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What are we going to encounter beyond LEO?

Space radiation (CGRs & SPEs)

Reduced gravity

-\> - N :_.“ 33'-

Schaefer et al. 1972

Cell nuclei showing DNA damage

CEININENEVE Iron
-

“00‘0 % & : 1.‘

. .“"M. .... ‘e

. » } - o . /'. ". ‘.

. . o -
« ,’. : A “.’ .'o

-." - < P

Cucinotta & Durante, 2006




What are we going to encounter beyond LEO?

Galactic Cosmic Rays (GCRs)

Solar Particle
Events (SPEs)

Trapped particles

- Both interplanetary & modulated by the solar cycle
- GCRs: high-energy protons and highly charged, energetic heavy particles
- GCRs not effectively shielded & can fragment

Challenges:

SPEs — unpredictable; large doses in short time
GCRs — biology effects poorly understood (but most hazardous)
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The limits of life in space — as we know it — is 12.5 days on a lunar round trip or 1.2 years in LEO. As we
send people further into space, we need to understand the biological risks and how they can be addressed
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NASA Ames biological CubeSat missions

PharmaSat O/OREOS SESLO SporeSat
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BioSentinel missions
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SpaceX-24
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ARTEMIS
‘ ‘ ' MISSION DURATIONS:
0 Total: 26—42 days
CUBESATS DEPLOY Outbound Transit: 8-14 days
ICPS deploys 10 | “ DRO Stay: 6-19 days
CubeSats total Return Transit: 9-19 days
=
1
1
IO DEPARTURE . CREW MODULE SEPARATION
ave DRO and start FROM SERVICE MODULE
rn to Earth.
@® ENTRY INTERFACE (El)
TURN POWERED FLYBY (RPF) Enter Earth’s atmosphere.
F burn prep and return
ast to Earth initiated. @® SPLASHDOWN
Pacific Ocean landing within view

TURN TRANSIT of the U.S. Navy recovery ship.
urn Trajectory Correction

C) burns as necessary to

for Earth’s atmosphere.




BioSentinel mission

Objectives:

o Develop a deep space tool with autonomous life support technologies
o Study the space radiation environment beyond LEO and its effect on biology

What is it & what’s inside?

Low-gain
Batteries antennas

Command & data
handling EPS

Iris
transponder

Solar arrays /

!
Medium-gain
antenna

Propulsion
Attitude control subsystem system

..........




BioSentinel: key components
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4U BioSensor LET spectrometer
RS HC el AL Timepix-based sensor (TID and
Fluidics integrated valves, pumps, bubble NASA ARC Radiation sensor P . . NASA JSC
: LET particle characterization)
traps & desiccant chambers
. 3 LED lights & TAOS sensor per
Optics fluidic well (16 wells per card) BN
Thermal Dedicated thermal control per Reaction Wheels/  XACT 3-axis Attitude-Control Blue Canyon
fluidic card Star Tracker / IMU System & Star Tracker Technologies
Sensors Temperature, RH, pressure Sun Sensors 5 sun sensors SolarMEMS
Bus C&DH Bus Power
Processor UT700 LEON 3 Space Dynamics  EPS TI-MSP430 FRAM NASA ARC
Data Storage MRAM & Flash Batteries 186508B Li-ion Panasonic
Bus Comm Solar Array 4 HaWK solar arrays MMA Design
Radio Iris v2 transponder JPL Propulsion
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BioSentinel: science instrumentation

. 16-well fluidic card (x18) Card stack 9-card fluidic manifold (x2)
Budding yeast '

LET spectrometer
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\ﬂ? 9-card manifold
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X 3-way Card bubble
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BioSentinel: microfluidics

Check valves

Fluidic card Filters

manifold

Desiccant
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BioSentinel: microfluidics

3-LED emitter

Microfluidic t Optical
card (x18) ; Source
E Heater
i layer
I PCboard
heater layer LEDs _ diffuser
C - = I - — = '
— “ Fluid inlet manifold |
ol Fluidic
i3 5 r;’mj—* card
o & Semi-transparent filter
Temperature sensor - ‘i’ 9 membranes: 1 um pores
(embedded RTD) <&
"’Yeasb 10 mm
J .
_pl L Polycarbonate
X ) Heater
o 9 v layer
B — 1 ] Air/fluid outlet manifold
& heater layer Optical
Detector chip detector

