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* A way forward



Motivation and Scope:
Why are we here?



Courtesy of Baron Maddock, CC BY 4.0,

P ro b I e m a n d G Oa I https://commons.wikimedia.org/w/index.php?curid=114048157

Problem

* The inability to establish appropriate assurance for
Al/ML components leaves us unable to effectively
manage their risks and benefits.

- Drives cost of development uneconomically high 788 A
. . vy Elevators carry two billion passengers a day over hundreds
- Delays adoption of Al/ML at scale in safety critical of millions of vertical miles in over 200 nations.
systems I\

- Results in unknown and unmanageable risks

Goal

 Discover and define what constitutes sufficient
scientific-based evidence to substantiate a safety
claim related to an Al/ML component performing a
safety-critical function.

Courtesy of
Unknown author -
Copie de gravure
ancienne, Public
Domain,
https://commons.
wikimedia.org/w/i
ndex.php?curid=30
135037

Al/ML will not see widespread adoption in safety-critical aviation systems until it is properly assured.
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Towards standards for Al/ML...

« Standards require a stakeholder consensus on a driving need, commitment to

support development, and subsequent application.

- Broad sector of stakeholders should be involved, or uptake will suffer

- SME contributions from all relevant or impacted stakeholders (e.g. aircraft OEMs, avionics OEMs, pilots, controllers,
researchers, regulators, etc.)

« Standards development activities require a keen and deep understanding of the
problem being solved and the technologies deployed in its reference

iImplementation.
- Understand mechanisms and limits of fundamental, underlying science of implementation and verification technologies

* NASA’s Role is to:

- Provide SME(s) to help create the standard,;
- Provide relevant findings from NASA R&D activities;

- Learn of gaps or challenges that need to be addressed, then start up (or change) R&D activities to help fill
these gaps or address the challenges.
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But wait! AI/ML is already here...

» Use of optimization tools during design &%
of Boeing 787 ».
* Wing-Body Design
« Composite Material Design

* I|nitial efforts at NASA to deploy Al/ML
techniques in aviation contexts

« Using Large Language Models to look for
positive contributions to safety in ASRS
reports

« Anomaly Detection/Vulnerability Discovery
i and Others ... Courtesy of Timo Breidenstein —

http://www.airliners.net/photo/United-Airlines/ Boeing-787-822-

Dreamliner/2142634/L/, GFDL 1.2,
https://commons.wikimedia.org/w/index.php?curid=20544763
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Definitions:
When | say Al/ML, | mean...
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Definitions: Al and ML '

o Al Intelldgence displayed or AR
simulated by technological intelligence
means, [where intelli ence IS
deflned] by the standard of
human mtelhﬁence the sort of | |
intelligence that humans display. PEETTE L

- “Al Ethics” by Mark Coeckelbergh,
MIT Press

 ML: Use of statistical techniques
to analyze data and create Data Sciences
algorithms that can generalize to ,
unseen data without explicit Deep Learning
programming

- https://gradml.mit.edu/intro/



https://gradml.mit.edu/intro/

)
When | say Al, | mean...

e Reinforcement Learning, Supervised Learning, Unsupervised

Machine Learning Systems Learning, Generative Systems...

U EREER BN LT aS A » Production Systems, Expert Systems, Fuzzy Logic, ...

Search and Optimization

! e Uninformed search, Informed Search, Parallel Search,...
Techniques

Decision Making under
Uncertainty

e Bayesian Inference, Parameter Learning, Structured Learning,...

Evolutionary Strategy e Evolutionary Algorithms, Swarm Based Algorithms,...
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Question(s):

What constitutes sufficient evidence
that an ML component meets its
requirements?



S EE—
The three “E’s”

* Explicit Claims

* Required emergent properties must follow from the combination of the properties of
the system component (that is, ML component implementation) and the domain
assu1r:np_t|§[>ns (context); environmental assumptions (including interfaces); and
constraints.

