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Background on Refractory Metals

• Refractory metals and alloys are used for service in extreme 

high temperature environments:
– Reaction Control System (RCS) thrusters

– Space Nuclear Propulsion (SNP) clad and structure

– Hypergolic / green propulsion chambers and catalyst

– Electric propulsion grids

– Power conversion system heat pipes and regenerators

– Hypersonic wing leading edges

• Refractory metals are desirable due to:
• High melt temperature (Tm)

• Retain strength and hardness at elevated temperature

• Corrosion and wear resistant (outside of propulsion)

• Aerospace refractory metal parts tend to be:
– Thin-walled geometries (converging-diverging nozzles)

– Relatively simple geometries

– High buy-to-fly ratio (20:1 to 50:1)

– Low production rate

Apollo CSM RCS using C103.  

Courtesy Aerojet-Rocketdyne

TZM alloy heat pipe.  

Courtesy Advanced Cooling 

Technologies.

Green propulsion Re 

thruster.

Traditional Refractory 

Alloys

X-51A hypersonic test vehicle.  Courtesy USAF.
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Problem and Goal: Fabricating Refractory Alloys

• Typically exhibit poor weldability. Existing alloys were design 60+ years ago 

and never optimized to be weldable and printable.
– Thermal shock (thermal stress builds due to extreme high melting point)

– Brittleness at room temperature (due to shift of ductile to brittle transition)

– Solidification cracking (due to segregation of alloying elements and wide 

solidification temperature ranges induced by alloying)

• Traditional refractory manufacture is difficult and expensive:
– Bar, plate, tube, sheet stocks and sizes limited (constrains design)

– Powder feedstock are angular and not usually alloyed

– High feedstock cost

– Relatively difficult to form/machine (fracture prone)

– Heat treatment requires specialized facilities (O, C, N sensitive)

– Joining options limited (Usually electron beam welded)

– Inspection options limited

• Alloys designed for traditional manufacture: 
‒ Powder metallurgy (CIP, HIP, deposition)

‒ Forging

‒ Wire and/or plunge EDM

‒ W ($100/kg) or Mo ($80/kg) alloyed with 25-47.5 wt% Re ($2.76k/kg) to improve 

ductility

• Goal. Develop new refractory alloys using a CALPHAD approach, 

optimized for printability with L-PBF L-DED and weldability by 

reducing solidification cracking susceptibility 

Hot Isostatic Press (HIP) process [1].

[1] https://www.malvernpanalytical.com/en/industries/advanced-manufacturing/powder-metallurgy/isostatic-pressing.

[2] https://www.neodynamiki.gr/

[3] https://plasmapros.com/processes/
Vacuum Plasma Spray (VPS) process [2].

Electro Deposition / Forming process 

[3].

C103 forged bar stock.  

Courtesy ATI.
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Model: Kou’s Solidification Cracking Criterion

Kou’s Cracking Criterion [4]:

• Considers a balance between grain boundary separation (cracking), 
lateral growth of grains, and liquid feeding between dendrites

• v is velocity, f is dendrite diameter, b is shrinkage, T is temperature, fs is fraction solid

• Crack susceptibility increases as |dT/d(fS
1/2)| increases near fS

1/2 = 1.

• fS
1/2 significance is similarity to dimensionless radius of dendrite

• Steepness of solidification path near terminal solidification results in higher index: 
suggesting increased crack susceptibility due to slower transverse growth rate and longer 
passageway for feeding

• Criterion does not predict occurrence but rather susceptibility.

• The Scheil equation is used to predict the solidification path of an alloy, 
i.e., the plot of fs vs T and usefully couples to this criterion for evaluating 
influence of composition.

