An Open-Source Numerical Model for Mitigating Refractory Alloy Hot Cracking Susceptibility

Jeffrey W. Sowards, Andrew O'Connor, Fredrick N. Michael, Carly J. Romnes, Fernando Reyes Tirado, Omar Mireles

Marshall Space Flight Center

Outline

- Problem & Motivation
- Background on the Model and Algorithm
- Algorithm Verification vs Past Aluminum Alloy Studies
- Algorithm Verification vs Past Refractory Alloys Weldability Data
- Extrapolations to Refractory-Interstitial (O,C,N) Binary Alloys
- Extending the Approach for Development of Hot Cracking Susceptibility Equations

Background on Refractory Metals

- Refractory metals and alloys are used for service in extreme high temperature environments:
 - Reaction Control System (RCS) thrusters
 - Space Nuclear Propulsion (SNP) clad and structure
 - Hypergolic / green propulsion chambers and catalyst
 - Electric propulsion grids
 - Power conversion system heat pipes and regenerators
 - Hypersonic wing leading edges
- Refractory metals are desirable due to:
 - High melt temperature (T_m)
 - · Retain strength and hardness at elevated temperature
 - Corrosion and wear resistant (outside of propulsion)
- Aerospace refractory metal parts tend to be:
 - Thin-walled geometries (converging-diverging nozzles)
 - Relatively simple geometries
 - High buy-to-fly ratio (20:1 to 50:1)
 - Low production rate

Apollo CSM RCS using C103. Courtesy Aerojet-Rocketdyne

Base	Name	Composition (wt%)		
	Nb	Nb		
	Nb-1Zr	Nb-1Zr		
	C103	Nb-10Hf-1Ti		
Nb	C129Y	Nb-10Hf-10W-0.1Y		
IND	Cb752	Nb-10W-2.5Zr		
	C3009	Nb-30Hf-10W		
	WC3015	Nb-28Hf-13W-5Ti-2Ta-1Zr		
	FS85	Nb-28Ta-10W-1Zr		
	Mo	Mo		
	Mo-21Re	Mo-21Re		
Mo	Mo-41Re	Mo-41Re		
IVIO	Mo-44Re	Mo-44Re		
	Mo-47.5Re	Mo-47.5Re		
	TZM	Mo-0.5Ti-0.08-Zr-0.2C		
w	w	W		
VV	W-25Re	W-25 Re		
Ta	Ta	Ta		
ıd	Ta-10W	Ta-10W		
lr	lr			
-	DOP26	Ir-0.3W-0.006Th-0.005Al		
Re	Re	Re		

Traditional Refractory
Alloys

Green propulsion Re thruster.

TZM alloy heat pipe.
Courtesy Advanced Cooling
Technologies.

X-51A hypersonic test vehicle. Courtesy USAF.

Problem and Goal: Fabricating Refractory Alloys

- Typically exhibit poor weldability. Existing alloys were design 60+ years ago and never optimized to be weldable and printable.
 - Thermal shock (thermal stress builds due to extreme high melting point)
 - Brittleness at room temperature (due to shift of ductile to brittle transition)
 - Solidification cracking (due to segregation of alloying elements and wide solidification temperature ranges induced by alloying)
- Traditional refractory manufacture is difficult and expensive:
 - Bar, plate, tube, sheet stocks and sizes limited (constrains design)
 - Powder feedstock are angular and not usually alloyed
 - High feedstock cost
 - Relatively difficult to form/machine (fracture prone)
 - Heat treatment requires specialized facilities (O, C, N sensitive)
 - Joining options limited (Usually electron beam welded)
 - Inspection options limited
- Alloys designed for traditional manufacture:
 - Powder metallurgy (CIP, HIP, deposition)
 - Forging
 - Wire and/or plunge EDM
 - W (\$100/kg) or Mo (\$80/kg) alloyed with 25-47.5 wt% Re (\$2.76k/kg) to improve ductility
- Goal. Develop new refractory alloys using a CALPHAD approach, optimized for printability with L-PBF L-DED and weldability by reducing solidification cracking susceptibility

- [2] https://www.neodynamiki.gr/
- [3] https://plasmapros.com/processes/

Vacuum Plasma Spray (VPS) process [2].

