

Satellite Data Assimilation in the GEOS Atmospheric Data Assimilation System

Jianjun Jin

NASA Goddard Space Flight Center

Global Modeling and Assimilation Office (GMAO)

February 26, 2024

Acknowledgements to: Yanqiu Zhu, Amal El Akkraoui, Ming-Jeong Kim, Wei Gu (NASA GMAO) and Will McCarty (NASA HQ).

Outline

- Brief overview of Goddard Earth Observing System Atmospheric Data Assimilation System (GEOS-ADAS)
- Microwave radiance assimilation in the GEOS
 - Assimilate AMSR2 data in all-sky conditions
 - Assimilate new ATMS-NOAA21 data
- Explore better assimilation of geostationary infrared observations
- Summary and on-going work

GEOS hybrid 4D-EnVar atmospheric data assimilation system

Cost function:

$$J(\delta x) = \frac{1}{2} \delta x^{T} \mathbf{B} \delta x + \frac{1}{2} (y - y^{0})^{T} \mathbf{R}^{-1} (y - y^{0}) + J_{c}$$

where,

 δx , four dimensional correction (increment) to a background state x^b ;

B and **R** represent the four dimensional extensions of the background and observation error covariance matrices, respectively,

yo, observations,

 $y = \mathbf{H} (x^b + \delta x)$ is the observation-space equivalent of the model state interpolated using the nonlinear observation operator \mathbf{H} ,

 J_c encompasses additional constraints such as the dry air conservation imposed on the analysis.

In the hybrid 4D-EnVar, the background error covariance **B** is the sum of climatological covariance estimates $\mathbf{B}_{\mathbf{c}}$ and localized ensemble-based covariances $\mathbf{B}_{\mathbf{c}}$:

$$\mathbf{B} = \beta_c^2 \; \mathbf{B_c} + \beta_e^2 \; \mathbf{B_e}$$

• The near-real-time GEOS analysis is conducted with 32 ensemble members and 1 central analysis which rely on about 50-km horizontal atmospheric states. All atmospheric states are made by the nonhydrostatic cubed-sphere general circulation model.

(Todling and El Akkraoui, 2018; Akkraoui A. E., et al., 2023)

Satellite and conventional observations in MERRA2

National Aeronautics and Splice Administration to formsidering correlated observational errors

GMAO Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

(Courtesy of Wei Gu)

All-sky microwave radiance data assimilation in GEOS

- Advanced Microwave Scanning Radiometer 2 / Global Change Observation Mission 1st – Water
 - Launched in 2012
 - Part of A-Train satellite constellation
 - Lower frequency channels (ch1 6, 6.9 -10.7 GHz) good for sea surface temperature (SST).
 - Ch 7 14 (18.7 89 GHz) are good for moisture, cloud and rain detection.
- GMAO assimilates its brightness temperature data over ocean.
- Cloud hydrometeors state and control variables (liquid, ice, rain and snow clouds).
- Cloud analysis increments are updated the 2nd outer loop but are not added in model simulations in the next cycle.

Identify observed and forecasted / guess clouds

Observed clouds (CLW_obs) are retrieved from **observed** brightness temperature (Tb) data, using the retrieval algorithm developed by K. Garrett for AMSR2.

from **Tb forecasted** by a radiative transfer model (CRTM) with inputs from GEOS-5 profiles including clouds. They are not prognostic clouds in GEOS GCM.

→ "See clouds through the same lens."

Dashed lines are 0.05 kg/m², cloud threshold values for cloudy conditions.

Bias is likely caused by moisture and

Quality control

AMSR2 data quality control: Examples

- 59, Surface wind speed > 12 m/s
- 58, Model total column water vapor < 10 kg/m²
- 56, Polar-ward of 60° N or 60° S.
- 53, Sun glint angle < 20°
- 8, Emissivity check or cold SST (< 275 K).
- 7, Clouds $> 1.0 \text{ kg/m}^2$
- 5, None-ocean surface
- 3, Out of gross-error range (2 x observation errors)
- 0, Pass QC

An example of data screening criteria between 03 hr – 09 hr, Aug 01, 2018. Data over land, ice or snow surfaces are not processed.

Bias corrections in the all-sky assimilation framework

Histograms of Tb departure, O-F, before and after bias correction, and Tb O-A (ch 9, example)

Use the bias correction information from data in clear-sky conditions to correct data in both clear-sky and all-sky conditions.

Note: Cloud amount is not a bias correction predictor within the all-sky assimilation framework.

Observation error: A function of symmetric clouds

- Observational errors have to be largely inflated because there is a large inter-channel correlation between observational error covariances (not shown).
- Inflation may be not large enough at locations where there are small mean CLW between mis-matched clouds.

An experiment to assimilate AMSR.

- Assimilate AMSR2 along with other observational data sets within GEOS in June-Aug 2018.
- An Ensemble-replay experiment:
 Use the ensemble in the control and only update central analysis.
 Background errors for hydrometeors are derived from the ensemble analysis only.
- Only assimilate AMSR2 channel 9 (23.8 GHz) and 11 (36.5 GHz).