[ PC board




BioSentinel: optical detection system

Dedicated 3-color optical system at each well to track growth via
optical density and cell metabolic activity via dye color changes

LEDs:

570 nm (green, measures pink)

630 nm (red, measures blue)
850 nm (infrared, measures growth)
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BioSentinel: optical detection system

Dedicated 3-color optical system at each well to track growth via

optical density and cell metabolic activity via dye color changes

LEDs:

570 nm (green, measures pink)

630 nm (red, measures blue)
850 nm (infrared, measures growth)
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BioSentinel: ISS experiment

ISS LET spectrometer data from April 14
ISS instrument launched on SpaceX CRS-24 on Dec 21, 2021, i3 T

and installed into SABL incubator cof i I
First set of cards activated in late-Jan 2022; last one completed in &, | | ‘
mid-June Sari3/o2 7 Hepa-0000 G300 0600 G900 1200 1500 1600
ISS payload returned on SpX-25 in late-August LET_RAW_SCI_CUM, ABSORBED_DOSE
Data used as LEO control and to validate instrumentation . r_//
€65/
6.4 ""I——l * L *
Card 8 opthal readlngs after ~72 hours '04/13/22-210014-00:00 03:00 06:00 09:00 12:00 15:00 18:00
Time
| well 1 4 well R
. S
—I_ —
e ——— — ——e——— \\,j} = =]
well 5 well b . o o
<] - - Bio activity ~48 hours after activation
— no bio) .
. ~ (and continued for ~7 days)
===l g& — Reagents (growth medium and
015 30 45 60 76h alamarBlue dye) working properly Ground control unit at NASAARC




BioSentinel: ISS experiment

Well #5 in all cards has no
biology, thus no optical
changes due to cell activity
are expected

relative illumination for R,G (Hz)
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BioSentinel: how did we get here?

Instrument &
flight heritage

=

* Model organism & strain selection

* How to fly the biology? Dry/wet?

 Long-term viability & biocompatibility

* Materials, sterilization method,
reagents, fluidic components...

« Multiple fluidic cards; 288 wells

« LEO control (and ground)

» Data telemetry & processing



BioSentinel: radiation environment characterization

» LET spectrometer mounted outside the BioSensor enclosure

i . T Absorbed dose rate  Total absorbed dose
* Reports cumulative dose, dose rate & particle distribution based on LET

_ _ | _ (mGy/day) (6-mo mission)
« Performing nominally; unaffected by BioSensor issues
Ground ~0.0003 0.055 mGy
Science objectives: ISS
o Characterize radiation environment (Jan 31— Jun 17, 2022) 0.217 -
o Compare ISS, deep space, and ground data
. . . - Free-flyer 0.306 55.78 mGy
o Characterize contribution from solar and GCR particles
¢} Free-flyer
U 0.25+0.04 i
(transport modeling)
I ET 0 D ) E ctrome pril 14 Free-flyer LET spectromete Dec 16
LET_RAW_SCI_ABSORBED_DOSE_RATE ‘ <1073 , LET_RAW_SCI_ABSORBED_DOSE_RATE LET_RAW_SCI_ABSORBED_DOSE_RATE
: ;
R ;‘; o “L’:;':LJRA\::,;;Lcwu}:'l(‘f;s;‘;:ssl;t:;ss o ) LET_RAW_SCI_CUTP:lrl‘_mABSORBED,DOSE {1“
2.328 - ___,_,J'_’J 357
TS e 100 1200 1500 1000 2 | 04/13/22-21D0P14-00:00 03:00 06 urrwlme 09:00 12:00 15:00 18:00 £ A 2z 12a3 12714




BioSentinel: radiation environment characterization

» LET spectrometer mounted outside the BioSensor enclosure Absorbed dose rate  Total absorbed dose
« Reports cumulative dose, dose rate & particle distribution based on LET (mGy/day) (6-mo mission)
« Performing nominally; unaffected by BioSensor issues
Ground ~0.0003 0.055 mGy

Science objectives: 1SS

o Characterize radiation environment (Jan 31— Jun 17, 2022) Sy -

o Compare ISS, deep space, and ground data

o Characterize contribution from solar and GCR particles Free-flyer 0.306 2578 mGy

o Characterize solar particle events (SPEs) Free-flyer IR AL )