* They should indicate explicitly the level of assurance claimed.

* Evidence

* Concrete evidence is usually a combination of testing, analysis (including modelling
and simulation), and appeals to process.

* e.g., software deployed in the field is the same as software under test/analysis

* Expertise
. Devglcg)ers should be familiar with best practices and deviate from them only when
needeq.

* Experts can wisely tailor their approach to assuring novel elements with respect to
methods, languages, tools, and processes.

Adapted from: National Research Council. 2007. Software for Dependable Systems: Sufficient Evidence?. Washington, DC: The
National Academies Press. https://doi.org/10.17226/11923. 11
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Explicit Claims: ML as a component of
a system

* Safety is not an intrinsic property of an ML component.

* An ML component may be safe in the context of one system but not in the
context of another.

* The specification of an ML component characterizes the behavior
of the ML software at its interface with other system components
and the environment.

* Itis important to distinﬁuish this specification from the desired emergent
(safety) properties of the system in the physical world.

* If a ML component only meets its assurance criteria if humans
interacting with the system behave in a certain way, then this
becomes an assumption on the environment of thé component (or

a clz%r_ltstraint of system components) that must be evaluated for
validity.
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Explicit Claims: The role of
assumptions

Component
Specification

Domain Assumptions (context): An explicit statement of
domain assumptions (context) of the ML component is
required to evaluate any safety argument associated with
that component.

* This requires an argument that the specification of the ML
component and the domain assumptions together imply the Domain

Assumptions

projection of the desired emergent property on the component. e

* Must perform all three activities: (1) check the ML component, (2)
check the domain assumptions, and (3) check that they have the
correct combined effect.

Environmental Assumptions: An explicit statement of
environmental assumptions (often physical parameters
outside the scope of design authority) is needed to evaluate ,

any safety argument associated with a component. Acsumptions

* These assumptions must be validated at design time and during
operations.

(projected)

Safety
Requirement(s)
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Explicit Claims: The role of
architecture

* The case that a system with an ML component with architectural mitigations satisfies a
safety claim (or requirement) may proceed as follows.

Holistic argument Independence argument a?;ﬂ?ﬂgﬂt

: - : Only certain
Given specified architecture, Based on components are

projected safety requirements will be architectural relevant at given
satisfied by principles levels of design

assurance
Component Domain &
specifications environmental
assumptions

* Note that restrictions related to architectures and relief from required design assurance
levels specified in current standards must be considered in such an argument. 14

Components

behave
appropriately.
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Evidence: Why traditional techniques
do not translate for ML

_ Traditional (Physical) Components ML (Software) Components

Criteria Criteria are simple (e.g., failure/breakage rate etc.) = Complexity of ML and its interdependence on its
for the component as a whole. domain and environment make it difficult to have
explicit and precise articulation of meaningful criteria
that can be measured.

Feasibility of For physical artifacts, limited testing provides Limited testing of ML cannot provide compelling
Testing compelling evidence of quality, with the continuity of evidence of behavior under all conditions.
physical phenomena allowing widespread
inferences to be drawn from only a few sample

points.
Process & Underlying principle of statistical quality control is More rigorous ML design processes will likely lead to
Product that sampling the product coming out of a process better quality ML components. However, this
Correlation gives a measure of the quality of the process itself,  correlation is not sufficient as the sole provider of

which in turn will determine the quality of items that  evidence, as correlation does not imply causation.
are not sampled.

Adapted from: National Research Council. 2007. Software for Dependable Systems: Sufficient Evidence?. Washington, DC: The National Academies
Press. https://doi.org/10.17226/11923.
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Evidence: Testing, simulation and
analysis, and formal methods

* Testing for ML components is indispensable.

* However, testing alone is insufficient, as it is unclear what coverage means in terms
of ML components.

* Simulation and analysis can provide needed checks for ML components.

