
Investigating the causes and consequences of controlled rest on the flight deck

Cassie J. Hilditch, PhD

Lucia Arsintescu, Sean Pradhan, Kevin B. Gregory, Erin E. Flynn-Evans



Federal Fatigue Management & Research Group | 27 Feb 2024



Unpublished data.

Please do not take photos.



# Background

Fatigue is an issue in aviation

 Controlled rest (CR) is available as a fatigue countermeasure (in some regions)

 Little is known about its use or effectiveness in standard ops

### Controlled rest (CR)

- A short sleep opportunity on the flight deck
- An effective mitigation strategy to be used as needed in response to <u>unanticipated</u> fatigue experienced during flight operations.
- Not to be used as a scheduling tool or in lieu of other fatigue management strategies.
- Taken within a clearly define policy.

# Background

#### A case for CR

- Current EASA regs allow duties up to 13 h with 2 pilots
- 'Uncontrolled' and unintentional rest occurs in absence of CR policy

#### NTSB: Both Pilots Asleep on Hawaii Flight

- ~50% of pilots used CR in the past year
- ~50% of flights contained CR
- Demonstrated in-flight benefits of a short nap

# Background

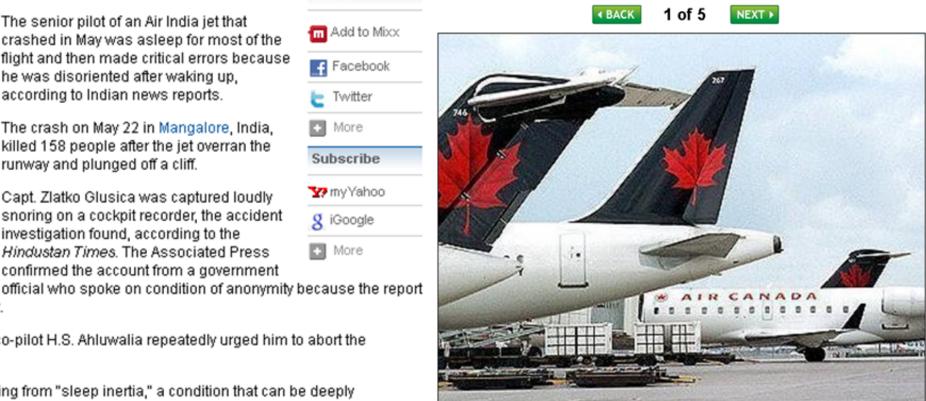
#### But...

had not been presented to the Indian Parliament.

- Unintentional sleep still occurs even when CR is legal
- Non-compliance with SOP has led to real-world accidents

# Background




After waking, Glusica did not respond when his co-pilot H.S. Ahluwalia repeatedly urged him to abort the

Indian investigators said that Glusica was suffering from "sleep inertia," a condition that can be deeply

disorienting when someone is awoken suddenly from deep sleep, according to the reports.

confirmed the account from a government

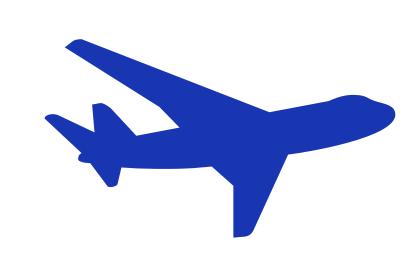
Air Canada pilot suffering from 'sleep inertia' put the whole flight in trouble: TSB oronto: Canada | Apr 17, 2012 at 6:17 PM PDT



Baines Simmons, 2023; Safety Matters Foundation, 2022

BY madn3wz ⊠

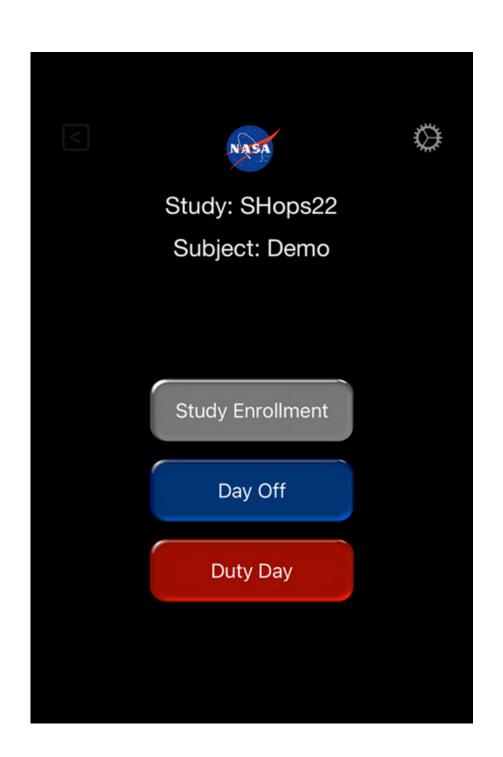
#### Aim to determine:


- 1) The relative influence of pre-flight sleep-wake history and time of day on the likelihood to take CR
- 2) Whether neurobehavioral measures taken pre-flight are predictive of CR use in-flight
- 3) The impact of CR on neurobehavioral measures at top-of-descent (TOD).

# Objectives

- n = 120 long-haul flights
  - non-augmented
  - >6.5 h
  - European airline
- n = 31 pilots
  - Could do multiple flights
  - 46 y mean age
  - 90% Male
  - 48% Captains

# Methods


Participants





- 14-day data collection period
- Collected KSS/PVT (5 min)
  - Pre-flight
  - In-flight (TOD)
  - Post-flight
- Actigraphy







Data collection

#### Model 1: Sleep/wake predictors

- sleep in prior 24 h
- sleep in prior 48 h
- hours of cont. wakefulness
- timing of the flight (night vs. day)

## Methods

#### • Model 2: Pre-flight predictors

- KSS
- PVT speed
- PVT lapses
- Covariates
  - sleep in prior 48 h
  - timing of the flight

## Methods

#### Model 3: <u>Impact</u> of <u>CR</u> at TOD

- KSS
- PVT speed
- PVT lapses

#### Covariates

- sleep in prior 48 h
- timing of the flight
- pre-flight scores

# Methods

#### Model 4: <u>Impact of sleep</u> at TOD

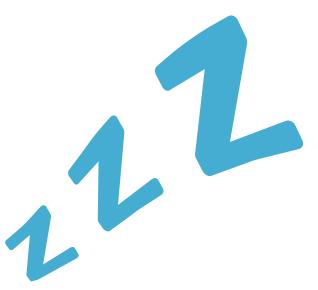
- KSS
- PVT speed
- PVT lapses

#### Covariates

- sleep in prior 48 h
- o timing of the flight
- pre-flight scores

# Methods




#### Flight duration

8.3 h (0.8; 6.8-10.4)



#### Night flights

55%



#### **CR flights**

Attempted: 70%

Successful: 63%

Twice: 20%

## Results

Flights



#### **CR** duration

44 min (12; 15-104)

### Results

Controlled rest



# Sleep per CR attempt 28 min (15; 0-81)



# Total sleep per flight 36 min (22; 0-94)

#### Model 1: Sleep/wake predictors

| Model                               | Variable                    | b     | SE   | p    | $\eta^2_p$ | OR    | 95% CI <sub>OR</sub> |
|-------------------------------------|-----------------------------|-------|------|------|------------|-------|----------------------|
| Model 1:                            | Sleep Duration (Prior 24 h) | 0.37  | 0.33 | .27  | .07        | 1.44  | 0.76, 2.75           |
| Sleep and Flight<br>Characteristics | Sleep Duration (Prior 48 h) | -0.43 | 0.22 | .05  | .07        | 0.65  | 0.42, 1.00           |
|                                     | Hours of Wakefulness        | -0.01 | 0.12 | .95  | .03        | 0.99  | 0.79, 1.25           |
| $(R^2_M = .23;$<br>$R^2_C = .56)$   | Flight Timing               | 2.63  | 0.99 | .01* | .13        | 13.81 | 1.99, 95.80          |

# Results

Predictors

#### Model 2: Pre-flight predictors

| Model                                     | Variable   | b     | SE   | p    | $\eta^2_p$ | OR   | 95% CI <sub>OR</sub> |
|-------------------------------------------|------------|-------|------|------|------------|------|----------------------|
| Model 2:                                  | KSS        | 1.42  | 0.52 | .01* | .14        | 4.14 | 1.48, 11.57          |
| Pre-Flight<br>Neurobehavioral<br>Measures | PVT Speed  | -0.62 | 1.11 | .57  | .01        | 0.60 | 0.06, 4.75           |
| $(R^2_M = .35;$<br>$R^2_C = .57)$         | PVT Lapses | -0.85 | 0.44 | .05  | .10        | 0.43 | 0.18, 1.00           |