Normalized O-F and O-A departures in July-Aug 2018

Impact on GEOS column water vapor analysis by AMSR2 data

GEOS Exp. – RSS, (kg/m^2)

 Total column water vapor in GEOS analysis is generally smaller than retrievals made by Remote Sensing Systems, Inc. (RSS) from AMSR2 data during July-August 2018. |Exp. - RSS| - |Control - RSS|, (kg/m²)

 Assimilation of AMSR2 data brings the GEOS analysis closer to the retrievals in tropics and the east Pacific.

Impact of assimilating AMSR2 data in GEOS forecasts

 Assimilating AMSR2 data improves GEOS forecasts in the southern hemisphere during July-August 2018 as shown in the left panel, but it has a neutral impact in the forecasts in the northern hemisphere as shown in the right panel.

Impacts of assimilating GMI and AMSR2 in current GEOS

- AMSR2 and GMI have largest impact per observations among satellite radiance data but have overall smaller impact than many other MW or IR sounder because of limited data are assimilated.
- Among these MW data, AMSR2 and GMI brightness temperature data at 23 GHz have larger impacts than data at other channels do.

Microwave radiance all-sky data assimilation in GEOS-R21C

GEOS humidity analysis is closer to radiosonde

observations in tropical

convection regions.

Assimilate New ATMS_NOAA 21 Observations

ATMS Suomi-NPP, NOAA-20, and NOAA-21 observation locations within a 6-hour window centered at 00hr 07/01/2023.

Each satellite crosses the equator at 1:30 PM (local time) in northernbound direction at Sun-synchronous orbits.

The NOAA-21 is followed for about half of an orbit by NOAA-20, and Suomi-NPP is flying between them.

Data Selection

- Assimilate temperature sensitive channels 5-15, and moisture sensitive channels 17-22.
- Data are tossed over ice, snow, or mixed surface types. IFOV shapes are not considered when surface properties are interpolated. Data are also tossed at scan edges.
- ATMS data are assimilated in clear-sky and thin-cloud conditions within the clear-sky assimilation framework. Cloud effect is bias corrected.
- An experiment is conducted between mid-July – Aug 2023.

ATMS_NOAA20 and ATMS_NOO21 mean O-F w/o and with bias corrections in Aug 2023 (K). Error bars are standard deviations of O-F with BC.

Forecast impact

Forecast score card based on statistics verified against ERA5 in August 2023

Northern Hemisphere				
Variable	Pressure Level	COR	RMS	
Forecast		12345	12345	
	10		▼	
	70			
Geopotential Height	100			
	250			
	500 700	Δ;;;;	ΔΔΔ	
			5335	
SLP	850 1000	8		
SLP	1000			
	70	1001100	11111111	
	100	ΛΔΛΔΔΔΛΛΔ		
Specific	250			
Humidity	500			
	700	Λ		
	850	Α		
	10		** * *	
	70		9000 00 00	
	100			
Temperature	250		888	
remperature	500	Ass	***	
	700	A G	A 8 8	
	850	N.		
	10		*	
	70			
U-Wind	100			
	250			
	500		8888	
	700	AS:	Δ3	
	850			
	10	V	V	
	70			
V-Wind	100			
	250			
	500	8	3 3	
	700	3		
	850		8	

	Southern Hemisphere				
Variable	Pressure Level	COR	RMS		
Forecast		12345	1 2 3 4 5		
	10		▽		
	70				
Geopotential	100				
Height	250				
Height	500	Δ	Δ		
	700	100000	100000		
	850	*	888		
SLP	1000	∆ ()	Δ3		
	10				
	70	$\Delta\Delta\Delta$	AAAA		
Specific	100				
Humidity	250	△ 88888	Δ ::::		
marmarcy	500				
	700				
	850				
	10				
	70				
	100	**	13		
Temperature	250	× × × × × × × × × × × × × × × × × × ×	∆ 8 8		
	500	383	5,000,000		
	700	***			
	850	3 33333	A 89/20009		
	10				
U-Wind	70				
	100	3	:# A #:		
	250	*	8		
	500	ΔΔ	$\Delta\Delta$		
	700	Δ\$Δ B	Δ9Δ 9		
	850	Δ Δ333Δ	A A988A		
	10		1881		
	70				
V-Wind	100				
	250				
	500	A 8 8	Λ 8		
	700	303 3000	2005 200005		
	850	888	333		

Legend

- ▲ far better, significant (99.99% confidence)
- △ better, significant (99% confidence)
- slightly better, significant (95% confidence)
- no significant difference
- 🔅 slightly worse, significant (95% confidence)
- ∇ worse, significant (99% confidence)
- ▼ far worse, significant (99.99% confidence)

