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Abstract

This report describes a novel approach to the development of a horizontal maneuver
guidance strategy for Detect-and-Avoid systems. The maneuver guidance strategy
provides a directive turn action that can be automatically executed by the vehicle’s
auto-pilot system, taking into account the cost of recapturing the flight plan path.
Pairwise conflict scenarios with non-accelerating intruders are simulated to validate
the effectiveness of the maneuver guidance strategy. Initial results suggest the strategy
is more effective for faster ownship than for slower ownship, which is unable to avoid
conflict in certain scenarios against fast intruders. These findings indicate this novel
approach shows great potential, but improvement to its performance is necessary and
will be future work.

1 Introduction

Successful integration of Uncrewed Aircraft System (UAS) operations into airspaces
populated with crewed aircraft relies on an effective Detect and Avoid (DAA) Sys-
tem. A DAA system provides surveillance, alerts, and maneuver guidance to keep a
UAS “well clear” of other aircraft [1–3]. The look-ahead time of a DAA system for
potential conflicts with other aircraft is typically between 1 and 3 minutes, provid-
ing an additional layer of safety on top of a collision avoidance system, which alerts
for conflicts predicted to occur in less than 1 minute. Numerous DAA maneuver
guidance algorithms have been developed for research [4,5] as well as for operational
use [6, 7]. These systems’ DAA maneuver guidance follows the recommendations of
RTCA SC-228’s DO-365C, assuming a pilot in the loop and implementing “sugges-
tive” maneuver guidance, which provides a range of feasible maneuvers (or a range of
infeasible maneuvers) for the pilot to evaluate and act upon. A deep neural network
approach has been proposed for providing DAA alerts and suggestive guidance [8].

Directive maneuver guidance of DAA systems, in comparison to suggestive ma-
neuver guidance, can significantly improve pilots’ ability to respond to DAA alerts [9].
Directive maneuver guidance provides a single maneuver in each dimension, e.g., one
target ground course for horizontal maneuvers and one target altitude for vertical
maneuvers. With a UAS pilot “in the loop”, however, many pilots subjectively prefer
self-derived maneuver options, using suggestive maneuver guidance as their basis [9].
On the other hand, directive maneuver guidance is suitable for DAA automation,
which can support various use cases [10] such as failed datalink, pilots’ inability to
decide and initiate action, workload reduction, and alternative operational concepts
in which pilots’ role in DAA is replaced by automation. Several NASA research
algorithms such as Independent Configurable Architecture for Reliable Operations
of Unmanned Systems (ICAROUS) [11], and AutoResolver [12], provide directive
maneuver guidance for DAA. Airborne Collision Avoidance System (ACAS)-Xu, de-
signed for operational use by uncrewed aircraft, also provides directive maneuver
guidance but only up to about 1 minute lookahead [13]. ICAROUS includes a soft-
ware module that invokes Detect and AvoID Alerting Logic for Unmanned Systems
(DAIDALUS) [5], receives suggestive guidance from it, and selects a particular maneu-
ver according to a user-defined optimization goal and fitness function. This selected
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maneuver is checked against the mission-specific conformance criteria. AutoResolver
was designed originally as conflict avoidance support tools from air traffic controllers’
perspective, and was later extended and applied to DAA alerting and maneuver guid-
ance [14]. AutoResolver takes user-defined preference of conflict-avoiding maneuver
types, such as altitude change, speed change, or path stretches (turn-out followed
by turn-back), as well as maneuver parameters, and performs a heuristic search for
conflict-free solutions. The search stops after finding an acceptable solution (usually
meaning conflict-free) without attempting to find an optimal solution. A deep rein-
forcement learning algorithm [15] generates maneuver guidance strategies that have
similar turn-out and turn-back segments that connect the ownship from its current
position to a route-recapture point on the ownship’s flight plan.

