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Outline

1. Interpretable, Data-driven Machine Learning Background

• What do we mean by ‘interpretability’ and ‘generalizability’

• Genetic Programming with Symbolic Regression (GPSR)

• Data-driven interpretable ML for constitutive models

2. Laying a Scientific Machine Learning Foundation

• Prescribing the model domain with Continuum Thermodynamics

• Verification studies for ML material models

• Breaking down microstructure complexity into bite-sized steps

3. Finite Element Method Auto-implementation

• Tensor transform method for surface mapping



Machine Learning in Engineering

https://christophm.github.io/interpretable-ml-
book/agnostic.html

Engineers and scientists seek interpretability for:

• Building trust

• Directing future data collection

• Informing feature engineering

• Informing human decision-making

Analytic models are inherently interpretable and common insights, 
like feature sensitivies, are readily obtained.

Explainable models go beyond the interpretable to enable 
justification of why a model is generalizable.

“Interpretability is the degree to which a human can 
understand the cause of a decision”1

1Miller, Tim. (2017) "Explanation in artificial intelligence: Insights from the social sciences." arXiv:1706.07269.



Name That Model

𝒚 = 𝒙𝟐



Name That Model

𝒚 = 𝒙 + 𝐬𝐢𝐧 𝒙



Name That Model

𝒚 = 𝟐. 𝟓𝒙𝟐 + 𝐬𝐢𝐧 𝟑𝒙 𝒆 𝒙



Genetic Programming with Symbolic Regression



Genetic Programming with Symbolic Regression

GPSR Algorithm Concept

Genetic Programming (GP): Evolution of computer programs 
Symbolic Regression (SR): Searching space of mathematical functions 
Fitness Function: Definition of how model matches data

(1) generate population of equations, (2) create offspring, (3) evaluate fitness, (4) select equations

Mutation

Crossover

𝑦 = 𝑥2 − 2𝑥
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Data-driven GPSR for Hardening

Calibrate VPSC to experimentEBSD .ctf data (“Middle”)

• Subsample grain orientations
• Test GPSR model against VPSC 

test simulations

Generation 1000 simulated ‘Tests’

*Example for SR at room temperature

*Viscoplastic self-consistent (VPSC) K. Garbrecht, 2021, IMMI



Data-driven GPSR for Hardening

3 Randomly sampled specimen stress-strain 
testing data vs. GPSR model result

ε = Plastic Strain (%)  α = Texture Parameter 1   β = Texture Parameter 2

MAPE = Mean Absolute Percent Error (%)

Partial Derivatives w.r.t. texture parameters

𝜎 = −0.16 −2.5E4 + 1.3E4α +
β

cos β
− β −2.5E4 + 1.3E4α + 3.6E − 3 sin −3.7E3 − ϵ −2.5E4 + 1.3E4α

𝜎 = 𝑐1𝐹 𝛼 + 𝐺(𝛽)𝐹(α) + 𝐻(ϵ)𝐹(α)

CV Error Metric Results

Training MAPE 0.64

Testing MAPE 0.63

K Garbrecht, 2021, IMMI



Mechanics-driven GPSR for Yield Surface

Define fitness for plasticity (implicit) equations
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Prager Consistency Condition:

average normalized deviation of 𝒇:

G. Bomarito et al., 2021, CAS



Verification of IML Constitutive Models

Linear hardening

simplify

Exact solution form recovered
Coefficients produced result in 0.0001% relative error

Stats:
70 simulated tests
33 points for each test
40 cores
~1 minute for convergence

G. Bomarito et al., 2021, CAS



Mechanics-driven GPSR for Yield Surface

Simulated training data:
• Spherical, random void microstructure
• Proportional loading
• Matrix von Mises (perfect) plasticity
• Random perturbations of voids

Stats:
169 simulated tests
145 points for each test
160 cores
~72 hours for convergence

𝜎ℎ = 1, ҧ𝑣 = 0.0635 𝜎ℎ = 1.5, ҧ𝑣 = 0.0645

G. Bomarito et al., 2021, CAS



Physics-based Derivation Before GPSR (P-GPSR)

Objective: balance foundation from analytical methods with accuracy from ML Derivation

Data+IML

Generate 
Data

K. Garbrecht et al., 2023, JMPS



Verification of IML Constitutive Models

• 25 load cases for training

Gurson Model: 

(top) Zamora, 2022, MS Thesis, U. Utah (bottom) K. Garbrecht et al., 2023, JMPS

Algorithm Generations Median MAE [min, max] MAE Time (h)

GPSR 10000 1.3x10-3 [4.9x10-6, inf] 7

P-GPSR 250 1.2x10-9 [<1x10-20, 3x10-6] 1

• Gurson material model generated data



Assumption Relaxation

(without microstructure assumptions)

(with all Gurson assumptions)𝑞2 + 2𝑓 cosh −
3

2
𝑝 − 1 − 𝑓21

(void interaction training data)𝑞2 + 2𝑓Θ2 − 1 − 𝑓2Ω2

(growth self-similarity training data)𝑞2 + 2𝑓Θ3 − 1 − 𝑓2Ω3

Θ1 Ω1
Training data and stages:

Assumption Model

Void interaction Single void, periodic BCs, void remains spherical

Void growth self similarity Single void, periodic BCs, no void constraint

Seed Θi and Ωi

in initial pop. for 
Θi+1 and Ωi+1

D. Birky et al., 2023, MSMSE



Relaxed Void Growth Self Similarity

𝑞2 + 2𝑓 0.1225 𝑞 + 1 cosh −
3

2
𝑝 − 1 − 𝑓2

𝑞

4𝑓
−

3

8𝑓
− 1

Gurson model
Bingo model
Training data

D. Birky et al., 2023, MSMSE



Yield Surface Mapping using TTM

Mapping relies on the tensor-transform method (TTM), 
which represents yield surfaces as:

𝝈𝑇𝑷𝛔 = 𝜎𝑖𝑃𝑖𝑗𝜎𝑗 = 1

𝝈𝑇 = 𝜎1, 𝜎2, 𝜎3
e.g., von Mises yield criterion:

σ1 − σ2
2 + σ1 − σ3

2 + σ2 − σ3
2 = 2σ𝑦

2

𝑷 =
1

𝜎𝑦
2

1 −1/2 −1/2
−1/2 1 −1/2
−1/2 −1/2 1

TTM relies on transforming a surrogate 𝑷 tensor via:
𝑷𝒓𝒆𝒂𝒍 = 𝑨𝑇𝑷𝒔𝒖𝒓𝒓𝒐𝒈𝒂𝒕𝒆𝑨

𝝈𝑇𝑨𝑇𝑷𝒔𝒖𝒓𝒓𝒐𝒈𝒂𝒕𝒆𝑨𝛔 = 1

von Mises yield surface 
projection on the 
deviatoric plane 
represents a circle

This is our surrogate 
(isotropic) yield surface

𝑨

Oller, et al., 2003, CMAME



Training Data Generation: VPSC

• Each grain is a visco-plastic anisotropic ellipsoidal inclusion that has a deviatoric plastic response within a 
visco-plastic anisotropic Homogeneous Effective Medium (HEM).

• Stress and strain are uniform within a grain (inclusion) but can differ from the HEM values, in contrast to 
a Taylor model (where strain rates are equivalently imposed).

R. Lebensohn & C. Tome, 1993, Acta Metallurgica et Materialia

ሶ𝜀𝑖𝑗′ = ሶ𝛾𝑜෍

𝑠

𝑚𝑖𝑗
𝑠 𝑚𝑠 ∶ 𝜎

𝜏𝑠

𝑛

= 𝑀𝑖𝑗𝑘𝑙𝜎𝑘𝑙
′

ሶ𝜀𝑖𝑗
′
= 𝑀𝑖𝑗𝑘𝑙𝜎𝑘𝑙

′

Grain strain rate is a sum slip rate on each system, s, 
obtained by the Schmid tensor, m, and stresses s, ts

The HEM is subject to an equivalent strain rate where 
an interaction tensor, M, describes the ‘stiffness’

𝜎𝑖𝑗,𝑗= 𝜎𝑖𝑗
′ + 𝑝𝛿𝑖𝑗 ,𝑗

= 0Equilibrium is enforced by solving stress divergence 
equation (conservation of momentum):



Yield Surface Mapping using TTM

Yield surfaces representing highly textured 
stainless steel were generated with VPSC (i.e., 
simulated data)

Objective: demonstrate the ability to map 
arbitrary yield surfaces to surrogates

Training data: 
Stainless steel loaded with ϵ𝑣𝑚 ∈ [0, 0.125]
Yield surfaces extracted at 6 points during 
loading history
37 points per ϵ𝑣𝑚 value

𝑆 2
𝑑
𝑒
𝑣

[M
Pa

]

𝑆1
𝑑𝑒𝑣

[MPa]



Yield Surface Mapping using TTM

𝑩 = 𝑨−1 = 0.000228ϵ𝑣𝑚 + 5.298
−0.225 0.39 0.23
−0.093 0.41 0.075
−0.258 0.512 0.139

MSE = 0.0108 

Apply 𝑩 to training data

𝑆 2
𝑑
𝑒
𝑣

[M
Pa

]

𝑆1
𝑑𝑒𝑣 [MPa]

Apply 𝑨 to surrogate surface

𝑆 2
𝑑
𝑒
𝑣

[M
Pa

]

𝑆1
𝑑𝑒𝑣 [MPa]



Finite Element Method Auto-implementation

Map to surrogate yield surface

𝑨 𝑩 = 𝑨−𝟏

Use IML to find mapping tensor 
𝑨 from “real” (anisotropic) 

surface to a surrogate (isotropic) 
surface similar to *Oller et al.
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Solve FE model with surrogate model

Solve finite-element model with 
a single surrogate implemented 

as a user constitutive model 
(e.g., UMAT in ABAQUS)

Data collection

Collect yield-surface data, 
typically from experiment

(“real”)

This is not an endorsement by the National Aeronautics and Space Administration (NASA)



Summary

1. Interpretable, Data-driven Machine Learning Background
• We seek interpretable and generalizable material constitutive models
• GPSR provides one means for inherent interpretability through the evolution of analytical expressions
• A purely data-driven approach results in accurate but unclear models

2. Laying a Scientific Machine Learning Foundation
• Partial derivation before the ML process:

• forms a guiding parent equation
• improves model accuracy and training performance
• define features of importance in training data sets, and 
• promotes generalizable models

• Verification studies (i.e., checking for known analytical models) with GPSR are a natural step
• Microstructure complexity can be added iteratively to produce an accurate, complex, but still 

interpretable model

3. Finite Element Method Auto-implementation
• With the tensor transform method, only one surrogate constitutive model need be implemented in 

FEA and GPSR provides the transform to the real constitutive model
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