Multi-Time Scaling Techniques for Accelerating Crystal Plasticity Fatigue Simulations of Additively Manufactured Inconel 718

George Weber¹, Saikumar Yeratapally², Joshua Pribe³, Edward Glaessgen¹

¹NASA Langley Research Center, Hampton, VA
 ²Science and Technology Corporation, Hampton, VA
 ³Analytical Mechanics Associates, Hampton, VA

TMS 2024 Annual Meeting & Exhibition Orlando, Florida March 3–7, 2024

Computational Materials-Informed Qualification and Certification of Additively Manufactured (AM) Flight Hardware

Current approaches for qualification and certification of metallic materials are heavily dependent on test data

Computational Materials-Informed Qualification and Certification of Additively Manufactured (AM) Flight Hardware

Goal: Change the Paradigm for Qualification and Certification

Develop a computational materials-informed ecosystem for quantifying sources of variability in fatigue performance of additively manufactured metallic materials through integrated multi-scale, multi-physics simulation, characterization and monitoring

Microstructure-informed Fatigue Simulation

Fatigue of AM materials with porosity

- Fatigue life is highly dependent on exact microstructure and defect configuration, which are dependent on process conditions
- Early stages of crack nucleation depend on evolving weakest links

Crack nucleation prediction requires microstructure simulation

- However, even low cycle fatigue demands thousands of loading cycles
- Physics-based simulations of a single loading cycle can take minutes to hours
- Experimental validation is limited by this computational efficiency

Micromechanical simulation with porosity

For a fixed simulation time, choose between trade-offs

Can we simulate more loading cycles while reducing the corresponding trade-offs?

(1) Elasto-viscoplastic fast Fourier transform (FFT) based micromechanical solver

Ricardo Lebensohn, Anand Kanjarla, Philip Eisenlohr. "An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials"

Core Features

- FFT scaling: FFT-based solution of micromechanical equilibrium and boundary conditions
- "Voxel-based": Straightforward to model complex microstructures and defect configurations

(2) WATMUS: Wavelet transformation based multi-time scaling method

Deepu Joseph, Pritam Chakraborty, Somnath Ghosh. "Wavelet transformation based multi-time scaling method for crystal plasticity FE simulations under cyclic loading"

Core Features

- Multi-resolution Adaptive: Reduced and adaptive wavelet basis for solving cyclic behavior
 - Cycle scale time integration: Robust acceleration method to jump across loading cycles

Anisotropic elasticity

$$oldsymbol{\sigma} = \mathbb{C}(oldsymbol{arepsilon} - oldsymbol{arepsilon}_p)$$

Linear isotropic hardening

$$\dot{g} = h \sum_{\alpha} |\dot{\gamma}^{\alpha}|$$

Irreversible dislocation accumulation

Viscoplastic power law flow rule

$$\dot{\gamma}^{\alpha} = a \left| \frac{\boldsymbol{\sigma} : \mathbf{s}^{\alpha}}{g} \right|^{1/m} \operatorname{sign}(\boldsymbol{\sigma} : \mathbf{s}^{\alpha})$$

$\pmb{\sigma}$:	stress	lpha :	slip system index
arepsilon :	total strain	a:	reference slip rate
$oldsymbol{arepsilon}_p$:	plastic strain	m:	strain rate sensitivity
g:	slip resistance	h:	hardening
\mathbf{s}^{lpha} :	Schmid tensor		

Model Response to Uniaxial Stress-controlled Loading

Material Behavior is Multi-scale in Fatigue

8

Material Behavior is Multi-scale in Fatigue

How can this continuity and predictability of the material state evolution be leveraged?

4 grain low-resolution microstructure

Basic idea

Rather than solving for every time step of every cycle ----- in

integrate the material state across the cycle time scale

Method to "jump" many cycles in time

Basic idea

Rather than solving for every time step of every cycle —

Method to "jump" many cycles in time

integrate the material state across the cycle time scale

Focus on the ends of each cycle with a change of variables

Let $\mathbf{g}_0(N)$ be a vector of all material state variables in the constitutive model at the start of a given cycle

Taylor approximation

$$\mathbf{g}_0(N + \Delta N) = \mathbf{g}_0(N) + \left(\frac{\partial \mathbf{g}_0(N)}{\partial N}\Big|_N\right) \Delta N + \frac{1}{2} \left(\frac{\partial^2 \mathbf{g}_0(N)}{\partial N^2}\Big|_N\right) \Delta N^2 + o(\Delta N^3)$$

Definitions of cycle scale derivatives

$$\frac{\partial \mathbf{g}_0(N)}{\partial N} \bigg|_N = \frac{\mathbf{g}_0(N) - \mathbf{g}_0(N - \Delta N)}{\Delta N} \qquad \qquad \frac{\partial \mathbf{g}_0(N)}{\partial N} \bigg|_N = \frac{\mathbf{g}_0(N + \Delta N) - \mathbf{g}_0(N)}{\Delta N}$$
(Explicit time integration) (Implicit time integration)

$$\mathbf{g}_0(N+\Delta N) = \left(1+\Delta N+\frac{1}{2}\Delta N^2\right)\mathbf{g}_0(N) - \left(\Delta N+\Delta N^2\right)\mathbf{g}_0(N-1) + \left(\frac{1}{2}\Delta N^2\right)\mathbf{g}_0(N-2)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

Material state after cycle jump is a function of previous cycle states

 $\mathbf{g}_0(N)$

10

5

15

Number of cycles (N)

Cycle Scale Time Integration

 ΔN

 $\mathbf{g}_0(N+\Delta N)$

20

25

Future

Cycle

0.0

Material state

Past

Cycle

Cycle Jump Example Cases

while jumping across the cycle scale

Cycle Jump Example Cases

Triangular loading for 100 cycles

Stress Redistribution Throughout Cyclic Loading Early stress redistribution and gradual concentration 1400 Max. normal stress [MPa] 0.50 Max. 24 grain microstructure with fully reversed stress-1200 Schmid Factor controlled 900 MPa loading 0.43 1000 800 0.36 600 **Uniform stress redistribution** 400 1400 50 10 20 30 40 Max. normal stress [MPa] 0 Number of cycles 1150 Each line is the history of a single material point at the peak load of each cycle 900 650 400

Stress gradually localizes in concentrated areas over many cycles

Stress Redistribution with Porosity

64 grain and 2 pore microstructure with fully reversed stresscontrolled 900 MPa loading

Stress concentration locations shift and compete throughout cyclic loading

normal stress [MPa]

1700

Extreme stress value evolution at material points

Threshold on material points where maximum normal stress is greater than 1450 MPa

- Combined elasto-viscoplastic FFT solver with cycle scale time integration to accelerate fatigue simulations
- Demonstration of explicit cycle scale time integration to accelerate crystal plasticity simulations
- Multi-time scale methods exhibit load-agnostic features
- Porosity induces changes in the rate and location of local stress redistribution

Elastic Parameters

Plastic Parameters

g (initial) [MPa]	m	$a [s^{-1}]$	h [MPa]
300	0.1	1	10