
Approach and Guiding Principles 
for Developing AI/ML 

Components and their 
Standards

Dr. Natasha Neogi
NASA Langley Research Center

FAA Technical Exchange Meeting on ML
March 5th, 2024



Outline
• Motivation and Scope:  Why are we here?
• Definition(s):  When I say AI/ML, I mean…
• Question(s):  What constitutes sufficient evidence that an AI/ML 

component meets its requirements?
• A way forward

2



Motivation and Scope: 
Why are we here?



Problem and Goal
Problem
• The inability to establish appropriate assurance for 

AI/ML components leaves us unable to effectively 
manage their risks and benefits.

- Drives cost of development uneconomically high
- Delays adoption of AI/ML at scale in safety critical 

systems
- Results in unknown and unmanageable risks 

Goal
• Discover and define what constitutes sufficient 

scientific-based evidence to substantiate a safety 
claim related to an AI/ML component performing a 
safety-critical function.

AI/ML will not see widespread adoption in safety-critical aviation systems until it is properly assured. 4

Elevators carry two billion passengers a day over hundreds 
of millions of vertical miles in over 200 nations.  

Courtesy of  
Unknown author - 
Copie de gravure 
ancienne, Public 
Domain, 
https://commons.
wikimedia.org/w/i
ndex.php?curid=30
135037

Courtesy of Baron Maddock, CC BY 4.0, 
https://commons.wikimedia.org/w/index.php?curid=114048157



Towards standards for AI/ML…
• Standards require a stakeholder consensus on a driving need, commitment to 

support development, and subsequent application.
- Broad sector of stakeholders should be involved, or uptake will suffer
- SME contributions from all relevant or impacted stakeholders (e.g. aircraft OEMs, avionics OEMs, pilots, controllers, 

researchers, regulators, etc.)

• Standards development activities require a keen and deep understanding of the 
problem being solved and the technologies deployed in its reference 
implementation.  

- Understand mechanisms and limits of fundamental, underlying science of implementation and verification technologies

• NASA’s Role is to:
- Provide SME(s) to help create the standard;
- Provide relevant findings from NASA R&D activities; 
- Learn of gaps or challenges that need to be addressed, then start up (or change) R&D activities to help fill 

these gaps or address the challenges.
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But wait! AI/ML is already here…

• Use of optimization tools during design 
of Boeing 787
• Wing-Body Design
• Composite Material Design

• Initial efforts at NASA to deploy AI/ML 
techniques in aviation contexts
• Using Large Language Models to look for 

positive contributions to safety in ASRS 
reports

• Anomaly Detection/Vulnerability Discovery
• and others… Courtesy of Timo Breidenstein – 

http://www.airliners.net/photo/United-Airlines/ Boeing-787-822-
Dreamliner/2142634/L/, GFDL 1.2, 
https://commons.wikimedia.org/w/index.php?curid=20544763

http://www.airliners.net/photo/United-Airlines/
https://commons.wikimedia.org/


Definitions:  
When I say AI/ML, I mean…



Definitions: AI and ML
• AI:  Intelligence displayed or 

simulated by technological 
means, [where intelligence is 
defined] by the standard of 
human intelligence, the sort of 
intelligence that humans display.

- “AI Ethics” by Mark Coeckelbergh, 
MIT Press

• ML: Use of statistical techniques 
to analyze data and create 
algorithms that can generalize to 
unseen data without explicit 
programming

- https://gradml.mit.edu/intro/

Artificial 
Intelligence

Machine Learning

Deep Learning

Data Sciences

https://gradml.mit.edu/intro/


When I say AI, I mean…
• Reinforcement Learning, Supervised Learning, Unsupervised 

Learning, Generative Systems… Machine Learning Systems

• Production Systems, Expert Systems, Fuzzy Logic,…Rule Based Learning Systems

• Uninformed search, Informed Search, Parallel Search,…Search and Optimization 
Techniques

• Bayesian Inference, Parameter Learning, Structured Learning,…Decision Making under 
Uncertainty

• Evolutionary Algorithms, Swarm Based Algorithms,… Evolutionary Strategy

⋮ ⋮



Question(s):
What constitutes sufficient evidence 
that an ML component meets its 
requirements?
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The three “E’s”
• Explicit Claims

• Required emergent properties must follow from the combination of the properties of 
the system component (that is, ML component implementation) and the domain 
assumptions (context); environmental assumptions (including interfaces); and 
constraints.

