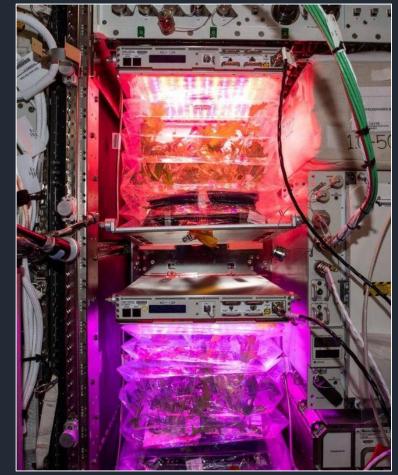
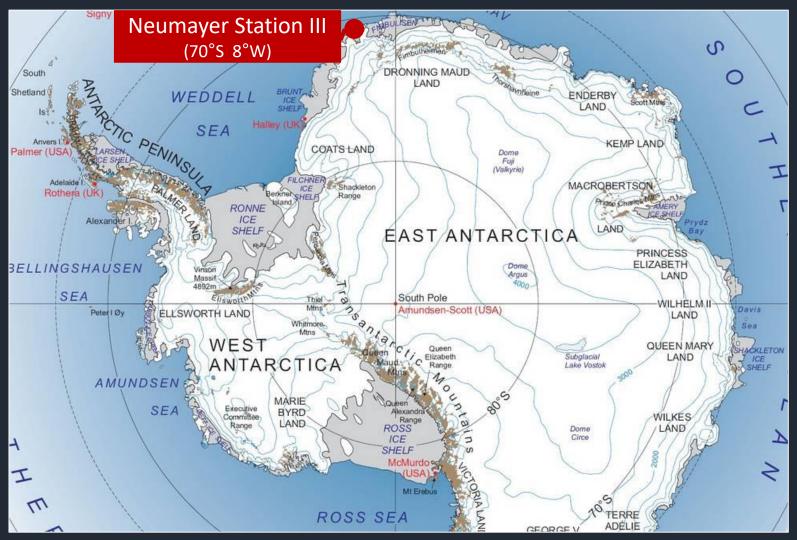
Nutrition of Antarctic-Grown Crops to Supplement the Crew Diet, with Applications for Spaceflight

Jess M. Bunchek^{1,2}, Mary E. Hummerick³, Carolina Franco³, Gioia D. Massa⁴


¹DLR, Bremen, Germany; ²University of Bremen; ³LASSO II, KSC; ⁴NASA, KSC

Contact: jess.bunchek@dlr.de


Motivation

- Space-grown crops can supplement the crew pre-packaged diet and promote crew biobehavioral health.
- Previous research on ISS with mizuna mustard showed that crop nutrition content can be influenced by light treatment, harvest approach, and the spaceflight environment.
- As sample sizes on-orbit are small, more testing is needed to determine influencing effects and to better select crops, hardware, and cultivation methods to fit astronaut needs.
- Currently, nutrient solution cannot be measured in-situ.

VEG-04 study with mizuna mustard on ISS. Photo: NASA/Sierra Space.

Neumayer Station III, Antarctica

EDEN ISS

• Deployment: 2018-2022

• Presented data: 2021

• 12.5 m² crop cultivation space with aeroponics

• Project total: >1 metric ton fresh food

4

Nutrient Solution Over Time

Kohlrabi in EDEN ISS exhibiting nutrient deficiency stress symptoms. Photo: Personal collection.

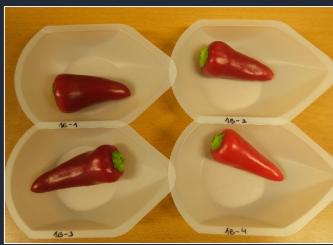
Nutrient Solution Over Time

Methods

- Both nutrient tanks sampled
- Total 39 nutrient solution samples for 2021 season
- Samples shipped to KSC for IC analysis

Takeaways

- Distinct decrease in nutrients
- Nitrogen stable over time, potentially due to biofilm
- Sensors needed to detect real-time nutrient changes


Crop Nutrition

Methods

- 164 plant samples for nutrient analysis, 33 of which have been analyzed
- 26 of 37 crops sampled (those with enough biomass, >50 g)
- Samples dried & shipped to KSC for ICP-OES
- 14 elements, total phenolic content, and antioxidants (ORAC)
- Statistical analysis: R Version 4.3.2

Harvesting mizuna mustard leaves for analysis.

Weighing and preparing peppers to dry.

Crushed, dried samples packed for shipping.

Crop Nutrition

NuMex 'Española Improved' chile pepper.