Validation of environmental
assumptions, interface

Checking that components
in aggregate achieve
appropriate system-level
effects

Feasibility or satisfiability Verification of code
analysis of temporal implementation against

d=sHIplions jaa behaviors component specifications

constraints

* However, simulation and analysis is insufficient due to model inaccuracy, incorrect
assumptions (e.g., environmental, operator response, execution platform), etc.

* Formal methods can provide guarantees for ML components.
* Formal methods can provide formal proofs of correctness.
* Formal methods techniques often lack scalability.

16
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Expertise: Transparency and
credibility of claims

* To establish that a system containing an ML component is safe will involve

inspection and analysis of the safety claim and the evidence offered in its
support.

* Assurance of ML components requires explicit safety claims (or assurance
requirements), evidence for those claims, and a rigorous argument that

demonstrates that the evidence is sufficient to establish the validity of the claims (or
satisfaction of the requirements).

* Evaluator should be able to calibrate not only the technical claims and evidence
but also the organization that produced them, because the integrity of the
evidence chain is vital and cannot easily be assessed without supporting data.

s Process by which data
Qualifications of the Track record of the : :
personnel involved in organization in Process by which the used to train/test the

. ML component was ML component is
the development of the providing ML :
ML component components developed collected/curated/maint

ained etc.

17
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Key Questions to Answer (l)

How do we know when an ML  Sufficient representation and size of training dataset, accuracy

component’s behavior meets its vs. generalizability, what constitutes an actionable specification,
requirements? etc.

roc\é\égg‘sa;ﬁc}hmeéitwg: gjrig;rt?ntse 4 + How do you use testing (i.e., creating logical based oracles,
P y etc.), simulation (i.e., model validity), (formal) analysis (i.e.,

in developi d evaluating both - : .
i tgvd?t%e:ggaanrlj ﬁti;:tg:;?s?o scalability), runtime verification frameworks, etc. in assurance?

What are the set of characteristics and . _ _ _ . _
parameters of an ML system that « Data and information quality, architecture, associated metrics,

allows you to bound its behavior (e.g., etc.
capabilities, limitations, etc.)?

AT et b a e el ntis s ettt © State, Environmental, and Input Information, Decision Making
required to reconstruct and audit ML Logic, Configuration Management, Version Control, etc.

closlllez el Ryl ENICERIRUEREEEREE « How do you create an encoding scheme that would reduce the
an accident? volume of state information into a tractable, compact form?

18
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Key Questions to Answer (ll)

How should information assurance
o[cHaE=alel(STeRTo] 8\ | ENeloTaglolola sl SN (s « Data fusion; information synthesis; data collection, curation, and
order to yield (composable) safe assurance; etc.
systems?

(o)A TaNol g Elale[SHo SN NEE SR « Configuration management, version control, database
ML systems in order to preserve management, etc.
assurance? * Full recertification, continuous authorization to operate, etc.

Wl NER| =l olol el g EI R ORFEISRERIYIEN « Clear (and testable) set of requirements, outputs easily checked for
implementation for a function? correctness, corrective action can easily be taken, etc.

When is it appropriate to use

\/| SN a B i [=We SV (o] o) Ta| = a0 /o] « Tool qualification (DO-330), ASAP/ASRS database querying for
accident/incident analysis research, prognostics/diagnostics, scheduling, maintenance, etc.

process?

19
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Key Questions to Answer (lil)

What are key domain specific _ N _ _
ool o R R VA el a3 © Lack of safe default mode/state, inability of pilot to intervene,

safety of ML implementations and how etc.
will we address them?

What is the current human contribution
SR CALRUEREII IR EEEES o Consider critical information dependencies across tasks

by an ML/Al implementation (i.e., full : :
ex%/ent of the capgbilities and Iiﬁnitations executed collaboratively by diverse agents, etc.
of the human role)?

Can the open world problem be solved _ _ _ . -
« Handling epistemic uncertainty, applicability of real-world data

(and standardized) without humans to
handle edge cases while maintaining across different environmental assumptions, etc.

the current level of NAS safety?

