2 describes the “what” that has to get done
• Document requirements
• Document design
• Perform testing
• Etc.

• But luckily, it doesn’t describe the “how”
• Does not dictate format or templates

• Though, NPR 7123.1 does tell you “when”
• Milestone review entrance criteria describe what products are needed for each 

review
• Software requirements at PDR
• Software design at CDR
• Etc.

• Caution - some Centers may levy additional constraints via Center specific Procedural 
Requirements



5

The Waterfall Lifecycle

Some challenges and pitfalls of Waterfall
• It assumes you got it right the first time
• Going back to earlier cycles is nearly impossible
• It takes a very long time to learn what you don’t know

• Or what you didn’t get right in the previous cycles
• Course corrections are hard
• Feedback is slow



6

Agile

Industry experience has shown that Agile project management can 
be highly successful

• Cyclic
• Looking at all aspects each iteration

• Faster to uncover issues and gaps
• Burn down risk earlier
• Quicker Feedback

• Drive metrics for faster decisions
• Fosters collaboration
• Incremental growth of knowledge



7

How did we bridge the gap?

So, how did we achieve Agile software engineering within 
NASA’s NPR dictated waterfall lifecycle?



8

Apply process rigor when it is important

• Process rigor is important
• But only at the right time

• The content of the artifacts detailed in the 
NPRs are important

• Requirements
• Design documentation
• Test plans and procedures

• Agile software engineering is not the “wild 
west” of project management

• In my experience with Agile, there are 
more day to day process requirements 
than other non-Agile projects I have 
worked

• Daily feedback loops
• Metrics

Gateway
,

J. Devolites – M orpheus/AA2



9

Evolution of JSC Engineering’s Agile Software Engineering Process

Morpheus Lander ~ 2010 - 2014

• 1st focused attempt with Agile
• Highly successful R&D project
• Class C software project
• CMMI ML 2 Orion Ascent Abort – 2 ~ 2015 - 2019

• Orion flight test of Launch Abort System
• Class B safety critical software project
• CMMI ML 3

Gateway Lunar Outpost ~ 2019 - today

• Multiple contractors, multiple teams
• Class A safety critical software 

projects
• CMMI ML 3



10

Our lifecycle focused Agile flow

• Changing software team focus as project moves through 7123.1 lifecycle
• Focus on meeting the intent of the milestone without spending wasted time writing documents
• Make NPR required artifact development part of the standard development flow

• Updating the design documentation is part of closing each code implementation story
• Evolving definition of done for different story types as we move through development 

gates 



11

Our Solution Leverages Several Tool Ecosystems

• Jira
• TestRay plugin

• Functional Requirements
• Non-Functional Requirements
• Test Cases
• Test Plans
• Test Automation

• Stories – Work code
• Epics – Use cases
• Tasks – Design work
• Scripting API back end for trace tables
• Release management

• Confluence
• Design documentation
• Use case management

• Gitlab
• Source code
• Continuous integration pipeline

• Doxygen
• Design documentation

• Jenkins
• Automated testing

• Home grown scripts to tie it all together



12

Team Focus: SRR to PDR

• Requirements
• Verification Planning
• Architecture
• Tool Chain
• Use Case Based Advancement of System Capability



13

Development of Software System Requirements (SRS)

• Use con ops and operational use cases to drive requirements
• Higher level requirements

• Computer Software Configuration Item (CSCI) requirements are defined in Jira
• The box shall …
• Utilizes new Jira ticket types from TestRay plugin

• Stakeholders review and comment right in the tools
• Enhances collaboration and feedback

• The actual SRS is a confluence page with the embedded Jira tickets
• Jira/TestRay allows management of requirements baselines
• Export to a PDF to support a “baseline” for lifecycle reviews
• Manage change traffic between versions using labels on the Jira requirements



14

Test Planning and Development

• Verification Statements are part of the Jira requirement ticket
• Each requirement is broken down into one or more test cases

• Nominal
• Erroneous
• Boundary
• Etc.

• Test cases are another Jira issue type from the TestRay tool set
• Review and collaboration continue in Jira
• PDF exports can be made as snapshot baselines for reviews
• Plan automated testing architecture



15

Software Architecture & Implementation

• Even though there is a concentrated effort on requirements, we are still implementing capability

• Stand up development environment
• Toolchain

• CI pipeline
• Lab

• Hardware in the loop – the earlier the better!
• Emulators
• Simulators

• Desktop development
• Virtual machines
• Docker images

• Implement preliminary architecture
• All pieces of the architecture cycling in early development sprints



16

Use Case Based Advancement of System Capability

• Working with product owners and relevant stakeholders
• Determine list of operational use cases that can be reasonably developed and demonstrated at this 

phase of the lifecycle
• Use cases are peer reviewed
• Used for training and familiarization

• Helps to flush out requirements
• Helps to define interfaces

• Advance hardware in the loop capabilities
• Understand simulation and emulation requirements
• Understand fidelity of hardware environment

• Integrated demonstration of capabilities and regular cadence throughout the phase
• We chose a three-month integration cycle
• Based on a two-week team sprint cycle

• Continuous Improvement of Tools and Processes
• Enhancing CI pipeline
• Development of emulators and simulators
• Lessons learned from prior phases
• Documenting process enhancements
• Updating templates



