# Population Accommodation for NASA Spacesuit and Hardware

Han Kim Garima Gupta Karen Young Nathaniel Newby Leidos, Inc. / NASA Johnson Space Center Aegis Aerospace / NASA Johnson Space Center Leidos, Inc. / NASA Johnson Space Center KBR Inc./NASA Johnson Space Center

March 12, 2024



This work was in part supported by NASA Extravehicular Activity and Human Surface Mobility Program (EHP) and Human Health and Performance Contract (NNJ15HK11B).

## NASA Anthropometry and Biomechanics Facility (ABF)

- ABF is the primary NASA source for assessments of human-suit interaction
  - Suit fit and accommodation modeling, including suit and human 3D scans
  - Suited performance assessments using motion capture and kinematic analyses
  - Ergonomic analyses of humans working in the spacesuit







#### Anthropometry for Spaceflight

- Body sizes used to be "homogeneous" in early space ages
- Today, crews are in a wide variety of body sizes
- Optimal design and sizing are crucial for crew safety and performance





Crewmembers in 1960's

Crewmembers in 2000's

Artemis Era Crewmembers

#### Anthropometry in Space Hardware Design

- Spacesuit and vehicle designs can be drastically different depending on the specific approach to anthropometry
- Defining the extreme-to-extreme ranges of the astronaut population is critical for hardware design





SpaceX Dragon Capsule

Soyuz Capsule

## Person-to-Person Variation is Complex and Multi-Dimensional

- Single measurement values (or percentiles) do not accurately represent body shape variations
- Even for persons of average stature and body weight, the specific shape variations can be substantial
- The table below shows 10 sample subjects whose stature and body weight are near the 50<sup>th</sup> percentiles
- Their other body measurements vary substantially within, ranging from 1st to 97th percentiles



|            | Head<br>Circumference | Chest<br>Circumference | Waist<br>Circumference | Thigh<br>Circumference |
|------------|-----------------------|------------------------|------------------------|------------------------|
| Subject 1  | 5                     | 70                     | 65                     | 68                     |
| Subject 2  | 84                    | 94                     | 64                     | 59                     |
| Subject 3  | 57                    | 76                     | 43                     | 23                     |
| Subject 4  | 77                    | 97                     | 24                     | 20                     |
| Subject 5  | 77                    | 57                     | 13                     | 33                     |
| Subject 6  | 91                    | 28                     | 54                     | 25                     |
| Subject 7  | 38                    | 60                     | 96                     | 9                      |
| Subject 8  | 14                    | 15                     | 26                     | 72                     |
| Subject 9  | 40                    | 33                     | 54                     | 25                     |
| Subject 10 | 17                    | 36                     | 1                      | 80                     |

#### Measurement Percentiles

#### Defining Accommodation Thresholds

- Multi-variate nature of anthropometric data imposes a unique challenge in design and accommodation
- In most design problems, multiple measurements (e.g., stature and body weight) are simultaneously considered
- For example, some NASA programs intend to accommodate 90% of people in astronaut-like population
- To accommodate 90% of people, at which percentile extreme do we want to truncate each measurement?

<u>Goal</u>: Accommodate 90% of population So how about 5th & 95<sup>th</sup> percentiles?

<u>Step 1</u>: Exclude cases with *stature* < 5<sup>th</sup> percentile and > 95<sup>th</sup> percentile

<u>Step 2</u>: Exclude cases with *body weight* < 5<sup>th</sup> and > 95<sup>th</sup> percentile

**Question**: How many people will be remaining after truncations? 90% or 80%?



#### Difficulty of Multiple Measurement Truncation

Hypothetical Univariate-Like Scenario: Stature and body weight perfectly covary with each other

<u>Step 1</u>: Truncate by stature at 5<sup>th</sup> and 95<sup>th</sup> percentiles. 90% of cases are remaining after truncation



<u>Step 2</u>: Truncate by body weight. But no data left to be truncated. 90% of cases are still remaining.