[4] Kou. Acta Mat 88 (2015): 366-374 

https://doi.org/10.1016/j.actamat.2015.01.034

Geometrical Significance

Composition 

Influence

𝑉𝑙𝑜𝑐𝑎𝑙 > 𝜙 1 − 𝛽
𝑑 𝑓𝑠
𝑑𝑇

𝑑𝑇

𝑑𝑡
+ 𝜙

𝑑

𝑑𝑧
1 − 1 − 𝛽 𝑓𝑠 𝑣𝑧

𝑓𝑠→1
(separation) (growth) (feeding)
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Process Flow and Algorithm to Compute Crack Susceptibility

Database (.tdb)

pycalphad 

Equilbrium

(or Thermocalc) 

Scheil 

Solidification

Kou’s Crack 

Susceptibility 

Index (CSI)

[7] Bocklund, et al. (2020). 

https://github.com/pycalpha

d/scheil 

[6] Otis & Liu. J. Open 

Res. Soft. 5 (2017): 1 

https://pycalphad.org/ 

[5] de Walle et al. Calphad 

61 (2018): 173-178 

https://avdwgroup.engin.br

own.edu/ 

[4] Kou. Acta Mat 88 

(2015): 366-374 

https://doi.org/10.1016/j.a

ctamat.2015.01.034

Jupyter Notebook Flow for pycalphad (Python 3)

import Dependencies #pycalphad and math packages

Variables = database, elements, phases

Conditions = start_temp, temp_step, filter #Scheil setup

Scheil = T vs fs plot #Calculate 

fsnew = sqrt(fs) #take  

PowerSmooth = savgol.(T,fsnew) #Savitsky-Golay power smoothing

derivative = abs(gradient(power_smooth) / gradient(fsnew))

Max_value = max(derivative) #between 0.9 and 0.99 fsnew

#Iterate for multiple elements to generate e.g., ternary:

for i in x_element

    for j in y_element

 Perform above

#Log data 

#Perform postprocessing and plotting

Complete code examples are available in a report online.  Plans to post on GitHub.

[8] Michael & Sowards (2023) NASA-TM-20230002218.

https://ntrs.nasa.gov/citations/20230002218 

In this work, we numerically implement calculation of Kou’s CSI in a Jupyter Notebook with python scripting.
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Example: Jupyter Notebook Output and CSI Calculation

Run # = 18 Total Run time = 166.1 seconds 

Composition = {W_SI: 0.001, W_CU: 0.029724137931034483} 

Max CSI = 2832.9 K, Max CSI with Filter = 2832.9 K, Solidus Temperature = 788.0 K

1. Compute Scheil Solidification Path

2. Perform Best Fit to fs1/2-T Plot (optional) 

3. Compute Derivative of fs1/2-T Best Fit Line

Max Value is CSI

Jupyter Notebook Output

Solidus Temp

Liquidus Temp

DT

4. Find Max CSI and Log Results
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Algorithm Verification in Al-Si-Cu Ternary with Open-source Software

[9] Liu and Kou. Acta Mat. 125, 15 (2017): 513-523.

https://doi.org/10.1016/j.actamat.2016.12.028

Liu and Kou’s Cracking Index Map [9] produced with Pandat + 

Pan aluminum database.  Solidification with no diffusion (Scheil).

Two open-source TDB were tested producing similar map results:

[10] Ansara et al. (1998) COST 507.

[11] Hallstedt et al. Calphad 53 (2016): 25-38.

• Contours are quite similar. 

(across two programs and 

three different .tdb files)

• Magnitude of cracking 

index varies compared to 

Kou’s map. (algorithm)

• Caution comparing output 

across different platforms

Kou’s Cracking Index Map produced with open-source pycalphad 

+ COST507.tdb Solidification with no diffusion (Scheil).
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1. Algorithm Verification with Refractory Alloy Varestraint Data

• Lessman and Gold [12] published refractory metal Varestraint 
testing of seven refractory alloys subject to GTA welding in inert 
vacuum.  

• Themocalc (TCHEA6.tdb) was used to calculate Scheil 
solidification paths of those seven alloys and subsequent CSI. 
Oxygen was not in the database. 

• CSI shows good correlation to Ta- and Nb-based refractory alloy 
Varestraint test data.

• Refractory alloys with CSI < 30*103 K are weldable in practice.

• Refractory alloys with CSI > 80*103 K would likely crack at all 
augmented strains.