Tropics					
Variable	Pressure Level	COR	RMS		
Forecast		12345	1 2 3 4 5		
	10		▼		
Geopotential Height	70				
	100				
	250	#	8		
	500				
	700	8			
	850				
SLP	1000		- S - ∆3		
Specific	10				
	70 100	88644444	***		
	250	8 8	***		
Humidity	500	- 8			
	700		18		
	850	18	(888)		
	10				
	70	- 90	8		
	100	- 10	Vii		
Temperature	250		Viii		
remperature	500		35 <u>A</u> 37 (1000)		
	700	Δ Δ8	3 10 10 10 10 10 10 10 10 10 10 10 10 10		
	850	A A90	00 0000		
	10	38	VV.		
U-Wind	70	**	V V 1.0		
	100				
	250	SA AS	82 A8		
	500		0,24 23,		
	700	▽	1807		
	850	888			
V-Wind	10				
	70				
	100				
	250				
	500				
	700	*			
	850	8.8			

Compare O-F rms values and number of used data

Positive impacts:

- O-F RMS values are generally reduced, except for values for CRIS-FSR.
- More CRIS-FSR_N20 observations are assimilated.
- Assimilation of ATMS NPP and ATMS N20 data is improved.

Improve Geostationary Radiance Data Selection

- Geostationary radiance data near the center of six-hour time-window were given preferences during thinning in a 3-D assimilation system.
- In current 4-D system, No time information is used during thinning.
 Therefore, observations are selected per the "first-come, first-selected" manner when they meet other data selection criteria. More data are selected within the 1st hour because satellite data are saved and read sequentially.
- New two-hourly-thinning for geostationary radiance data: Preference is given to observations at the beginning of the 1st two-hour period, the center time of the 2nd two-hour period, and the end of the 3rd two-hour period.

Maps of SEVIRI data after thinning within a 3-D assimilation framework

SEVIRI_M10 at 18 UTC, Jun 1, 2017.

More observations are selected within hour 3 than other hours.

Maps of SEVIRI data after thinning in current 4-D system.

SEVIRI_M10 at 18 UTC, Jun 1, 2017.

More observations are selected within hour 1 than other hours.

First attempt to fix the issue: Hourly-thinning.

SEVIRI_M10 at 18 UTC, Jun 1, 2017.

Set thinning timewindow to be one hour. Nearly same number of data is selected within each hour after thinning.

Correlations of observational error SEVEIRI_M10, cha 5.

- Hourly-thinning has a slightly negative impact in GEOS-5's forecast skills.
- Time correlations of SEVIRI_M10 channel
 5 (6.25 μm) observation error in Dec
 2016.
- These correlations are derived from O-F and O-A covariance within the same sixhour analysis cycles.
- This figure shows large observation error correlations within 2-3 hours.

New solution: Two-hourly-thinning

Number SEVIRI_M10 data in control and the experiment (two-hourly-thinning) after thinning in Dec 2016

New two-hourly-thinning: Preference is given to observations at the beginning of the 1st two-hour period, the center time of the 2nd two-hour period, and the end of the 3rd two-hour period.

As a result, we can have nearly the same number of observations at the beginning, middle, and end of the sixhour time window for geostationary satellite observations.

Forecast impact: Anomaly correlation of forecasted GPH.

Experiment: Control + two-hourly-thing of SEVIRI data

 Slightly positive impact on forecasts in the Southeast Quadrant than in other regions. where most of SEVIRI_M10 observations are located in the tropical Atlantic Ocean.

Summary and on-going work

- All-sky microwave radiance data assimilation
 - Ver few low frequency and surface sensitive microwave radiance are assimilated over land, ice or snow surfaces.
 - Explore "all-sky-all-surface" assimilation of microwave radiance observations to improve planetary boundary analysis.
- Assimilate polar orbit infrared observations in all-sky conditions.
- Geostationary radiance
 - No geostationary radiance data are assimilated in GEOS. Will investigate the impact of assimilate those data over ocean.
- New NASA missions.

Thank you!

The end

ATMS NOAA21 ch7 O-F before and after bias correction

OmF_20230801_00z.20230801_00z.ch07

Horizonal Correlations In Wind Observational Errors

- In a DA system, observational error covariance
 can be (not perfectly) diagnosed as
 covariance (Obs Analysis, Obs First guess)
- Correlation in observational errors, derived from the above covariance, decreases as distances between observations increase.
- We chose the horizontal distance where correlation is 0.15 as the new thinning grid size for AMV data.

Horizontal Correlations In Observational Errors

- Distances at blue lines: thinning grid sizes in the original configuration, 200 km or zero.
- Distances at red-dash lines: maximum distance where horizontal correlations is 0.15, proposed as new thinning grid sizes.
- Gray: No co-located observation.
- > AMV data are thinned in a scientifically consistent way.

Tune Observational Error Inputs

Adjust observational error inputs in order to give similar weights (penalties) of AMV at different altitudes.

Observational errors for WV cloud top AMV by Meteosat-11.

Penalties for WV cloud top AMV by Meteosat-11.