## Difficulty of Multiple Measurement Truncation (Multivariate Condition)

Hypothetical Multivariate-Like Scenario: Stature and body weight vary with each other only in part

<u>Step 1</u>: Truncate by stature at 5<sup>th</sup> and 95<sup>th</sup> percentiles. 90% of people remain after truncation



**Body Weight** 

<u>Step 2</u>: Truncate by body weight, additional 8% cases are excluded. 82% of people remain.



#### Simulation Results for Multiple Measurement Truncation

- As we include more measurements, more people are excluded with truncation
- For example, if 6 measurements are necessary for designing a spacesuit:
  - Truncation at <u>5<sup>th</sup> and 95<sup>th</sup> percentiles</u>: 45% cases excluded, 55% retained
  - Truncation at <u>2.5<sup>th</sup> and 97.5<sup>th</sup> percentiles</u>: 23% excluded, 77% retained
  - Truncation at <u>1<sup>st</sup> and 99<sup>th</sup> percentiles</u>: 9% excluded and 91% retained
- In other words, if we want to accommodate 90% of population and we need to consider 6 body measurements for design, the data should be truncated at 1<sup>st</sup> and 99<sup>th</sup> percentiles, <u>not</u> 5<sup>th</sup> and 95<sup>th</sup> percentiles.



## NASA Population and Critical Measurement Definition

- In the past, NASA Standards and Requirements defined hardware accommodation limit by 5<sup>th</sup> females to 95<sup>th</sup> males (e.g., International Space Station Program)
- However, past crew selections indicated many anthropometry dimensions exceed 5-95<sup>th</sup> percentile range
- Thus, some hardware may not accommodate 90% crew population when multiple measurements are incorporated
- New standards were established:
  - Parent database based on US Army ANSUR 1988
  - Down selected cases by astronaut age range (35-50 years old)
  - Growth trend was estimated from NHANES, and projected for population characteristics in 2015
  - <u>1<sup>st</sup> and 99<sup>th</sup> percentiles</u> were identified for critical measurements

| Critical Dimonsion                              | Application                                                            | Minimal Clothing |                |
|-------------------------------------------------|------------------------------------------------------------------------|------------------|----------------|
| Critical Dimension                              | Example                                                                | Min (cm, (in))   | Max (cm, (in)) |
| Stature, Standing <sup>3</sup>                  | Maximum vertical clearance                                             | 148.6 (58.5)     | 194.6 (76.6)   |
| Sitting Height <sup>2</sup>                     | Vertical seating clearance                                             | 77.7 (30.6)      | 101.3 (39.9)   |
| Eye Height, Sitting <sup>2</sup>                | Placement of panels to be within line-of-sight                         | 66.5 (26.2)      | 88.9 (35.0)    |
| Acromial Height, Sitting <sup>2</sup>           | Top of seatback                                                        | 49.5 (19.5)      | 68.1 (26.8)    |
| Thigh Clearance, Sitting                        | Placement of objects that may be overlap (panels, control wheel, etc.) | 13.0 (5.1)       | 20.1 (7.9)     |
| Knee Height, Sitting                            | Height of panels in front of subject                                   | 45.5 (17.9)      | 63.5 (25.0)    |
| Popliteal Height, Sitting                       | Height of seat pan                                                     | 33.0 (13.0)      | 50.0 (19.7)    |
| Wrist Height, Sitting<br>(with arm to the side) | Downward reach of subject                                              | 39.6 (15.6)      | 54.6 (21.5)    |
| Biacromial Breadth                              | Placement of restraint straps                                          | 32.3 (12.7)      | 44.5 (17.5)    |
| Bideltoid Breadth                               | Width of seatback                                                      | 37.8 (14.9)      | 56.1 (22.1)    |
| Forearm-Forearm breadth                         | Side clearance envelope, possible seatback width                       | 38.9 (15.3)      | 66.0 (26.0)    |
| Hip Breadth, Sitting <sup>1</sup>               | Width of seat pan                                                      | 31.5 (12.4)      | 46.5 (18.3)    |
| Buttock-Popliteal Length,<br>Sitting            | Length of seat pan                                                     | 42.2 (16.6)      | 57.2 (22.5)    |
|                                                 |                                                                        | 50 1 (00 5)      |                |