Refractory Alloy Compositions:

Alloy Nominal Composition Ta Nb W Hf Mo Re V Zr C ppm O ppm N ppm C ppm O ppm N ppm

T-111 Ta-8W-2Hf balance - 8.2 2.0 - - - - 40 80 12 33 40 12

ASTAR-811C Ta-8W-1Re-0.7Hf-0.025C balance - 8.1 0.9 - 1.4 - - 300 70 10 210 5 5

FS-85 Nb-27Ta-10W-1Zr 28.1 balance 10.6 - - - - 0.94 20 90 60 32 53 47

T-222 Ta-9.6W-2.4Hf-0.01C balance - 9.2 2.55 - - - - 115 50 20 119 17 11

B-66 Nb-5Mo-5V-1Zr - balance - - 5.17 - 4.89 1 95 110 63 37 120 70

Ta-10W Ta-10W balance - 9.9 - - - - - 50 40 20 5 10 10

SCb-291 Nb-10W-10Ta 9.83 balance 10.0 - - - - - 20 110 40 22 101 20

[12] Lessman and Gold. Welding J. (1971): 1s – 8s.
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2. Crack Susceptibility Index in Binary Refractory Mixtures

ASTM B654-10 (2018)

Limits for C103

ASTM B708-12 (2019) 

and B365-12 (2019)

Limits Unalloyed Ta

ASTM B760-07 (2019)

Limits Unalloyed W

ASTM B387-18

Limits Unalloyed Mo

• Solidification cracking is strongly 

influenced by interstitial elements in practice

• CSI of C, N, O interstitial alloys

• CSI is normalized by Tmelt for scaling

• Effect of interstitials as follows:

Effect of Carbon on CSI:

W > Mo > Ta > Nb

Effect of Nitrogen on CSI:

Ta > Mo > W > Nb

Effect of Oxygen on CSI (No W-O):

Ta > Mo > Nb

• Comparison to ASTM chemistry limits:

Mo: C Limit is near peak CSI

Ta: C, N, O limits are near peak CSI

W: C limit may be concern, O is unknown

Nb: O limit may be concern

• Additive powder recycling pickup of C and 

O especially will promote cracking.

[13] CALPHAD 12 (1988) 1-8.

[14] CALPHAD, 15 (1991) 79-106.

[15] CALPHAD, 45(2014)178-187

[16] J. Alloys Compd, 238 (1996) 167-179.

[17] J. Alloys Compd, 278 (1998) 216-226.

[18] CALPHAD 62 (2018) 201-206.

[19] CALPHAD 51 (2015) 104-110.

[20] CALPHAD 56 (2017) 49-57.

[21] J. Nuc Mater 360 (2007) 242-254.

30*103 K
30*103 K

30*103 K
30*103 K
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3. Extending the Model: Chemistry-dependent Cracking

Generate 1000 

Random 

Compositions within 

Alloy Spec

Thermocalc 

Equilibrium (No O)

Scheil Solidification

Kou’s Crack 

Susceptibility Index 

(CSI)

TZM. ASTM B387

C103. ASTM B652

ML Regression 

scikit-learn Regression

• Multiple Linear

• Ridge

• Lasso

Linear Equations with 

Elemental Cracking 

Potency Factors

Element TZM Ingot - ASTM 

B387 (wt.%)

C 0.01 – 0.04

O* 0.003 max

N 0.002 max

Fe 0.01 max

Ti 0.4 – 0.55

Si 0.01 max

Ni 0.002 max

Zr 0.06 – 0.12

Mo balance
*O in powder metallurgy alloy is 0.05 max

Element C103 Ingot - ASTM 

B652 (wt.%)

C 0.015 max

O 0.025 max

N 0.010 max

H 0.0015 max

Hf 9 – 11

Ti 0.7 – 1.3

Zr 0.700 max

W 0.500 max

Ta 0.500 max

Nb balance

Many equations have been developed to relate solidification cracking to 

alloying elements through multiple linear regression [22].