Electro Deposition / Forming process

[3].

Model: Kou's Solidification Cracking Criterion

Kou's Cracking Criterion [4]:
$$\left\{ V_{local} > \phi \sqrt{1 - \beta} \frac{d\sqrt{f_s}}{dT} \frac{dT}{dt} + \phi \frac{d}{dz} \left[\left(1 - \sqrt{1 - \beta} \sqrt{f_s} \right) v_z \right] \right\}_{\sqrt{f_s} \to 1}$$
 (separation) (growth) (feeding)

- Considers a balance between grain boundary separation (cracking), lateral growth of grains, and liquid feeding between dendrites
 - v is velocity, ϕ is dendrite diameter, β is shrinkage, T is temperature, f_s is fraction solid
- Crack susceptibility increases as $|dT/d(f_S^{1/2})|$ increases near $f_S^{1/2} = 1$.
 - f_S^{1/2} significance is similarity to dimensionless radius of dendrite
 - Steepness of solidification path near terminal solidification results in higher index: suggesting increased crack susceptibility due to slower transverse growth rate and longer passageway for feeding
- Criterion does not predict occurrence but rather susceptibility.
- The Scheil equation is used to predict the solidification path of an alloy, i.e., the plot of f_s vs T and usefully couples to this criterion for evaluating influence of composition.

Composition Influence

Geometrical Significance

[4] Kou. Acta Mat 88 (2015): 366-374

https://doi.org/10.1016/j.actamat.2015.01.034

Process Flow and Algorithm to Compute Crack Susceptibility

In this work, we numerically implement calculation of Kou's CSI in a Jupyter Notebook with python scripting.

[5] de Walle et al. Calphad 61 (2018): 173-178 Database (.tdb) https://avdwgroup.engin.br own.edu/ pycalphad [6] Otis & Liu. J. Open Res. Soft. 5 (2017): 1 Equilbrium https://pycalphad.org/ (or Thermocalc) [7] Bocklund, et al. (2020). Scheil https://github.com/pycalpha Solidification d/scheil [4] Kou. Acta Mat 88 Kou's Crack (2015): 366-374 Susceptibility https://doi.org/10.1016/j.a ctamat.2015.01.034 Index (CSI)

Jupyter Notebook Flow for pycalphad (Python 3) import Dependencies #pycalphad and math packages Variables = database, elements, phases Conditions = start temp, temp step, filter #Scheil setup Scheil = T vs fs plot #Calculate fsnew = sqrt(fs) #takePowerSmooth = savgol.(T,fsnew) #Savitsky-Golay power smoothing derivative = abs(gradient(power smooth) / gradient(fsnew)) Max value = max(derivative) #between 0.9 and 0.99 fsnew #Iterate for multiple elements to generate e.g., ternary: for i in x element for j in y element Perform above #Log data #Perform postprocessing and plotting

Complete code examples are available in a report online. Plans to post on GitHub. [8] Michael & Sowards (2023) NASA-TM-20230002218. https://ntrs.nasa.gov/citations/20230002218

Example: Jupyter Notebook Output and CSI Calculation

1. Compute Scheil Solidification Path

2. Perform Best Fit to fs^{1/2}-T Plot (optional)

3. Compute Derivative of fs^{1/2}-T Best Fit Line

4. Find Max CSI and Log Results

Jupyter Notebook Output

Run # = 18 Total Run time = 166.1 seconds Composition = $\{W_SI: 0.001, W_CU: 0.029724137931034483\}$ Max CSI = 2832.9 K, Max CSI with Filter = 2832.9 K, Solidus Temperature = 788.0 K

Algorithm Verification in Al-Si-Cu Ternary with Open-source Software

Liu and Kou's Cracking Index Map [9] produced with Pandat + Pan aluminum database. Solidification with no diffusion (Scheil).

[9] Liu and Kou. *Acta Mat.* 125, 15 (2017): 513-523. https://doi.org/10.1016/j.actamat.2016.12.028 Kou's Cracking Index Map produced with open-source pycalphad + COST507.tdb Solidification with no diffusion (Scheil).