# Results

Predictors

#### Model 3: <u>Impact</u> of CR at TOD

# Results

Impact at TOD

|                                |       | 3a: KSS     | M      | lodel 3b                     | : PVT Spee | d    | M      | Model 3c: PVT Lapses         |       |      |       |            |
|--------------------------------|-------|-------------|--------|------------------------------|------------|------|--------|------------------------------|-------|------|-------|------------|
|                                | (.    | $R^2 = .46$ | (.     | $(R^2_M = .62; R^2_C = .64)$ |            |      |        | $(R^2_M = .11; R^2_C = .41)$ |       |      |       |            |
| Variable                       | b     | SE          | p      | $\eta^2_p$                   | b          | SE   | p      | $\eta^2_p$                   | b     | SE   | p     | $\eta^2_p$ |
| Controlled Rest                | -0.27 | 0.36        | .45    | 0.01                         | 0.19       | 0.09 | .03*   | 0.07                         | -0.29 | 0.31 | .34   | < .001     |
| Covariates                     |       |             |        |                              |            |      |        |                              |       |      |       |            |
| Pre-Flight Score               | 0.33  | 0.13        | .02*   | 0.09                         | 0.67       | 0.07 | <.001* | 0.55                         | 0.04  | 0.08 | .65   | 0.04       |
| Sleep Duration<br>(Prior 48 h) | 0.16  | 0.07        | .03*   | 0.07                         | -0.02      | 0.02 | .22    | 0.02                         | 0.12  | 0.08 | .14   | 0.08       |
| Flight Timing                  | 1.27  | 0.32        | <.001* | 0.19                         | -0.21      | 0.09 | .02*   | 0.08                         | 0.89  | 0.31 | .004* | 0.11       |

#### Model 4: <u>Impact</u> of sleep at TOD

Results

Impact at TOD

|                                        | Model 4a: KSS $(R^2_M = .33; R^2_C = .33)$ |      |       |            |       | Model 4b: PVT Speed $(R^2_M = .58; R^2_C = .65)$ |        |            |       |      | Model 4c: PVT Lapses $(R^2_M = .13; R^2_C = .20)$ |            |  |  |
|----------------------------------------|--------------------------------------------|------|-------|------------|-------|--------------------------------------------------|--------|------------|-------|------|---------------------------------------------------|------------|--|--|
| Variable                               | b                                          | SE   | p     | $\eta^2_p$ | b     | SE                                               | p      | $\eta^2_p$ | b     | SE   | p                                                 | $\eta^2_p$ |  |  |
| Sleep Amount During Controlled<br>Rest | 0.02                                       | 0.01 | .11   | .06        | 0.003 | 0.003                                            | .24    | .04        | -0.01 | 0.01 | .31                                               | .01        |  |  |
| Covariates                             |                                            |      |       |            |       |                                                  |        |            |       |      |                                                   |            |  |  |
| Pre-Flight Score                       | 0.32                                       | 0.17 | .06   | .08        | 0.66  | 0.12                                             | <.001* | .47        | -0.07 | 0.20 | .75                                               | <.001      |  |  |
| Sleep Duration (Prior 48 h)            | 0.17                                       | 0.09 | .07   | .07        | -0.02 | 0.02                                             | .43    | .02        | 0.18  | 0.08 | .02*                                              | .11        |  |  |
| Flight Timing                          | 1.31                                       | 0.46 | .008* | .16        | -0.29 | 0.12                                             | .02*   | .15        | 0.56  | 0.45 | .21                                               | .03        |  |  |

- Predictors:
  - Flying at night
  - Pre-flight subjective sleepiness

## Discussion

Summary

- Impacts at TOD:
  - PVT speed improved w/ CR
  - Not related to sleep amount

- No circadian phase marker
- No direct comparison flights
- No social/cultural factors
- Only non-augmented flights

## Discussion

Limitations

- Qualitative factors: individual preference, cultural factors
- More frequent test points around rest period
  - Sleep inertia?
- EEG measures?

# Discussion

Future research

# Thank you

cassie.j.hilditch@nasa.gov









Lucia Arsintescu, MA Sean Pradhan, PhD Kevin Gregory, BSc Erin Flynn-Evans, PhD MPH

Funded by the NASA Airspace Operations and Safety Program, System-Wide Safety

