

Solid-state Precipitation in Molecular Dynamics: kMC-MD Hybrid Simulations

Jacob Tavenner¹, Mikhail I. Mendelev², John W. Lawson²

3/04/24

¹KBR, Inc., Intelligent Systems Division, NASA Ames Research Center, Moffett Field, CA, USA

²Intelligent Systems Division, NASA Ames Research Center, Moffett Field, CA, USA

NASA

Ni-based Superalloys

- γ' (Ni₃Al L₁₂) precipitates are key in controlling creep properties in advanced superalloys
- Determining annealing conditions to produce precipitates of specific size and distribution through experimental trial-and-error
- Fundamental parameters of nucleation difficult to obtain through experiments

NASA

Solid-State Phase Precipitation

- Precipitation of new phases relies on solid-state diffusion to distribute chemical species evenly
- Majority of time spent in sampling small cluster sizes
- Solved for Liquid-Solid (Persistent Embryo Method)
- Precipitate grows once energy penalty for nucleation is overcome

 $\Delta G = V \Delta \mu + A \sigma$

 Calculation of interfacial energy through determining critical nucleus size

size

 $\frac{R^*\Delta G}{2} = \sigma$

Solid-state Diffusion is too slow for observing precipitation in MD simulation

Solid State Diffusion – kMC in MD

Challenge:

- Inaccessible to MD simulation due to short timescales
- Atom-based diffusion models use lattice-based kMC technique
- How can we combine kMC diffusion with MD-based physics?

Solution:

• Use Voronoi-based neighbor selection to moderate solute movement between nearest-neighbors under Monte-Carlo based sampling, implemented in LAMMPS

Examples:

- Test by illustrating replication of ideal diffusion profiles
- Show precipitate growth in Ni-based superalloy
- Use kMC-MD simulation to calculate interfacial energy from critical nucleus

KMC-MD Solute Diffusion

Predicted ideal solute diffusion vs. KMC

- Initialize fully-periodic cell of Ni with central concentration of Cr
- 3.5 x 3.5 x 14 nm
- 1000K MD/MC Temperature
- Swap rate of 1 atom/fs
- $D = 0.001 \text{ Å}^2/\text{fs}$

$$c(x,t) = \frac{c_0}{2} \left(erf\left(\frac{x+\frac{w}{2}}{\sqrt{4Dt}}\right) - erf\left(\frac{x-\frac{w}{2}}{\sqrt{4Dt}}\right) \right)$$

 r^2

12

D =

w = Initial Pulse Width, D = Diffusivity

x = Position, t = Time

Good agreement between KMC-MD simulation and diffusion equation

KMC-MD Precipitate Growth

Showing only Al Atoms

2128 Al Atoms 1000K, 0 Bar NPT

Swap 1% of Al atoms every 50 MD steps

MD Simulation of Precipitation

- kMC-MD algorithm combines the time resolution of kMC and correct physics of MD simulation in LAMMPS.
- Demonstrated accelerated solute diffusion behavior
- Verified solid-phase growth behavior using flat interface
- Simulate phase precipitation from a solid solution using novel MD/kMC simulation technique.
- Determine critical nucleus size N*, convert to interfacial energy

Equilibrium Condition @ 1000K: FCC Ni ~ 12.5% Al $$L_{12}$$ Ni-Al ~ 24% Al

G. Lopez et. al, Interface Science 10(1):13-19 (2002).

Simulation Setup

- □ Need to identify critical nucleus size N*
- Ni-Al system
 - Initialize Cuboidal or Spherical L₁₂ Precipitate Nucleus inside FCC Ni
 - Randomly distribute Al in remaining Ni matrix
 - Equilibrium matrix concentration ~12.5%
- Evolve system with KMC/MD
 - Swap Al atoms with neighboring Ni atoms to simulate diffusion process
 - Accelerating diffusion process accelerates precipitate growth

Ni atoms – Red Al atoms – Blue

Initial Precipitate

Constant Driving-Force MD Simulation

- Developed new procedure in LAMMPS for fixing composition of regional composition to specific concentration, varying the global concentration over the simulation
 - Calculate concentration in sink region
 - Determine difference from target concentration
 - Change required number of atoms to new type to meet target

Slice through center of simulation

Identifying Precipitate Phase

- > All images are the same atomic structure
- > PTM implemented in OVITO
- \blacktriangleright Existing tools cannot select for L₁₂ ordered phase with precision

- Developed new algorithm for identifying L12 nuclei
- > Based on local concentration of neighbor shells

13.5% Al Matrix Phase

- 7 Å initial precipitate no different growth than starting without initial nuclei
- Driving force for precipitation too large

13% Al Matrix Phase

- Constant driving force from source/sink allows for clearer picture of precipitate size change.
- Critical nucleus size between 11 and 12 Å initial precipitate radius

Conclusions

- Hybrid kinetic Monte Carlo simulation approach enables simulation of substitutional solute diffusion through Molecular Dynamics
- New kMC-MD simulations allow for simulation of previously untapped atomistic behaviors such as solid-solid phase transformations
- Identified γ γ' interfacial energy of 17.4 mJ/m² within 5% of experimental value (18.2 mJ/m²) at 1000K
- Improved over previous computational method for determining γ γ' interfacial energy using capillary fluctuations at 12.9mJ/m² @1000K $^{\circ}$

Acknowledgements

NASA Glenn Research Center Tim Smith

NASA JPL Richard Otis

Texas A&M Raymond Neuberger Raymundo Arroyave NASA Aeronautics Research Mission Directorate (ARMD) Transformational Tools and Technologies (TTT)

NASA Ames Center Innovation Funds (CIF)