Two open-source TDB were tested producing similar map results:

[11] Hallstedt et al. Calphad 53 (2016): 25-38.

^[10] Ansara et al. (1998) COST 507.

1. Algorithm Verification with Refractory Alloy Varestraint Data

 Lessman and Gold [12] published refractory metal Varestraint testing of seven refractory alloys subject to GTA welding in inert vacuum.

Refractory Alloy Compositions:

Alloy	Nominal Composition	Та	Nb	W	Hf	Мо	Re	V	Zr	C ppm	O ppm	N ppm	C ppm	O ppm	N ppm
T-111	Ta-8W-2Hf	balance	-	8.2	2.0	-	-	-	-	40	80	12	33	40	12
ASTAR-811C	Ta-8W-1Re-0.7Hf-0.025C	balance	-	8.1	0.9	-	1.4	-	-	300	70	10	210	5	5
FS-85	Nb-27Ta-10W-1Zr	28.1	balance	10.6	-	-	-	-	0.94	20	90	60	32	53	47
T-222	Ta-9.6W-2.4Hf-0.01C	balance	-	9.2	2.55	-	-	-	-	115	50	20	119	17	11
B-66	Nb-5Mo-5V-1Zr	-	balance	-	-	5.17	-	4.89	1	95	110	63	37	120	70
Ta-10W	Ta-10W	balance	-	9.9	-	-	-	-	-	50	40	20	5	10	10
SCb-291	Nb-10W-10Ta	9.83	balance	10.0	-	-	-	-	-	20	110	40	22	101	20

- Themocalc (TCHEA6.tdb) was used to calculate Scheil solidification paths of those seven alloys and subsequent CSI.
 Oxygen was *not* in the database.
- CSI shows good correlation to Ta- and Nb-based refractory alloy Varestraint test data.
- Refractory alloys with CSI < 30*10³ K are weldable in practice.
- Refractory alloys with CSI > 80*10³ K would likely crack at all augmented strains.

[12] Lessman and Gold. *Welding J.* (1971): 1s – 8s.

2. Crack Susceptibility Index in Binary Refractory Mixtures

- Solidification cracking is strongly influenced by interstitial elements in practice
- CSI of C, N, O interstitial alloys
- CSI is normalized by T_{melt} for scaling
- Effect of interstitials as follows:

Effect of Carbon on CSI: W > Mo > Ta > Nb

Effect of Nitrogen on CSI: Ta > Mo > W > Nb

Effect of Oxygen on CSI (No W-O): Ta > Mo > Nb

Comparison to ASTM chemistry limits:

Mo: C Limit is near peak CSI
Ta: C, N, O limits are near peak CSI
W: C limit may be concern, O is unknown

Nb: O limit may be concern

 Additive powder recycling pickup of C and O especially will promote cracking.

3. Extending the Model: Chemistry-dependent Cracking

Many equations have been developed to relate solidification cracking to alloying elements through multiple linear regression [22].

[22] Matsuda (1990). Proc 1st US-Japan Symposium on Advances in Welding Metallurgy. 19-36.

Element	TZM Ingot - ASTM			
	B387 (wt.%)			
C	0.01 - 0.04			
O*	0.003 max			
N	0.002 max			
Fe	0.01 max			
Ti	0.4 - 0.55			
Si	0.01 max			
Ni	0.002 max			
Zr	0.06 - 0.12			
Мо	balance			
*O in powder metallurgy alloy is 0.05 max				

Element	C103 Ingot - ASTM
	B652 (wt.%)
С	0.015 max
0	0.025 max
N	0.010 max
Н	0.0015 max
Hf	9 – 11
Ti	0.7 - 1.3
Zr	0.700 max
W	0.500 max
Ta	0.500 max
Nb	balance

Input and Results

Negative values of composition are assumed zero. Data are normally distributed. A large portion of compositions produce a CSI $> 30*10^3$ K.