• They should indicate explicitly the level of assurance claimed.
• Evidence

• Concrete evidence is usually a combination of testing, analysis (including modelling 
and simulation), and appeals to process.
• e.g., software deployed in the field is the same as software under test/analysis

• Expertise
• Developers should be familiar with best practices and deviate from them only when 

needed.
• Experts can wisely tailor their approach to assuring novel elements with respect to 

methods, languages, tools, and processes.

Adapted from: National Research Council. 2007. Software for Dependable Systems: Sufficient Evidence?. Washington, DC: The 
National Academies Press. https://doi.org/10.17226/11923.   
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Explicit Claims: ML as a component of 
a system
• Safety is not an intrinsic property of an ML component.

• An ML component may be safe in the context of one system but not in the 
context of another.

• The specification of an ML component characterizes the behavior 
of the ML software at its interface with other system components 
and the environment.  
• It is important to distinguish this specification from the desired emergent 

(safety) properties of the system in the physical world.
• If a ML component only meets its assurance criteria if humans 

interacting with the system behave in a certain way, then this 
becomes an assumption on the environment of the component (or 
a constraint of system components) that must be evaluated for 
validity.
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Explicit Claims: The role of 
assumptions

• Domain Assumptions (context): An explicit statement of 
domain assumptions (context) of the ML component is 
required to evaluate any safety argument associated with 
that component.
• This requires an argument that the specification of the ML 

component and the domain assumptions together imply the 
projection of the desired emergent property on the component. 

• Must perform all three activities: (1) check the ML component, (2) 
check the domain assumptions, and (3) check that they have the 
correct combined effect.

• Environmental Assumptions: An explicit statement of 
environmental assumptions (often physical parameters 
outside the scope of design authority) is needed to evaluate 
any safety argument associated with a component.  
• These assumptions must be validated at design time and during 

operations. 

Component 
Specification

Domain 
Assumptions 

(context)

Environment  
Assumptions

(projected)
Safety 

Requirement(s)
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Explicit Claims: The role of 
architecture

• The case that a system with an ML component with architectural mitigations satisfies a 
safety claim (or requirement) may proceed as follows.

• Note that restrictions related to architectures and relief from required design assurance 
levels specified in current standards must be considered in such an argument.

Holistic argument

Given specified architecture, 
projected safety requirements will be 

satisfied by

Component 
specifications

Domain & 
environmental 
assumptions

Independence argument 

Based on 
architectural 

principles

Only certain 
components are 
relevant at given 
levels of design 

assurance

Detailed 
argument 

Components 
behave 

appropriately.



15

Evidence:  Why traditional techniques 
do not translate for ML

Traditional (Physical) Components ML (Software) Components
Criteria Criteria are simple (e.g., failure/breakage rate etc.) 

for the component as a whole.
Complexity of ML and its interdependence on its 
domain and environment make it difficult to have 
explicit and precise articulation of meaningful criteria 
that can be measured.

Feasibility of 
Testing

For physical artifacts, limited testing provides 
compelling evidence of quality, with the continuity of 
physical phenomena allowing widespread 
inferences to be drawn from only a few sample 
points.

Limited testing of ML cannot provide compelling 
evidence of behavior under all conditions.

Process & 
Product 
Correlation

Underlying principle of statistical quality control is 
that sampling the product coming out of a process 
gives a measure of the quality of the process itself, 
which in turn will determine the quality of items that 
are not sampled.

More rigorous ML design processes will likely lead to 
better quality ML components. However, this 
correlation is not sufficient as the sole provider of 
evidence, as correlation does not imply causation.