NASA STD 3001

## Case Study 1: Design by Truncated Multiple Measurements

- Spacesuit Liquid Cooling and Ventilation Garment (LCVG) sizing was assessed by multiple measurements
- Three measurements were identified critical for fit. Min and max were defined from NASA requirements
- Parent database was truncated by min and max (1<sup>st</sup> and 99<sup>th</sup> percentiles) for each measurement
- Selected cases represent the target astronaut population







### Case Study 1: Design by Truncated Multiple Measurements (Cont'd)

- Sizing schemes were built on truncated measurements
- Each box represents a size bucket, the dots within which denote the accommodated cases
- Different sizing schemes were tested; Resultant fit case proportions and coverage ranges were assessed



| Fitted Case Proportion |               | 68.5%      | 82.7%      | 89.6%      |
|------------------------|---------------|------------|------------|------------|
| Coverage               | VTD           | 0.7 - 98.9 | 1.3 - 99.1 | 0.7 - 99.1 |
| Range                  | Shoulder Circ | 1.3 - 99.4 | 1.6 - 98.6 | 1.3 - 99.0 |
| Percentiles            | Crotch Height | 3.5 - 99.7 | 0.9 - 99.4 | 0.9 - 99.6 |

#### Case Study 2: 3D Volumetric Assessments as Alternative Approach

- Linear measurements guided the design of the past and currently deployed suits (Extravehicular Mobility Unit; EMU)
- However, linear measurements do not capture the complex 3D geometry of the human body
- For more complex designs like spacesuits, a lot more critical measurements can be involved
- Thus, matching with 1-99<sup>th</sup> percentiles for all measurements can be costly and sometimes overly conservative







## Case Study 2: 3D Volumetric Assessments (Cont'd)

- Question: can we assess fit directly using 3D body manikins, without relying on linear measurements?
- The next generation government reference design Exploration EMU (xEMU) was developed using volumetric virtual fit tests
- 3D scans overlaid with CAD. Suit-to-body contact location and magnitudes were calculated for hard upper torso (HUT) and lower torso assembly (LTA)



## Case Study 2: 3D Volumetric Assessments (Cont'd)

- The contact patterns were used as parameters for a fit probability model, which was trained by physical fit test outcome Probability(Fit) = f(suit-to-body contact patterns)
- Physical fit test subjects were selected from the "borderline fit" group and assessed for fit using 3D printed mockup



Minimum Overlap



Likely to fit

## Case Study 2: 3D Volumetric Assessments (Cont'd)

- Once trained by physical fit testing, the probability model was projected onto a large 3D body shape database (n = 1,796)
- The cases with fit probability  $\geq$  0.5 represent the proportion of population accommodated by the suit
- This technique determined the xEMU suit (hard upper torso and lower torso assembly) can accommodate over 90% of astronaut population





## Case Study 3: Spacesuit Weighout by Volumetric Analysis

- Astronauts are trained in underwater reduced gravity analogues
- Accurate weighout of the spacesuit is critical for simulation quality and training

#### NASA Neutral Buoyancy Laboratory (NBL: 202 ft × 102 ft × 40 ft diving tank)





#### Case Study 3: Spacesuit Weighout by Volumetric Analysis (Cont'd)

- Individual 3D body scans were segmented and calculated for segment-wise center of gravity (CG)
- Suit CG was also calculated by measuring each component, then combined with body for system CG
- Weight packs were added to cancel out the buoyancy effect and match the CG with the model calculation
- The weighout performance was assessed by motion and center of pressure measurements



#### Conclusion

- This work reviewed the population accommodation principles and methodologies NASA Johnson Space Center has developed for the spacesuit and hardware
- NASA has defined the astronaut population characteristics (Human-System Integration Requirements), which is based on the US Army ANSUR, screened for age 35-50 years old and adjusted for growth trend
- Accommodation ranges were defined for critical body measurements, as NASA aims to accommodate 1st percentile female to 99th percentile male of the crew-like population
- Case studies demonstrated how the target population definition was used for fit and accommodation of the new suit and hardware design
- However, given the limitation of linear measurements, 3D volumetric representations provide unique advantages for fit assessments



Primary POC: Han Kim (han.kim@nasa.gov)