ISS Biosentinel 1 Day Flux March 3 2022 vs REM2 106 (US Lab) (transport modellng)

1 T T T
& o Flux R_EM2 . . .
£ o Flux BioS LET spectrum (in Si; 20M events); first 49 days
£ 5
3 0.1 E'EI N Sum for all LET bins, 49 days (20 M events)
3 -
; s 1,000,000 H
C},U? 0.01 = 100,000 He
§
';'\ 10,000 C
: . o
% 0.001 - 7 é 1,000 Mg
=3 _...>;. Fe
n o
:6, K= 100
5 0.0001
= : o 10
i
10
0.1 1 10 100 1000 o
0.15 1.50 15.00 150.00
LET, keV/pm

LET Silicon (keV/um)



BioSentinel: radiation environment characterization

CME event on March 13

>100 MeV proton intensity enhancement
Steady return to background levels

BioS LET spectrometer detected event

2023-03-10 10:00:00

B ¢

GOES Proton Flux (5-minute data)
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BioSentinel: top risks & lessons learned

1 Long-term pre-launch integration time for biology Turn spacecraft over as late as possible
2 DSN antenna oversubscription Use non-DSN antennas (e.g., ESA)

3 Flight software update after deployment SIM tests; revert to previous version if issues arise



BioSentinel: top risks & lessons learned

1 Long-term pre-launch integration time for biology Turn spacecraft over as late as possible

Use non-DSN antennas (e.g., ESA)

2 DSN antenna oversubscription
SIM tests; revert to previous version if issues arise

3 Flight software update after deployment

Top Issue: multiple launch delays

Long-term testing (reagents, biology, etc.)
Environmental monitoring requests at KSC
Constant communication with partners

How the project managed the issue?

Results: Loss of personnel
Constant replanning (e.g., moving trajectories)

Additional battery recharging
Effects of long-term storage inside BioSensor enclosure

Constant communication between project, NASA, and SLS
Plan for such complex mission (e.qg., personnel, battery charging)
Improve environmental monitoring if biology involved

Recommendations:




BioSentinel: top risks & lessons learned

1 Long-term pre-launch integration time for biology Turn spacecraft over as late as possible
2 DSN antenna oversubscription Use non-DSN antennas (e.g., ESA)
3 Flight software update after deployment SIM tests; revert to previous version if issues arise

Issues, lessons learned & mitigations

Modify design for future missions

i insi Late i i I . ) :
i | Newer yesst vl Long duration effects inside ate integration and/or payload o indluds ki lad & ineaeion:
sealed enclosure (1 RH) swap . .
/M desiccant inside enclosure
Loss of personnel & constant Analyze risks associated with Document for future personnel on
2 Unknown launch date . . . . s .
changes in trajectory unigue mission conditions why decisions were made
EVT i ny | n : :
: provided many lessons Work around issues without Conduct early/scaled-down EVT to
3 Late payload EVT not ideal learned that could not be : : :
design changes feed potential design changes

implemented for this mission



How are we improving LEIA based on lessons
learned from BioSentinel?




LEIA lunar surface mission

LEIA: Lunar Explorer Instrument for space biology Applications

Microfluidics
Card (x16)

¥ To CLPS lander

Desiccant Tray Bag Tray A a )

Science Aims:

1. Determine cellular sensitivity to the lunar environment

2. Test production of antioxidant carotenoids for use in crew dietary supplementation

3. Engineer genetic countermeasures to test for enhanced tolerance to the lunar surface
4

Measure biologically relevant radiation at the south pole landing site




LEIA improvements

LEIA prototype
(open configuration)

ARES Radiation
Detector \

EPS with
BeagleBone —> /
boards ‘




LEIA improvements

How are we preventing high humidity inside the BioSensor enclosure?

Bank 1 fill
Replaceable &= !

desiccant

Bank 1 waste

Card Tray

Pump, sealed manifold,
Bank 1 and control board

Manifold Bank 2
Manifold Sealed Bag Tray

Increased desiccant Improved seals & protected connectors



LEIA improvements

O-rings for water-tight seal

New manifold
design to re-route
plumbing

Bag tray contains bags,
heaters, and RTDs

BioSensor
4X Fasteners



BLEO instrumentation: future & ongoing

A flexible design that will be used in different space environments
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