Adapted from: National Research Council. 2007. Software for Dependable Systems: Sufficient Evidence?. Washington, DC: The National Academies 
Press. https://doi.org/10.17226/11923.   
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Evidence: Testing, simulation and 
analysis, and formal methods
• Testing for ML components is indispensable.

• However, testing alone is insufficient, as it is unclear what coverage means in terms 
of ML components.

• Simulation and analysis can provide needed checks for ML components.

• However, simulation and analysis is insufficient due to model inaccuracy, incorrect 
assumptions (e.g., environmental, operator response, execution platform), etc.

• Formal methods can provide guarantees for ML components.
• Formal methods can provide formal proofs of correctness.
• Formal methods techniques often lack scalability.

Validation of environmental 
assumptions, interface 

assumptions, and 
constraints

Feasibility or satisfiability 
analysis of temporal 

behaviors

Verification of code 
implementation against 

component specifications

Checking that components 
in aggregate achieve 

appropriate system-level 
effects
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Expertise: Transparency and 
credibility of claims
• To establish that a system containing an ML component is safe will involve 

inspection and analysis of the safety claim and the evidence offered in its 
support.
• Assurance of ML components requires explicit safety claims (or assurance 

requirements), evidence for those claims, and a rigorous argument that 
demonstrates that the evidence is sufficient to establish the validity of the claims (or 
satisfaction of the requirements). 

• Evaluator should be able to calibrate not only the technical claims and evidence 
but also the organization that produced them, because the integrity of the 
evidence chain is vital and cannot easily be assessed without supporting data.

Qualifications of the 
personnel involved in 

the development of the 
ML component 

Track record of the 
organization in 
providing ML 
components

Process by which the 
ML component was 

developed

Process by which data 
used to train/test the 

ML component is 
collected/curated/maint

ained etc.
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Key Questions to Answer (I)
• Sufficient representation and size of training dataset, accuracy 

vs. generalizability, what constitutes an actionable specification, 
etc.

How do we know when an ML 
component’s behavior meets its 

requirements?

• How do you use testing (i.e., creating logical based oracles, 
etc.), simulation (i.e., model validity), (formal) analysis (i.e., 
scalability), runtime verification frameworks, etc. in assurance?

What are the limits of current 
processes and metrics currently used 

in developing and evaluating both 
traditional and ML systems?

• Data and information quality, architecture, associated metrics, 
etc.

What are the set of characteristics and 
parameters of an ML system that 

allows you to bound its behavior (e.g., 
capabilities, limitations, etc.)? 

• State, Environmental, and Input Information, Decision Making 
Logic, Configuration Management, Version Control, etc.

• How do you create an encoding scheme that would reduce the 
volume of state information into a tractable, compact form?

What is the minimum set of information 
required to reconstruct and audit ML 

application performance in the case of 
an accident?
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Key Questions to Answer (II)
• Data fusion; information synthesis; data collection, curation, and 

assurance; etc.

How should information assurance 
be handled for ML components in 
order to yield (composable) safe 

systems?

• Configuration management, version control, database 
management, etc. 

• Full recertification, continuous authorization to operate, etc.

How can change be managed in 
ML systems in order to preserve 

assurance?

• Clear (and testable) set of requirements, outputs easily checked for 
correctness, corrective action can easily be taken, etc. 

When is it appropriate to use an ML 
implementation for a function?

• Tool qualification (DO-330), ASAP/ASRS database querying for 
research, prognostics/diagnostics, scheduling, maintenance, etc. 

When is it appropriate to use 
ML in the development and/or 

accident/incident analysis 
process?
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Key Questions to Answer (III)
• Lack of safe default mode/state, inability of pilot to intervene, 

etc.

What are key domain specific 
considerations that may dominate the 
safety of ML implementations and how 

will we address them?

• Consider critical information dependencies across tasks 
executed collaboratively by diverse agents, etc.

What is the current human contribution 
to safety in the function being replaced 
by an ML/AI  implementation (i.e., full 

extent of the capabilities and limitations 
of the human role)?

• Handling epistemic uncertainty, applicability of real-world data 
across different environmental assumptions, etc.

Can the open world problem be solved 
(and standardized) without humans to 
handle edge cases while maintaining 

the current level of NAS safety?