[22] Matsuda (1990). Proc 1st US-Japan Symposium on 

Advances in Welding Metallurgy. 19-36.
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Input and Results

TZM Distribution N = 1,000 C103 Distribution N = 1,000

Negative values of composition are assumed zero. Data are normally distributed.  A large portion of 

compositions produce a CSI > 30*103 K.

Theta1 = TL

Theta2 = TS

DeltaT = TL - TS

Theta1 = TL

Theta2 = TS

DeltaT = TL - TS

CSI > 

30*103 K

CSI > 

30*103 K
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Interaction Matrix to Determine Correlations

C103TZM

Multicollinearity (several independent variables are correlated) is not observed. 13



Regression Results and Best Fit Model

CSI = β0 + βZrXZr + βFeXFe + βTiXTi + βNiXNi + βSiXSi + βCXC + βNXN     

where X expressed in [wt.%]

All models produce excellent fits to data. As the alpha value → 0, for Ridge and Lasso the coefficients 

approached ordinary Least Squares Regression model.  Linear multiple regression is selected for further 

discussion.   

C103TZM

Model Linear Ridge Lasso

a -- 0.0001 0.0001

R
2 0.94774 0.94768 0.94774

b0 -17066.3 -16805.1 -17065.8

bZr 43924.2 43753.9 43922.9

bFe 246464 242320 246450

bTi 5732.26 5657.58 5731.96

bNi 465135 325775 464705

bSi 385805 379454 385787

bC 1334869 1332153 1334866

bN -156242 -105938 -155788

Model Linear Ridge Lasso

a -- 0.0001 0.0001

R
2 0.92197 0.92163 0.92197

b0 34966.3 34977.1 34966.3

bZr 177.93 197.265 177.952

bHf -960.084 -960.276 -960.083

bTi 160.762 153.071 160.747

bW -208.024 -186.839 -207.989

bTa 449.447 472.192 449.47

bC 809597 796558 809580

bN -771158 -752294 -771133

CSI = β0 + βZrXZr + βHfXHf + βTiXTi + βWXW + βTaXTa + βCXC + βNXN     

where X expressed in [wt.%]
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y = 3,339,718.83x
R² = 0.98
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Discussion. Effect of Oxygen

ASTM Spec Limit 
= 300 ppmw

ASTM Spec Limit 
= 250 ppmw

Oxygen was not considered in the complex alloys due to lack of available thermodynamic data for higher order 

mixtures.  The Mo-O and Nb-O binary systems above show that oxygen drastically increases CSI.  

We develop a weight factor based on linear interpolation above revealing a weight factor of  3.34x106 K/[O] and 

1.21x106 K/[O], for Oxygen in TZM and C103, respectively.
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Simplified Linear Models of Elemental Potency on Cracking

Steps: TZM C103

1. View Raw CSI 

coefficients. Xi in [wt. %]
CSI = -17,066 + 43,924 XZr + 246,464 XFe + 5,732 

XTi + 465,135 XNi + 385,805 XSi + 1,334,869 XC - 

156,242 XN

CSI = 34,966 + 178 XZr - 960 XHf + 161 XTi - 208 

XW + 449 XTa + 809,597 XC - 771,158 XN

2. Modify with estimated 

oxygen term based on 

binary calculation. Xi in 

[wt. %]

CSI = -17,066 + 43,924 XZr + 246,464 XFe + 5,732 

XTi + 465,135 XNi + 385,805 XSi + 1,334,869 XC + 

3,339,718 XO - 156,242 XN

CSI = 34,966 + 178 XZr - 960 XHf + 161 XTi - 208 

XW + 449 XTa + 809,597 XC + 1,214,518 XO - 

771,158 XN

3. Normalize coefficients 

by max coefficient 

(Oxygen in both cases) 

revealing model with 

relative potency the 

alloying elements have 

on hot cracking 

susceptibility (HCS)

HCS = 0.013*Zr + 0.074*Fe + 0.002*Ti + 0.139*Ni 

+ 0.116*Si + 0.4*C + O – 0.047*N
HCS = 0.667*C + O - 0.001*Hf – 0.635*N

• Oxygen and Carbon strongly promote solidification crack susceptibility.