This report presents a novel approach to the development of a directive, DAA
horizontal maneuver guidance strategy in support of the concept of automated DAA.
The development of this strategy is formulated as a reinforcement learning problem,
in which the agent (the uncrewed aircraft in this case) learns the best conflict avoiding
maneuver action by interacting with the environment. Rewards from the environment
determines the “value” of an action, which is a function of the system’s state. The
values are estimated using local linear approximation [16] and solved via dynamic
programming. The approach in this report is distinct from previous work in the
following areas:

1. It employs a novel reinforcement learning approach that can be potentially more
adaptable and scalable to support varying and everchanging airspace operations,
when compared to conventional, heuristic approaches.

2. Its maneuver strategy is not limited to a list of coded conflict-resolving maneuver
patterns such as a turn-out followed by a turn-back.

3. It avoids conflicts while taking into account the cost of recapturing the flight
plan path.

4. It provides directive maneuver guidance which is naturally suitable for DAA
automation.

These characteristics distinguish this work from previous work, which may meet a
few of these statements but not all of them. The technical approach in this work is
inspired by the development of the action look-up table for ACAS [6]. Nonetheless,
this approach is distinct in its taking into account the reward of a route-recapture
waypoint. The route-recapture waypoint is assumed to be provided by an external
algorithm such as an auto-pilot system. Vehicle’s performance parameters assume
medium-sized, fixed-wing UAs with a mission speed in the range of 40 to 100 kts. The
developed maneuver strategy is validated with pairwise conflict scenarios with non-
accelerating intruders. Sensor errors or flight intent uncertainties are not considered
in this initial assessment and will be considered in follow-on work.

This report is organized as follows: Section 2 describes the approach. Section 3
describes the conflict scenarios used for validation of the strategy. Section 4 presents
the results and discusses potential areas for improvement. Section 5 summarizes the
findings in this report and discusses potential future work.
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2 Approach

This work considers horizontal maneuvers as a means of avoiding conflicts with an-
other aircraft. It assumes no coordination of maneuvers. The other aircraft, or the
intruder, will not attempt to avoid the conflict. The maneuver strategy selects a left
turn, a right turn, or no turn. The Uncrewed Aircraft (UA) aims to remain “well
clear” with the intruder, in which the “well clear” is defined by a minimum horizontal
distance between aircraft. While resolving the conflict, the UA takes into account the
next segment it needs to fly back towards its flight plan path in its current maneuver
planning. It is assumed the UA’s mission type or status allows it to fly directly to
a waypoint further down the flight plan path after resolving the conflict. The UA
does not have to fly through the segment that it misses due to the horizontal maneu-
vers. This assumption can be relaxed by slight modification to the formulation of the
reinforcement learning problem to be described below.

Conflict-avoidance strategies formulated as a reinforcement learning problem have
been studied by numerous research groups, many of which represent the strategies
as neural networks. A recent literature review is provided here [17]. In the present
work, the maneuver strategy is computed offline and stored as a look-up table for the
“value” function. Grid points are defined within this seven-dimensional state space,
and an approximate solution is iteratively obtained by assuming linearity of the value
function between grid points, i.e., local linear approximation [16]. Alternative ways of
estimating the value function, such as with neural networks, have been proposed [18].

Figure 2 shows the 7 state variables defining the system, which include the own-
ship, the intruder, and the route-recapture waypoint’s positions and velocity, which
in principle add up to 12 degrees of freedom in a 2-D plane. However, the route-
recapture waypoint has zero velocity, which eliminates 2 degrees of freedom. The 2-D
translational degeneracy and rotation degeneracy of the system further reduces the
degrees of freedom by 2 and 1, respectively. Therefore, the system’s state only has 7
variables. These state variables use relative position coordinates with respect to the
ownship’s state.

Only two ownship speeds, denoted as vo, are considered in this work, 40 kts and
100 kts. These two speeds correspond roughly to the lower and upper bounds of the
speed range assumed for low-size, weight, and power radar requirements defined in
DO-366A, RTCA’s Minimum Operational Performance Standards (MOPS) for radar
in support of DAA systems. The intruder speed ranges from 0 kts to 170 kts, the
assumed speed range for the majority of non-cooperative intruders defined by DO-
365C (RTCA’s DAA MOPS) and DO-366A.