Interaction Matrix to Determine Correlations

Regression Results and Best Fit Model

TZM

 $CSI = \beta_0 + \beta_{Zr}X_{Zr} + \beta_{Fe}X_{Fe} + \beta_{Ti}X_{Ti} + \beta_{Ni}X_{Ni} + \beta_{Si}X_{Si} + \beta_CX_C + \beta_NX_N$ where X expressed in [wt.%]

Model	Linear	Ridge	Lasso
а		0.0001	0.0001
R^2	0.94774	0.94768	0.94774
b ₀	-17066.3	-16805.1	-17065.8
b _{zr}	43924.2	43753.9	43922.9
b _{Fe}	246464	242320	246450
b _{Ti}	5732.26	5657.58	5731.96
b _{Ni}	465135	325775	464705
b_{si}	385805	379454	385787
b _c	1334869	1332153	1334866
b _N	-156242	-105938	-155788

C103

 $CSI = \beta_0 + \beta_{Zr}X_{Zr} + \beta_{Hf}X_{Hf} + \beta_{Ti}X_{Ti} + \beta_WX_W + \beta_{Ta}X_{Ta} + \beta_CX_C + \beta_NX_N$ where X expressed in [wt.%]

Model	Linear	Ridge	Lasso
а		0.0001	0.0001
R^2	0.92197	0.92163	0.92197
b ₀	34966.3	34977.1	34966.3
b _{zr}	177.93	197.265	177.952
b _{Hf}	-960.084	-960.276	-960.083
b _{Ti}	160.762	153.071	160.747
b _w	-208.024	-186.839	-207.989
b_{Ta}	449.447	472.192	449.47
b _c	809597	796558	809580
b_N	-771158	-752294	-771133

All models produce excellent fits to data. As the alpha value → 0, for Ridge and Lasso the coefficients approached ordinary Least Squares Regression model. Linear multiple regression is selected for further discussion.

Discussion. Effect of Oxygen

Oxygen was not considered in the complex alloys due to lack of available thermodynamic data for higher order mixtures. The Mo-O and Nb-O binary systems above show that oxygen drastically increases CSI.

We develop a weight factor based on linear interpolation above revealing a weight factor of 3.34x10⁶ K/[O] and 1.21x10⁶ K/[O], for Oxygen in TZM and C103, respectively.

Simplified Linear Models of Elemental Potency on Cracking

Steps:	TZM	C103
1. View Raw CSI coefficients. X _i in [wt. %]	$CSI = -17,066 + 43,924 X_{Zr} + 246,464 X_{Fe} + 5,732 X_{Ti} + 465,135 X_{Ni} + 385,805 X_{Si} + 1,334,869 X_{C} - 156,242 X_{N}$	$CSI = 34,966 + 178 X_{Zr} - 960 X_{Hf} + 161 X_{Ti} - 208 X_{W} + 449 X_{Ta} + 809,597 X_{C} - 771,158 X_{N}$
2. Modify with estimated oxygen term based on binary calculation. X _i in [wt. %]	$CSI = -17,066 + 43,924 X_{Zr} + 246,464 X_{Fe} + 5,732 X_{Ti} + 465,135 X_{Ni} + 385,805 X_{Si} + 1,334,869 X_{C} + 3,339,718 X_{O} - 156,242 X_{N}$	$CSI = 34,966 + 178 X_{Zr} - 960 X_{Hf} + 161 X_{Ti} - 208 X_{W} + 449 X_{Ta} + 809,597 X_{C} + 1,214,518 X_{O} - 771,158 X_{N}$
3. Normalize coefficients by max coefficient (Oxygen in both cases) revealing model with relative potency the alloying elements have on hot cracking susceptibility (HCS)	HCS = 0.013*Zr + 0.074*Fe + 0.002*Ti + 0.139*Ni + 0.116*Si + 0.4*C + O - 0.047*N	HCS = 0.667*C + O - 0.001*Hf – 0.635*N

- Oxygen and Carbon strongly promote solidification crack susceptibility.
- Nitrogen apparently decreases crack susceptibility especially in C103.
- Fe, Ni, Si promote crack susceptibility in TZM, as do Zr and Ti to lesser extent.

For nominal TZM (Mo-0.475Ti-0.09Zr-0.025C), CSI exceeds 30·10³ K at 23 ppmwt O! For nominal composition of C103 (Nb-10Hf-1Ti), CSI exceeds 30·10³ K at 37 ppmwt O!