• Nitrogen apparently decreases crack susceptibility especially in C103.

• Fe, Ni, Si promote crack susceptibility in TZM, as do Zr and Ti to lesser extent.
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Initial validation with Thermo-Calc® databases (TZM)

Some agreement w.r.t HCS potency from C, N, and O;

other contributions of Fe, Ni, and Si also notable; TCNI12 closer to COST507 17

TCNI12:

N-Mo, C-Mo-N, 

C-N-Ti 

assessed

TCHEA6:

C-N, N-Mo, 

C-Mo-N,

C-N-Ti 

assessed

Database Zr Fe Ti Ni Si C O N

TCNI12 0.051 0.367 0.014 0.379 1.46 1

COST507 0.013 0.074 0.002 0.139 0.116 0.4 1 -0.047

*Mo-O for TCHEA6 & TCNI12 calculations taken from TCNI12

TZM Database

TCHEA6 TCNI12 COST507

β0 -13640 -15991 -17066

βZr 125768 71909 43924

βFe 571421 513975 246464

βTi -6084 20005 5732

βNi 1128000 -5 465135

βSi 870811 531083 385805

βC 2130000 2049000 1334869

βN -4162300 -27 -156242

βO 1400000 1400000 3339719

TZM Database

TCHEA6 TCNI12 COST507

β0

βZr 0.089834 0.051364 0.013152

βFe 0.408158 0.367125 0.073798

βTi -0.00435 0.014289 0.001716

βNi 0.805714 0.139274

βSi 0.622008 0.379345 0.11552

βC 1.521429 1.463571 0.399695

βN -2.97307 -0.04678

βO 1 1 1



Initial validation with Thermo-Calc® databases (C103)

Agreement w.r.t HCS potency from C and O; N potency agreement for TCHEA6 & COST507,

more confident in TCHEA6 than TCNI12 as C-N-Nb assessed 18

TCNI12:

N-Nb, N-Nb-Ti 

assessed

TCHEA6:

C-N, N-Nb, C-N-Nb,

N-Nb-Ti assessed

C103 Database

TCHEA6 TCNI12 COST507

β0 71798.16 36715.06 34966.3

βZr -433.77 5677.079 177.93

βHf -3303.51 -1474.5 -960.084

βTi -5747.47 391.995 160.762

βW -204.478 1285.546 -208.024

βTa 89.486 -1127.69 449.447

βC 784781.5 1517000 809597

βN -775735 94119.62 -771158

βO 1225000 1225000 1214518

C103 Database

TCHEA6 TCNI12 COST507

β0

βZr 0.004634

βHf -0.0027 -0.0012 -0.00079

βTi -0.00469

βW 0.001049

βTa -0.00092

βC 0.640638 1.238367 0.666599

βN -0.63325 0.076832 -0.63495

βO 1 1 1

Database C O Hf Ti N

TCHEA6 0.641 1 -0.003 -0.005 -0.633

COST507 0.667 1 -0.001 -0.635

*Nb-O for TCHEA6 & TCNI12 calculations taken from TCNI12



Summary

1. A numerical approach was developed to calculate Kou’s Solidification Crack Susceptibility Index 
(CSI) using open-source Python code with both an open-source and a commercial CALPHAD 
equilibrium solver.

• The method was verified against previous calculations and aluminum alloy solidification cracking data.

2. The numerical approach was applied to refractory metals, which are inherently difficult to study 
from a weldability testing standpoint since welding is often done in vacuum.

• Calculated CSI showed strong empirical correlation to vacuum Varestraint testing of Ta- and Nb-alloys.

• Correlations indicate that refractory alloys with CSI < 30x103 K are weldable in practice.

3. Calculation of CSI for refractory-interstitial (O,C,N) binary systems revealed ASTM chemistry specs 
are not ideal for optimal weldability and AM printability.

4. This work revealed the effect of compositional variations on a series of refractory metals and 
showed the framework defined here will be useful in: 

• The development of new alloys that have improved weldability and AM printability

• Placing compositional limits on existing alloys

• Consideration of manufacturing process controls such as powder reuse during 3D printing
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