Interaction with the environment produces several types of rewards after the own-
ship takes an action. At every non-terminal state (see below for terminal states’
definition,) the ownship must take one of the following three options:

1. Left turn by 5◦ ground course, holding speed.

2. Hold its current ground course and current speed.

3. Right turn by 5◦ ground course, holding speed.

The time interval for action taking is 1 second. The action, denoted as a, transitions
the system’s state from s to s′, where s′ can have a probability distribution in general.
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Figure 1. Local coordinates of the system

This work only considers a deterministic state transition, i.e., s′ = s′(s, a). The effect
of wind is not taken into account, and it was assumed the speed can be held with
respect to the ground.

The reward of taking an action a, R, provides feedback to the system and encour-
ages the system to take actions that result in positive rewards. R is a function of the
state s, the action a, and the resulting state s′. Since s′ = s′(s, a) for this study, s′

can be dropped from the reward function’s notation, i.e.,

R = R(s, a). (1)

The following rewards are provided by the environment:

1. Positive reward when the ownship reaches the route-recapture waypoint, i.e., s′

has rdo < rcdo, where rdo
c is the tolerance of the route-recapture waypoint

2. Negative reward when the ownship is within a distance from the intruder, r0io

3. Negative reward if the action involves a turn

4. Negative reward for the elapsed time.

The value function U is the accumulative effect of the reward function and is
computed by this equation:

U(s) = argmaxa
[
R(s, a) + U(s′)

]
, if s is not a terminal state, (2a)

= 0, if s is a terminal state. (2b)

The terminal states are states for which at least one of the following is true:
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1. The ownship is within distance rcdo from the route-recapture waypoint

2. The ownship’s distance from the route-recapture waypoint exceeds a threshold,
rmax
do

3. The ownship’s distance from the intruder exceeds a threshold, rmax
io .

Once the system reaches a terminal state, no action is available to transition the
system’s state.

The following considerations are taken into account when selecting values of var-
ious rewards:

1. The reward of reaching the route-recapture point must be large enough to over-
come time and turn penalty (negative rewards) a trajectory accumulates during
a DAA look-ahead timespan.

2. The penalty of a severe loss of well clear, such as near-mid-air collision (NMAC),
should be more than can be compensated for by the positive reward of reaching
the route-recapture point. As such, the ownship should be discouraged from
flying through the close neighborhood of the intruder in order to reach the
route-recapture point.

Table 2 lists the the reward and terminal state parameters. Note that r0io = 3300 ft
is greater than the well clear distance of 2,200 ft so as to create a protective “warning”
buffer. rio

max is the distance for which the two aircraft are well separated from each
other and have a worst-scenario collision time of 120 seconds, well above the DAA
look-ahead time.

Table 1. Reward and terminal state parameters

Parameter Value

Recapture Waypoint (WP) Radius 500 ft
Reward for reaching the recapture WP 1.0

Reward for loss of well clear −C ×
(
1−

√
rio
r0io

)
C 1

r0io 3300 ft
Reward for flight time −0.001
Reward for turning −0.00001

rdo related terminal state rdo > 7 NMI for vo = 40 kts
rdo > 10 NMI for vo = 100 kts

rio
max 56710 ft

An exact numerical solution to U(s) is computationally challenging and is not
attempted. Instead, U(s) is approximated by piece-wise multi-linear functions. To
do so, a 7-dimensional grid is constructed, and a dynamic programming technique
called Gauss-Seidel method [16] is applied to iterate over U(s) at grid points until
U(s) stabilizes. The selection of grid points is a trade-off between accuracy and
computational demand. The grid points are denser in regions of the state space
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where U(s) is expected to change rapidly, i.e., where the ownship is near the intruder,
and less dense when U(s) is expected to change slowly. For a specific ownship speed
(40 kts or 100 kts), the total number of grid points is more than 40 million. It was
found that, when the maximum change of U(s) goes below 0.005 during the Gauss-
Deidel iteration, the observed action policy in all validation scenarios becomes very
stable. However, Convergence of U(s) to 0.05 or below takes multiple days.