» Functional requirements, Safety requirements, Environmental
assumptions, Domain specific constraints, etc.

Can an actionable specification for a
function be extracted from a dataset?

20




A way forward...
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Going Forward: Deploying ML in
aviation systems

 Start with ML in design/analysis/maintenance (offline
system, offline learning)

« Start with simple, well-defined, non-safety critical applications

Recognizing normal and anomalous patterns in large datasets for
research purposes (collaborative),

Querying large databases for research purposes (ASRS/ASAP), etc.

« Progress to ML in embedded flight/operational systems
(online system, offline learning)
« Start with functions which have

Clearly defined requirements,
Means of checking the answer/output, and
Means of intervention and mitigation of incorrect answers/outputs.

22
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Going Forward: Standards development
for ML in aviation systems

 |dentify current and ongoing standards efforts that may be
applicable (e.g., DO-330, etc.) to ML components.

* Leverage other standards bodies when appropriate to avoid
duplicative efforts.

. fStandards efforts should be targeted at areas in which gaps are
ound.

A measured approach to standards development for ML
applications should target those functions for which there are
actionable specifications and traditional implementation and
assurance techniques.

. St?ndardize criteria for what constitutes sufficient evidence for ML
safety.

23
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Takeaways

* Deployment and standardization efforts should proceed
methodically and with a justifiable basis, thereby enabling safe
adoption of ML applications in aviation.

* Premature efforts to (deploy and) standardize may damage
paths to transition for ML technologies, engender technical
debt, or set back the entire aviation industry.



Questions?

natasha.a.neogi@nasa.gov
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S EE—
Definitions: Al and ML

 Al: Provide scientific AI
understanding of the
mechanisms underlying thought
and intelligent behavior and MDP DNNs
their embodiment in machines Rl

(AAAI)

 ML: Use of statistical techniques G N C S%S M L

to analyze data and create
algorithms that can generalize
to unseen data without explicit
programming (MIT)
Adapted from Atkins, SciTech 2024
26
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Explicit Claims: The role of

assumptions
Domain Assumptions (context): An explicit statement of (Application) Domain
domain assumptions (context) of the AlI/ML component is « circumstances, background,
required to evaluate any safety argument associated with or setting in which something
that component. occurs or exists

* This requires an argument that the specification of the Al/ML framework for understanding
component and the domain assumptions together imply the and interpreting information
projection of the desired emergent property on the component. events. or situations ’

* Must perform all three activities: (1) check the AI/ML component,
(2) check the domain assumptions, and (3) check that they have
the correct combined effect.

Environmental Assumptions: An explicit statement of Environment
environmental assumptions (often physical parameters + surroundings or conditions in
outside the scope of design authority) is needed to evaluate NI :
, : ponent exists
any safety argument associated with a component. : :
 physical, social, cultural, and

* These assumptions must be validated at design time and during natural factors
operations.

27



Expertise: Reuse, change
management, and criticality creep

* As Al/ML components evolve, they will require re-evaluation to
determine whether they still satisfy their safety arguments.

* Explicit articulation of assumptions (domain, environmental, interface, etc.)
IS critical.

* Current scientific understanding of AI/ML components and state-of-
the-art verification and validation techniques does not provide the
ability to reason about system-level properties based solely on the
properties of the system’s components.

* Pace of change is what distinguishes AI/ML from other software/hardware.

* As systems evolve, scope and criticality creep may require re-
evaluation of the sufficiency of the target level of assurance for an
Al/ML component.

e

28
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Expertise: Managing assurance costs

* Only implement Al/ML when necessary.
* The key to achieving requisite assurance at reasonable cost is simplicity,
including simplicity of critical functions and simplicity in system interactions.

* Use architectural means to mitigate complexity caused by Al/ML
when possible.

* Establish independence so system level properties are guaranteed by individual
components which preserve the emergent property despite failures in the rest of the
system.