• Functional requirements, Safety requirements, Environmental 
assumptions, Domain specific constraints, etc.

Can an actionable specification for a 
function be extracted from a dataset?



A way forward…
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Going Forward:  Deploying ML in 
aviation systems
• Start with ML in design/analysis/maintenance (offline 

system, offline learning)
• Start with simple, well-defined, non-safety critical applications 

• Recognizing normal and anomalous patterns in large datasets for 
research purposes (collaborative), 

• Querying large databases for research purposes (ASRS/ASAP), etc.
• Progress to ML in embedded flight/operational systems 

(online system, offline learning)
• Start with functions which have

• Clearly defined requirements,
• Means of checking the answer/output, and
• Means of intervention and mitigation of incorrect answers/outputs.
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Going Forward:  Standards development 
for ML in aviation systems
• Identify current and ongoing standards efforts that may be 

applicable (e.g., DO-330, etc.) to ML components.
• Leverage other standards bodies when appropriate to avoid 

duplicative efforts.
• Standards efforts should be targeted at areas in which gaps are 

found.
• A measured approach to standards development for ML 

applications should target those functions for which there are 
actionable specifications and traditional implementation and 
assurance techniques. 
• Standardize criteria for what constitutes sufficient evidence for ML 

safety.



Takeaways
• Deployment and standardization efforts should proceed 

methodically and with a justifiable basis, thereby enabling safe 
adoption of ML applications in aviation.

• Premature efforts to (deploy and) standardize may damage 
paths to transition for ML technologies, engender technical 
debt, or set back the entire aviation industry.  
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Questions?
natasha.a.neogi@nasa.gov
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Definitions: AI and ML

• AI:  Provide scientific 
understanding of the 
mechanisms underlying thought 
and intelligent behavior and 
their embodiment in machines 
(AAAI)

• ML: Use of statistical techniques 
to analyze data and create 
algorithms that can generalize 
to unseen data without explicit 
programming (MIT)

AI

MLGNC

Adapted from Atkins, SciTech 2024

RL
DNNsMDP

Sys 
ID
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Explicit Claims: The role of 
assumptions

• Domain Assumptions (context): An explicit statement of 
domain assumptions (context) of the AI/ML component is 
required to evaluate any safety argument associated with 
that component.
• This requires an argument that the specification of the AI/ML 

component and the domain assumptions together imply the 
projection of the desired emergent property on the component. 

• Must perform all three activities: (1) check the AI/ML component, 
(2) check the domain assumptions, and (3) check that they have 
the correct combined effect.

• Environmental Assumptions: An explicit statement of 
environmental assumptions (often physical parameters 
outside the scope of design authority) is needed to evaluate 
any safety argument associated with a component.  
• These assumptions must be validated at design time and during 

operations. 

(Application) Domain 
• circumstances, background, 

or setting in which something 
occurs or exists

• framework for understanding 
and interpreting information, 
events, or situations 

Environment 
• surroundings or conditions in 

which component exists
• physical, social, cultural, and 

natural factors



28

Expertise:  Reuse, change 
management, and criticality creep
• As AI/ML components evolve, they will require re-evaluation to 

determine whether they still satisfy their safety arguments.
• Explicit articulation of assumptions (domain, environmental, interface, etc.) 

is critical.
• Current scientific understanding of AI/ML components and state-of-

the-art verification and validation techniques does not provide the 
ability to reason about system-level properties based solely on the 
properties of the system’s components.
• Pace of change is what distinguishes AI/ML from other software/hardware.

• As systems evolve, scope and criticality creep may require re-
evaluation of the sufficiency of the target level of assurance for an 
AI/ML component.
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Expertise: Managing assurance costs

• Only implement AI/ML when necessary.
• The key to achieving requisite assurance at reasonable cost is simplicity, 

including simplicity of critical functions and simplicity in system interactions.
• Use architectural means to mitigate complexity caused by AI/ML 

when possible.
• Establish independence so system level properties are guaranteed by individual 

components which preserve the emergent property despite failures in the rest of the 
system.