3 Conflict Scenarios

A large number of pairwise conflict scenarios with non-accelerating intruders are con-
structed by varying the following design parameters summarized in Table 3. These
design parameters serve as input to the computation of the ownship and intruder’s
initial positions, initial velocities, and the route-recapture point’s position. The route-
recapture point is assumed to be some distance straight ahead of the ownship along
its initial ground course. Since the system is translationally and rotationally invari-
ant, the route-recapture point’s position is arbitrarily set to the origin of the 2-D
coordinate, and the ownship’s initial ground course in arbitrarily set towards north,
without loss of generality. Table 3 includes design parameters such as time to the
closest point of approach (CPA), and horizontal miss distance (HMD), which is the
predicted shortest distance between the two aircraft (at the time of the CPA).

Table 2. Conflict scenarios design parameters

Parameter Values

vo 40 or 100 kts
vi 0 to 170 kts with a 5 kts interval

time to predicted CPA 60, 70, 80, and 90 seconds
time from predicted CPA to route-recapture 25, 30, 35, 40, 45, 50, 55, 60 seconds

HMD 0, 500, 1000, 2000 ft
Passing behind (intruder) true, false (only if HMD > 0 and vi > 0)

A small number of conflict scenarios are discarded as unrealistic. These scenarios
include those that have the initial positions of the ownship and the intruder being
too close (less than 4000 ft), the route-recapture point being swept through by the
intruder’s well clear radius for a prolonged period of time (> 30 seconds), vi = 0 and
the intruder’s position is too close to the route-recapture point (< 4000 ft), etc. The
total number of the remaining conflict scenarios is about 200,000.

Each conflict scenario is simulated by starting with the initial positions and ve-
locities of the ownship and intruder, applying the horizontal maneuver recommended
by the value function to the ownship, and flying the two aircraft by 1 second. This is
repeated until the system advances to a terminal state. This can be broken down to
the following steps:

1. A scenario is selected form simulation.

2. The positions and velocities of the ownship and intruder define the system’s
state.
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3. The system’s state is represented by the 7-variable coordiantes indicated in
Figure 2.

4. The system’s state feeds into the value-function look-up table, and a value of
U(s) for each of the ownship actions (left turn, no turn, right turn in this work)
is calculated. The action with the highest U(s) is returned to the simulation
engine.

5. The simulation engine executes the action and progresses the system in time by
1 second. The ownship may turn left, turn right, or stay on its ground course.
The intruder maintains its ground course. Both flights maintain their speeds.

6. Simulation ends if the ownship reachs its destination point after executing the
action.

7. Otherwise, go back to step 2 and repeat this process.

4 Results

Section 4.1 show the aggreate metrics computed from all the scenarios. Section 4.2
presents four select sceanrios and discusses their simulation results.

4.1 Aggregate Metrics

The following aggregate metrics are computed from simulation results of the conflict
scenarios:

1. Whether the ownship reaches the route-recapture point

2. Whether there is a loss of well clear

3. Minimum distance between the aircraft

4. Time Ratio (Time efficiency)

5. Whether the ownship passes in front of the intruder with insufficient buffer
(undesirable).

Metrics are aggregated by speed pairs defined by the ownship and intruder’s
speeds. The total number of speed pairs is 35 (intruder speeds between 0 and 170 kts)
x 2 (ownship speeds at 40 and 100 kts) = 70.

For the first aggregate metric, the ownship reaches the recapture waypoint in all
conflict scenarios. This is the desired, perfect outcome.