17

Team Focus: PDR to CDR

• Requirements Decomposition
• Design Elaboration
• Use Case Based Advancement of System Capability



18

Application Requirements Decomposition

• Structured design process to decompose box level CSCI requirements into multiple application-level 
computer software component (CSC) requirements

• Requirements based use cases drive system capabilities
• 2nd tier requirements are also captured in Jira
• Designs are documented via organized confluence pages

• Structured templates to drive commonality
• Jira requirements are linked into confluence design for traceability
• Confluence allows for

• Version control
• Review / comments / collaboration

• Flushing out interface design to both external and internal components



19

Design Products

• All design artifacts are “organic” products that are created inline as 
part of the development process

• We don’t stop what we are doing to make a big Word document 
and a bunch of PowerPoint slides

• Utilize Doxygen, Confluence exports, and Jira scripting to create the 
design package

• HTML based “clickable” package 



20

Trace Tables

• NPR 7150.2 requires requirements and verifications traceability
• Depending on software classification

• Utilizing custom Doxygen tags in the source code, along with Jira scripting we can 
generate tables for bi-directional traceability

• Requirement <–> Design <–> Code
• Requirement <–> Code <–> Test



21

Use Case Based Advancement of System Capability

• Working with product owners and relevant stakeholders
• Determine list of operational use cases that can be reasonably developed and demonstrated at this 

phase of the lifecycle
• Use cases are peer reviewed
• Used for training and familiarization

• Helps to clarify requirements
• Helps to understand interfaces

• Advance hardware in the loop capabilities
• Develop simulation and emulation capabilities
• Enhance fidelity of hardware environment

• Integrated demonstration of capabilities and regular cadence throughout the phase
• We chose a three-month integration cycle
• Based on a two-week team sprint cycle

• Continuous Improvement of Tools and Processes
• Enhancing CI pipeline
• Development of emulators and simulators
• Lessons learned from prior phases
• Documenting process enhancements
• Updating templates



22

Team Focus: CDR to TRR

• Final Implementation of Design
• Test Script Development
• Continuous Integration Pipeline
• Use Case Based Advancement of System Capability



23

Closing Application Requirements

• Implement the requirement, using the design document as a reference
• Update the design page in Confluence if necessary

• Tag all source code functions implementing the requirement with custom 
Doxygen tag

• Unit test all the functions in the implementation
• Verify the implementation matches the design document
• Update associated data products

• Table definitions
• Commands
• Telemetry

• Peer Reviews



24

Test Script Development

• Using test case statements defined in Jira/TestRay
• Structured test case design process

• Captured in Confluence
• Test team collaborates with design team

• Implement automated test script for each test case
• Test development in parallel with system development

• Flushes out requirements questions, inconsistencies, and confusions
• Clarifies design
• Uncovers foundational issues early



25

The Pipeline

• Continuous Integration Pipeline for everything that can be automated
• Static code analysis tools
• Compilation warnings
• Build errors
• “Hello World” integrated tests
• Generation of design package
• Generation of release products

• Required before code can be integrated (merged)



26

Use Case Based Advancement of System Capability

• Working with product owners and relevant stakeholders
• Determine list of operational use cases that can be reasonably developed and demonstrated at this 

phase of the lifecycle
• Use cases are peer reviewed
• Used for training and familiarization

• Helps to finalize requirements
• Helps to finalize interfaces

• Advance hardware in the loop capabilities
• Finalize simulation and emulation capabilities
• Finalize fidelity of hardware environment

• Integrated demonstration of capabilities and regular cadence throughout the phase
• We chose a three-month integration cycle
• Based on a two-week team sprint cycle

• Continuous Improvement of Tools and Processes
• Enhancing CI pipeline
• Development of emulators and simulators
• Lessons learned from prior phases
• Documenting process enhancements
• Updating templates



27

Team Focus: TRR to SAR

• Formal Test and Verification



28

Automated Testing

• Created around Jira/TestRay and Jira API scripting
• TestRay allows creation of Test Plans

• Grouping of test cases into test activities
• Plans can be executed in batch

• Jira back end communicates with Jenkins server for automated test execution
• Test cycles executed

• Development servers
• Hardware in the Loop Rigs

• Test results pushed back into Jira/TestRay
• Test execution status tracked to completion

• Defects documented



29

Across the Lifecycle

• Cross Team Integration



30

Program Wide Integration Cycles

• Gateway is a large program – 11 software development teams (plus sub teams) working initial element 
launch

• Several larger contractors
• International Partners
• Numerous NASA internal teams
• Test & Verification Labs
• Countless stakeholders

• We had to find a way to bring these teams together early and often
• Gateway Software Integration Cycles

• Three month cadence
• Quarterly planning

• Essential for driving out interfaces and integrated system operations



31

Takeaways



32

Closing Thoughts

• On any evolving program where change is ongoing, agility is key
• Continual learning is essential
• Continual feedback and process improvement

• We have to live within the NPR requirements
• Don’t fight it, try to understand it

• Tailor to what makes sense
• Look for the intent

• Why do we have this artifact or milestone review
• Focus on the “what”, not the “how”

• I have to have requirements, but I don’t need a 300 page Word document