• Use rigorous processes to develop AI/ML.
• Each step in developing the AI/ML software needs to preserve the chain of 

evidence on which will be based the argument that the resulting AI/ML 
component meets its requirements (and the overall system is safe).



30Pre-Decisional – For Internal NASA Use OnlyFocus on science underpinning AI/ML design & assurance to establish sufficiency guarantees.

Design
• Rigor

• Understanding of the science 
underpinning the assurance of 
intelligent systems

• Reproducibility
• Diverse assurance methods should not 

yield contradictory results
• Reusability

• Assurance arguments must be 
extensible over multiple contexts and 
update throughout lifecycle

• Rigor
• Principles, methodologies and 

theoretical frameworks for data 
collection and curation, specifying 
requirements, prototyping, etc.

• Reproducibility
• Repeatability, Reproducibility, and 

Replicability of design practices
• Reusability

• Cannot engineer point solutions. 
Need diversity, extensibility, 
portability, etc.

Assurance

Create a culture where the design and assurance processes for AI/ML 
systems embrace the application of rigor, reproducibility, and reusability.

Guiding Principles
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Technical challenges and leadership
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Challenges
• Verification and Validation of AI/ML Systems 

• Properties of Concern: Safety, Liveness, 
Security, Fairness…

• Human Machine Teaming Interactions
• Role Allocation:  Authority and 

Responsibility
• Bounding Behavior of AI/ML Functions in 

Uncertain Environments
• Contingency Management
• Fault Containment
• Heterogeneous Vehicles
• Mixed ConOps

• Trusted Decision Making
• Adaptive/Non-Deterministic 
• Shifting control paradigm

• Certification

Technical Leadership
• Scalable methods addressing formal verification 

of safety and liveness properties of AI/ML 
systems

• Methods for designing, assessing, and assuring 
safety over diverse role allocation and decision-
making paradigms

• Mathematical models for describing 
adaptive/nondeterministic processes as 
applied to humans and machines.

• Provably Correct Synthesis of Assurance 
Monitors

• Formally Verified Runtime Monitors, Steering 
Functions

• Simulation and Testing approaches to increase 
confidence in safety critical decision making for 
AI/ML systems

• Certification Standards

Technical leadership will advance state-of-the-art and state-of-practice in AI/ML systems
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Assurance barriers to fielding AI/ML 
components in civil aviation 
• Lack of scalability of current approaches

• DO-178C and software complexity
• Pace of change and update rates for AI/ML components

• Lack of approaches, tools and techniques for evaluating safety properties in 
AI/ML components 
• Current approaches geared towards obtaining quantitatively predictable outcomes
• Need models, methods and tools to develop high confidence in systems with 

• Shifting locus of control between humans and automation
• Non-deterministic and/or adaptive decision making

• Require a confluence of analytic, simulation, test and evaluation techniques
• Lack of certification standards

• Need rigorously defined processes and procedures to establish system-level 
performance requirements and functionality derived from specified levels of safety

• Cost Effectiveness, Barrier to Entry, Change Management
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Research Issues for AI/ML
• Behavior of Adaptive/Nondeterministic Systems. Develop methodologies to characterize 

and bound the behavior of AI/ML components over their complete life cycle.
• Modeling and Simulation. Develop the theoretical basis and methodologies for using 

modeling and simulation to accelerate the development and maturation of advanced AI/ML 
components.

• Verification, Validation, and Certification. Develop standards and processes for the 
verification, validation, and certification of AI/ML components, and determine their 
implications for design.

• Nontraditional Methodologies and Technologies. Develop methodologies for accepting 
processes and technologies not traditionally used in civil aviation (e.g., open-source 
software, DevSecOps) in AI/ML systems.

• Operation Without Human Intervention. Develop the system architectures and technologies 
that would enable increasingly sophisticated AI/ML components to operate for extended 
periods of time without real-time human cognizance and control.

• Roles of Personnel and Systems. Determine how the roles of key personnel and systems, 
as well as related human–machine interfaces, should evolve to enable the operation of 
AI/ML components.