Figure 2 shows the percentage of validation scenarios that result in a loss of well
clear after following the maneuver guidance. The probability of a loss of well clear is
zero for all the 100 kts ownship scenarios, while there is a non-zero percentage of a
loss of well clear for the 40 kts ownship scenarios when vi > 75 kts. These scenarios in
which a slow ownship maneuvers against a fast intruder present a particular challenge
for DAA systems because the ownship must start its maneuver at a greater distance
from the intruder to be able to maintain separation. For example, for a pairwise,
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Figure 2. % of scenarios that lead to a loss of well clear

head-on encounter of a 40 kts ownship against a 170 kts intruder, RTCA DO-365C’s
Appendix D [19] indicates the ownship must start maneuvering before the aircraft’s
distance goes below 2.35 NM (maneuver initiation distance). Increasing the ownship
speed to 100 kts drops the required maneuver initiation distance to 1.9 NM. On
the other hand, decreasing the intruder speed to 100 kts also reduces the maneuver
initiation distance to 1.5 NM. The ineffectiveness of the maneuver strategy for these
speed pairs is likely due to the accumulation of errors arising from the multi-linear
approximation of the solution to U(s) over the particularly long maneuver initiation
range. There appears to be a dip in P(LoWC) at vi ∼120 kt. It is not clear whether
this dip is statistically significant or the result of multiple interplaying factors.

Figure 3 shows the minimum distance between the ownship and the intruder
among scenarios in each speed pair category. The minimum distance dips near 130 kts
intruder speed to 600 ft for the 40 kts ownship results. This minimum distance gets
close to the near-mid-air-collision distance of 500 ft as a result of ineffective maneuver
guidance. This is definitely undesirable performance and must be improved with
future versions of this algorithm.

Figure 4 shows the time ratio, denoted as TR, of the mitigated flight time following
the maneuver strategy and the baseline flight time. Lower time ratios indicate better
time efficiency. The baseline flight time is defined as the minimum flight time of a
conflict-free ownship trajectory using a simple path stretch. The path stretch consists
of an immediate turn-out segment and a turn-back segment, connected at an auxiliary
point. This flight time is computed by a heuristic search in the space of the auxiliary
point’s position and is similar to the approach of AutoResolver’s conflict-avoidance
probe [12]. The time ratios for the 100 kts ownship are slightly lower than those of
the 40 kts ownship scenarios, suggesting better time efficiency for the former.

The 5th and last metric is defined in this way: if the ownship follows the maneuver
guidance and passes in front of the intruder, is the intruder’s position within 5 seconds’
flight time (using intruder speed) of violating the well clear? If yes, this is considered
an undesirable “passing in front” event. No passing-in-front events with insufficient
buffer are found in simulation results of all the conflict scenarios. This is also the
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desired, perfect outcome for this metric.
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4.2 Select Scenarios

Representative mitigated trajectories from four scenarios are shown below. The in-
truder’s trajectories are in red, while the ownship’s is in blue. The small circle at
(0, 0) represents the route-recapture waypoint. The X symbol represents the starting
point for the ownship and the intruder.

15000 10000 5000 0 5000 10000 15000
X (ft)

25000

20000

15000

10000

5000

0

5000

Y 
(ft

)

time (sec): 151
V_Own (knots): 100.0
V_Int (knots): 100.0
D (ft): 19766

Conflict Scenario
ownship
intruder

X

X

Figure 5. The ownship maneuvers behind the intruder

1. Simple, efficient maneuvers: Figure 5 shows results of a conflict scenario in
which the ownship flies up and the intruder flies from top left to the bottom
right. The ownship identifies a conflict with the intruder. A recapture waypoint
is provided as input to the maneuver strategy algorithm, and is shown in this
figure as the origin, (0, 0). Figure 5 shows a successful and efficient ownship
trajectory in which the ownship turns left, flies behind the intruder, turns back
towards the recapture waypoint point, and reaches the recapture waypoint.