Initial validation with Thermo-Calc® databases (TZM)

TZM		Database							
	TCHEA6	TCNI12	COST507						
β_0	-13640	-15991	-17066						
β_{Zr}	125768	71909	43924						
β_{Fe}	571421	513975	246464						
β_{Ti}	-6084	20005	5732						
β_{Ni}	1128000	-5	465135						
β_{Si}	870811	531083	385805						
β_{C}	2130000	2049000	1334869						
β_N	-4162300	-27	-156242						
β_{O}	1400000	1400000	3339719						

TZM		Database							
	TCHEA6	TCNI12	COST507						
β_0									
β_{Zr}	0.089834	0.051364	0.013152						
β_{Fe}	0.408158	0.367125	0.073798						
β_{Ti}	-0.00435	0.014289	0.001716						
β_{Ni}	0.805714		0.139274						
β_{Si}	0.622008	0.379345	0.11552						
β_{C}	1.521429	1.463571	0.399695						
β_N	-2.97307		-0.04678						
β_{O}		1	1	1					

*Mo-O for TCHEA6 & TCNI12 calculations taken from TCNI12

Database	Zr	Fe	Ti	Ni	Si	С	0	N
TCNI12	0.051	0.367	0.014		0.379	1.46	1	
COST507	0.013	0.074	0.002	0.139	0.116	0.4	1	-0.047

Some agreement w.r.t HCS potency from C, N, and O; other contributions of Fe, Ni, and Si also notable; TCNI12 closer to COST507

Initial validation with Thermo-Calc® databases (C103)

C103		Database						
	TCHEA6	TCNI12	COST507					
β_0	71798.16	36715.06	34966.3					
β_{Zr}	-433.77	5677.079	177.93					
β_{Hf}	-3303.51	-1474.5	-960.084					
β_{Ti}	-5747.47	391.995	160.762					
β_{W}	-204.478	1285.546	-208.024					
β_{Ta}	89.486	-1127.69	449.447					
β_{C}	784781.5	1517000	809597					
β_N	-775735	94119.62	-771158					
β_{O}	1225000	1225000	1214518					

C103		Database						
	TCHEA6	TCHEA6 TCNI12						
β_0								
β_{Zr}		0.004634						
β_{Hf}	-0.0027	-0.0012	-0.00079					
β_{Ti}	-0.00469							
β_{W}		0.001049						
β_{Ta}		-0.00092						
β_{C}	0.640638	1.238367	0.666599					
β_N	-0.63325	0.076832	-0.63495					
β_{O}	1	1	1					

^{*}Nb-O for TCHEA6 & TCNI12 calculations taken from TCNI12

Database	С	0	Hf	Ti	N
TCHEA6	0.641	1	-0.003	-0.005	-0.633
COST507	0.667	1	-0.001		-0.635

Agreement w.r.t HCS potency from C and O; N potency agreement for TCHEA6 & COST507, more confident in TCHEA6 than TCNI12 as C-N-Nb assessed

Summary

- A numerical approach was developed to calculate Kou's Solidification Crack Susceptibility Index (CSI) using open-source Python code with both an open-source and a commercial CALPHAD equilibrium solver.
 - The method was verified against previous calculations and aluminum alloy solidification cracking data.
- 2. The numerical approach was applied to refractory metals, which are inherently difficult to study from a weldability testing standpoint since welding is often done in vacuum.
 - Calculated CSI showed strong empirical correlation to vacuum Varestraint testing of Ta- and Nb-alloys.
 - Correlations indicate that refractory alloys with CSI < 30x10³ K are weldable in practice.
- 3. Calculation of CSI for refractory-interstitial (O,C,N) binary systems revealed ASTM chemistry specs are not ideal for optimal weldability and AM printability.
- 4. This work revealed the effect of compositional variations on a series of refractory metals and showed the framework defined here will be useful in:
 - The development of new alloys that have improved weldability and AM printability
 - Placing compositional limits on existing alloys
 - Consideration of manufacturing process controls such as powder reuse during 3D printing