* Use rigorous processes to develop Al/ML.

* Each step in developing the AlI/ML software needs to preserve the chain of
evidence on which will be based the argument that the resulting Al/ML
component meets its requirements (and the overall system is safe).

29



Guiding Principles

Create a culture where the design and assurance processes for Al/ML
systems embrace the application of rigor, reproducibility, and reusability.

Design
* Rigor
£®> * Principles, methodologies and
= theoretical frameworks for data
collection and curation, specifying
requirements, prototyping, etc.
6\' Reproducibility

Replicability of design practices

* Reusability
* (Cannot engineer point solutions.
/4 Need diversity, extensibility,
2 ‘\ portability, etc.

Repeatability, Reproducibility, and

Assurance

* Rigor
 Understanding of the science
underpinning the assurance of
intelligent systems
* Reproducibility
* Diverse assurance methods should not
yield contradictory results

* Reusability
 Assurance arguments must be

extensible over multiple contexts and
update throughout lifecycle

Focus on science underpinning Al/ML design & assurance to establish sufficiency guarantees.



Technical challenges and leadership

Technical Leadership

Scalable methods addressing formal verification
of safety and liveness properties of AI/ML
systems

Challenges

® Verification and Validation of AI/ML Systems
®* Properties of Concern: Safety, Liveness,
Security, Fairness...
® Human Machine Teaming Interactions
®* Role Allocation: Authority and
Responsibility
® Bounding Behavior of AI/ML Functions in
Uncertain Environments
* Contingency Management
* Fault Containment
®* Heterogeneous Vehicles
* Mixed ConOps

® Trusted Decision Making
* Adaptive/Non-Deterministic
® Shifting control paradigm

Methods for designing, assessing, and assuring
safety over diverse role allocation and decision-
making paradigms

« Mathematical models for describing
adaptive/nondeterministic processes as
applied to humans and machines.

Provably Correct Synthesis of Assurance
Monitors

« Formally Verified Runtime Monitors, Steering
Functions

Simulation and Testing approaches to increase
confidence in safety critical decision making for
Al/ML systems

Certification Standards

Technical leadership will advance state-of-the-art and state-of-practice in Al/ML systems



Assurance barriers to fielding Al/ML
components in civil aviation

e

Lack of scalability of current approaches

« DO-178C and software complexity
* Pace of change and update rates for Al/ML components

Lack of approaches, tools and techniques for evaluating safety properties in
Al/ML components

* Current approaches geared towards obtaining quantitatively predictable outcomes

* Need models, methods and tools to develop high confidence in systems with
» Shifting locus of control between humans and automation
* Non-deterministic and/or adaptive decision making

* Require a confluence of analytic, simulation, test and evaluation techniques

Lack of certification standards

* Need rigorously defined processes and procedures to establish system-level
performance requirements and functionality derived from specified levels of safety

* Cost Effectiveness, Barrier to Entry, Change Management

32



S EE—
Research Issues for Al/ML

®* Behavior of Adaptive/Nondeterministic Systems. Develop methodologies to characterize
and bound the behavior of AI/ML components over their complete life cycle.

®* Modeling and Simulation. Develop the theoretical basis and methodologies for using
modeling q[nd simulation to accelerate the development and maturation of advanced Al/ML
components.

® Verification, Validation, and Certification. Develop standards and processes for the
verification, validation, and certification of AlI/ML components, and determine their
implications for design.

®* Nontraditional Methodologies and Technologies. Develop methodologies for accepting
processes and technologies not traditionally used in civil aviation (e.g., open-source
software, DevSecOps) in Al/ML systems.

® Operation Without Human Intervention. Develop the system architectures and technaologies
that would enable increasingly sophisticated Al/ML components to operate for extende
periods of time without real-time human cognizance and control.

® Roles of Personnel and Systems. Determine how the roles of key personnel and systems,
as well as related human—machine interfaces, should evolve to enable the operation of
Al/ML components.
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