2. Wait-it-out maneuvers: Figure 6 shows a successful conflict-avoiding maneu-
ver in which the ownship turns around to make a loop while the intruder
passes. This extra circle is effective in “waiting it out” and avoiding the con-
flict. Note this type of maneuver strategy is automatically “discovered” by this
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reinforcement-learning based algorithm. Heuristic algorithms such as AutoRe-
solver or ICAROUS would not consider such a strategy unless it is specifically
coded into their solution search logic.
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time (sec): 233
V_Own (knots): 100.0
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D (ft): 22555

Conflict Scenario
ownship
intruder

X

X

Figure 6. The ownship makes a loop to avoid a conflict with the intruder

3. Loss of well clear: Figure 7 shows the ownship being overtaken by an intruder
and does not escape from the intruder’s path in time. As Section 4.1 discussed,
this occurs to a small fraction of conflict scenarios. It is undesirable performance
and should be improved with future versions of this tool.

One drawback of the current representation of the conflict in the form of a
reward is it does not have the exponential decay behavior exhibited by a positive
reward, and is confined to a single state where the negative reward is located [20].
This likely impacts the negative reward’s effect to “deter” the ownship from
approaching. Alternative representation of the negative reward arising from a
conflict, called a “risk well”, was proposed and appeared to lead to improved
performance [20]. This alternative representation will be considered for future
work.

4. Multiple loops near the route-recapture point: Figure 8 shows an interesting
behavior. When avoiding a slowly moving intruder flying at 5 kts near the
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Figure 7. The ownship is overtaken by the intruder and leads to a loss of well clear.

recapture waypoint, the ownship misses the recapture waypoint on its first at-
tempt and continues to make loops near the recapture waypoint. While this
scenario exposes inefficiency in the maneuver strategy, this part of the state
space in which the recapture waypoint is close to the intruder may be less
important in operation since the it would have been a poor selection of the
recapture waypoint by an external algorithm.
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Figure 8. The ownship makes multiple loops near the route-recapture waypoint
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5 Summary and Future Work

A novel approach to the DAA horizontal maneuver strategy for automated DAA
systems has been proposed, formulating the conflict avoidance objective and route-
recapturing objective as rewards in the context of reinforcement learning. Minimum-
cost maneuver policy for this reinforcement problem is computed offline in an ap-
proximate way, using dynamic programming techniques, for aircraft performance pa-
rameter space representing medium-speed UAS and non-cooperative aircraft. The
resulting strategy is a function of 7 state variables represented by a 7-dimensional
grid of values.

Initial evaluation of this prepared maneuver strategy with pairwise, non-accelerating,
conflict scenarios shows that, in all scenarios, the ownship successfully reaches the re-
capture waypoint by following the maneuver guidance. Inefficient maneuvers appear
in a small number of scenarios in which the intruder moves slowly near the recapture
waypoint. In terms of maintaining separation, 100% success rate is observed among
scenarios involving the 100 kts ownship. The 40 kts ownship is able to maintain sepa-
ration with intruders in a majority of scenarios. A small number of scenarios with the
intruder speed between 75 kts and 170 kts leads to a loss of separation. Compared to
research algorithms such as ICAROUS and AutoResolver, the current performance
of this approach in terms of maintaining separation certainly needs improvement.
Nonetheless, this approach, like a lot of machine-learning approaches, automaticaly
discovers new types of conflict-avoiding maneuvers such as “wait-it-out”, which is not
achievable by heuristic algorihtms such as ICAROUS and AutoResolver unless this
type of maneuvers is explicitly coded into their solution search logic.

Research on this approach shows promising results but also identifies areas for
improvement. The following topics will be further pursued in the near term:

1. Improved performance of the separation metrics,

2. Ways of reducing computational time for the utility function,

3. Alternative way of representing intruder’s negative reward [20].

Once these are explored, it will be interesting to compare the performance of this
apporach to other research algorihtms such as ICAROUS and AutoResolver with a
large number of conflict scenarios.
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