'Outredgeous' red romaine lettuce in NASA's Passive Porous Tube Nutrient Delivery System (PPTNDS) hardware.

'Red Robin' dwarf cherry tomato.

EDEN ISS vs Veggie

*Grand averages across treatment variables.

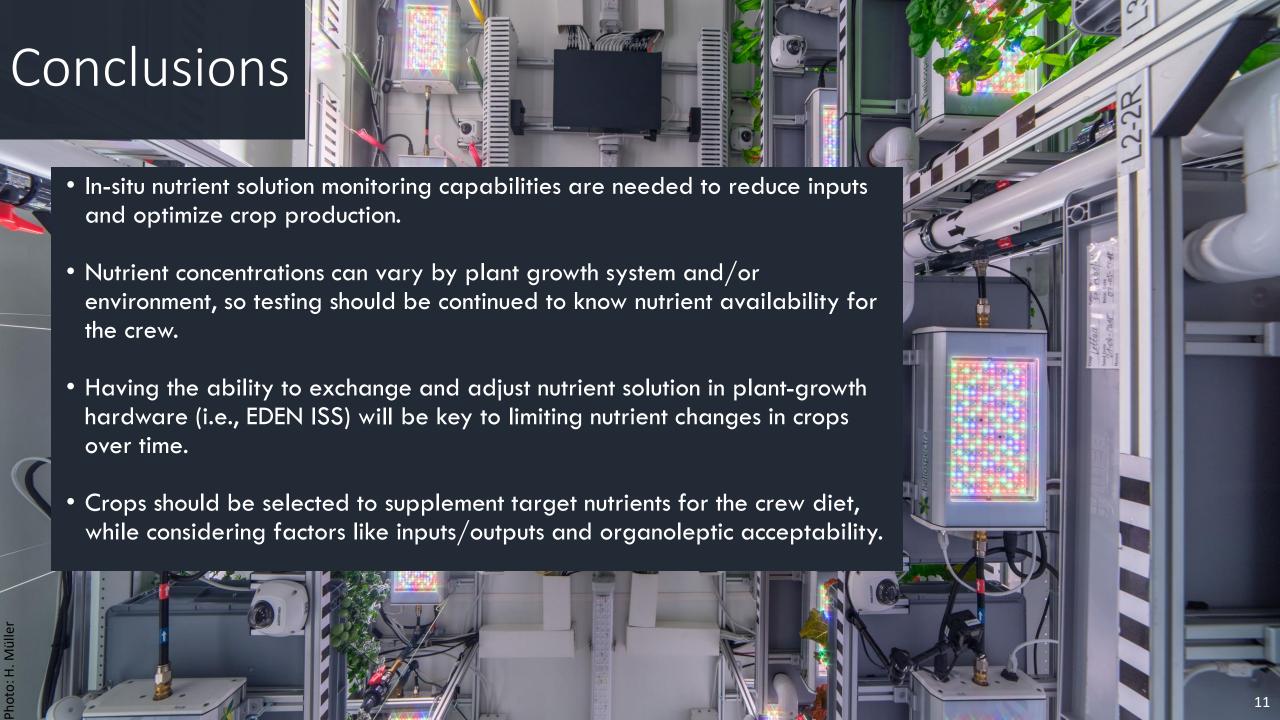
VEG-04* EDEN ISS

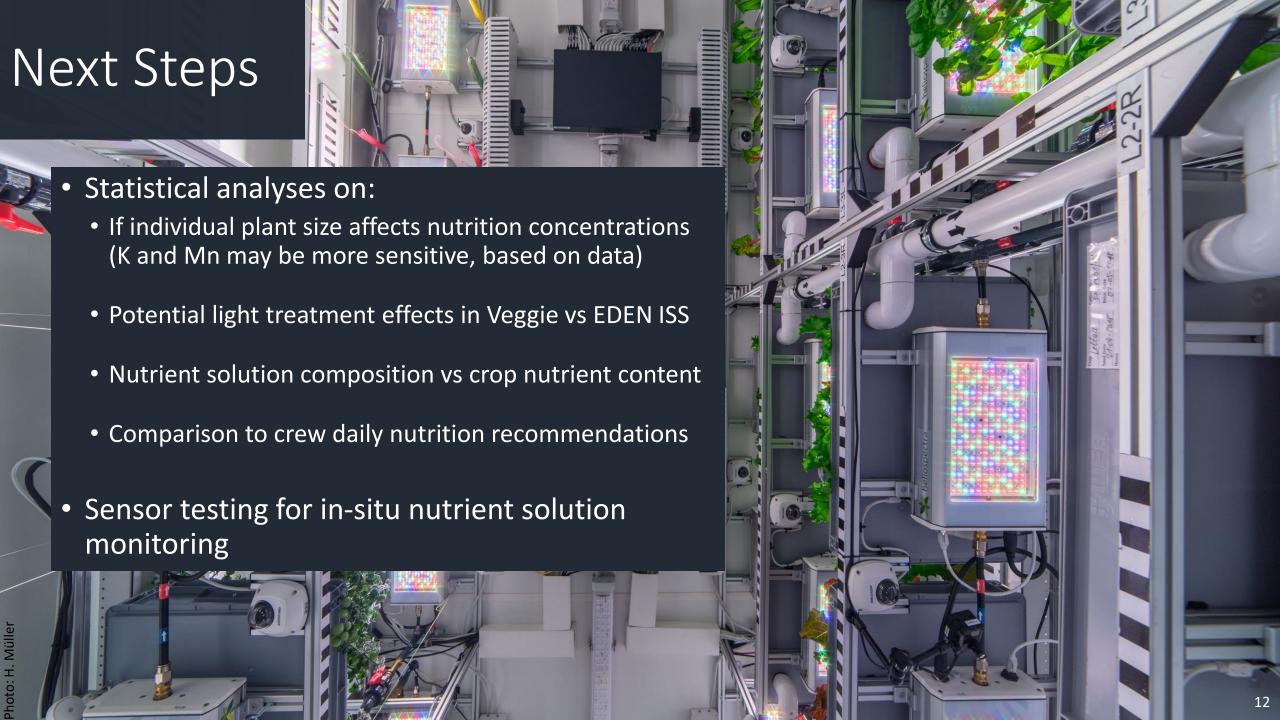
μg g ⁻¹ dry mass						
Al	29	4				
В	82	47				
Cu	10	9				
Fe	58	73				
Mn	221	20				
Na	588	220				
Zn	33	110				
Phenolics	16	14				

mg g ⁻¹ dry mass							
Ca	6	40					
K	30	90					
Mg	8	3					
Р	4	10					
S	6	9					
N. 4. T.E 1. duy							
μM TE g ⁻¹ dry mass							
ORAC	111	81					

VEG-04 study with mizuna mustard on ISS. Photo: NASA.

Crop Nutrition


Results


- Fruiting crops lower in some nutrients (B, Zn, Ca, Mg all P < 0.001).
- Fruiting crops still desired for sensory input and additional nutrients like Vitamin C.

	Boron	Zinc	Calcium	Magnesium
	——μg g ⁻¹ dry mass ——		——mg g ⁻¹ dry mass——	
Lettuce (Tray)	32 (3.1)	90 (7.0)	17 (1.7)	3.3 (0.3)
Lettuce (PPTNDS)	45 (3.6)	77 (6.7)	19 (1.7)	4.0 (0.6)
Mizuna	47 (6.2)	110 (9.0)	40 (3.6)	3.5 (0.3)
Tomato	6.9 (0.8)	26 (4.3)	0.8 (0.1)	1.5 (0.1)
Pepper	6.8 (0.7)	38 (7.5)	0.6 (0.2)	1.4 (0.2)

Takeaway

• Crop diversity needed to meet crew needs.

EDEN ISS — Data Collection & Research Areas in 2021

Systems Configuration & Analysis

- Power requirement
- Supplemental CO₂ requirement
- Data handling & transfer

Consumables

- Freshwater & nutrient consumption
- Wastewater production

Hardware

- Remote monitoring & data capturing capabilities
- Remote daily photographs
- Plant health monitoring cameras
- Supplies & spare parts
- NASA passive system prototype

Horticulture

- Testing new crops
- Data taken at plant level
- Fresh edible and inedible biomass
- Nutrition subsamples
- Crop stress & multispectral imaging (University of Florida)

Micro/Molecular Biology

Surface swab, nutrient solution, and plant tissue sampling

Crew Time

- Collected in greater detail
- NASA Task Load Index workload assessment

Crew Metrics

- Expanded from ISS Veggie crew surveys (U Penn/Charité)
- Gut microbiome (LMU-Munich)

Special Thanks

NASA AES & HRP

NASA HRP Grant Augmentation Award Program

German Aerospace Center (DLR)

Alfred Wegener Institute—Helmholtz Center for Polar & Marine Research

Reederei F. Laeisz

Space Crop Production Group at KSC & EDEN ISS Team at DLR

41st Overwintering Expedition, Neumayer III Station

Photo: Personal collection