AI/ML Assurance

G. Brat, K. Ellis, S. Brandt

System-Wide Safety Project

SWS Overview

System-Wide Safety

Determining Safety Needs for Aviation Transformation

Developing New and Improved Safety Solutions

Disseminating Safety Knowledge and Technology

Sustainable aviation transformation through economic, environmental, and safety technology convergence.

In-Time Aviation Safety Management Systems

Deliverable: Development of methods to improve air carrier SMS using ML and novel data sources.

Impact: Airlines SMS has improved ability to predict and mitigate safety threats in-time to prevent accidents and incidents, with new insights on system-wide safety.

Machine Learning Enabled Data Analytics

ΝΤ

Non-Traditional Safety Data Monitoring and Analysis

Human Contributions to Safety & Learning from All Operations

Tech Transfer via Partnerships with Airlines and FAA RTT

Commercial IASMS Technology Advancement

TC-1 Terminal Area Risk Assessment Accomplishments

Prototype Safety Dashboard:

- The Aviation Risk Precursor Identification (ARPI) was developed by Booz Allen Hamilton as a prototype safety dashboard
- Sources System-Wide Information Management (SWIM) data
- Hosted a variety of SWS's anomaly and precursor detection algorithms
 - Results pointed to neural network which performed 36% better than a baseline predictor
- User interface provides visualizations of risk events for terminal area operations

Control Contro Control Control Control Control Control Control Control Control Co

PVT+ App Being Used on ISS:

- The Psychomotor Vigilance Task+ (PVT+) fatigue monitoring iOS application was developed by SWS to simplify fatigue measurements in the field
 - Reaction time task and eases logging of sleep schedules
- Now being used by astronauts aboard the International Space Station for a European Space Agency study
- The PVT+ is sensitive enough to detect performance changes due to sleep loss and circadian disruptions
- Currently being used by numerous airlines to assess crew performance in real-world operational scenarios

MITRE SWISS UNITED

Directly aligns with ARMD's Strategic Thrust 5 to provide In-Time System-Wide Safety Assurance. In addition, the impact supports strategic industry partnerships, a key ARMD priority. Our partners include:

Federal Aviation FLIGHT

BOEING 📐 DELTA easyJet.co

TC-1 Terminal Area Risk Assessment Accomplishments

Successful TC Closeout Event:

- SWS and NARI hosted hybrid event to share work accomplished under TC-1 with the aviation safety community.
- Guest speakers from NASA, FAA and American Airlines shared their perspective on the importance of the work.
- Topics covered included
 - ML/AI risk detection and prediction development and results
 - Research into how to measure human contributions to safety
 - Human fatigue and performance management and prediction
 - > Demonstration of safety dashboard with risk prediction algorithms
 - SOTERIA experiment
- Audience of over 200 industry and academia leaders were in attendance

ML Tools Integrated into ASIAS:

- SWS-developed anomaly and precursor detection algorithms are being integrated into the Aviation Safety Information Analysis and Sharing (ASIAS) system
- ASIAS is used by the FAA and airlines to monitor operational safety.
- Early results detected 11 safety events and 35 false alarms
 - > Drop in airspeed from slow rotation -> **not regularly** detected with existing methods
 - Possible mode confusion -> 25-35 seconds before speed exceedance
 - Unstable approach -> 14 seconds before exceedance

MITRE SWISS UNITED

Directly aligns with ARMD's Strategic Thrust 5 to provide In-Time System-Wide Safety Assurance. In addition, the impact supports strategic industry partnerships, a key ARMD priority. Our partners include:

DELTA easyJet.com

Federal Aviation FLIGHT Administration SAFETY

TC-6 IASMS FOR COMMERCIAL AVIATION OPERATIONS

Deliverable: Demonstration of effective strategies and technologies to predict and mitigate safety threats in-time to prevent accidents in an increasingly complex airspace.

Impact: Improved speed and characterization of system-wide risk identification to augment and evolve existing aviation industry SMS processes.

TC-4 COMPLEX, AUTONOMOUS SYSTEMS ASSURANCE

Deliverable: Final evidence and recommendations on process for certification of autonomous components in aerospace systems

Impact: Validated means of certifying complex autonomous systems

Assurance of Autonomy

GOAL: Demonstrate algorithms for checking safety standards for systems relying on untrusted components for autonomous surface operations and autonomous drone flight operations.

- 1) Understand your Machine-Learning Enabled Components
- 2) Enforce Safe Limits Using Rigorously Assured Runtime Monitors
- 3) Demonstrate system-level assurance using high-level safety arguments that take contracts about the mission, environment, component, monitors, and failover plans into account

TC-4 Recent Accomplishments

Goal

Demonstrate algorithms for checking safety standards for

systems relying on untrusted components (MLEC) for

*MLEC: Machine Learning Enabled Components

AI/ML assurance

Why do we need assurance?

- Problem
 - The inability to establish appropriate assurance for AI/ML components leaves us unable to effectively manage their risks and benefits.
 - Drives cost of development uneconomically high
 - Delays adoption of AI/ML at scale in safety critical systems
 - Results in unknown and unmanageable risks
- Goal
 - Discover and define what constitutes sufficient scientific-based evidence to substantiate a safety claim related to an AI/ML component performing a safety-critical function.

Beyond Autonomy/AAM Use Cases and Functions

Ron Matusiak, UAS Integration Office Overview, 2020

AI/ML assurance in SWS

- Regulatory aspects
 - Investigate means for certification
 - Overarching properties
 - Safety cases
- Standard and guidance
 - Participate in many relevant standard committees
- Safety assurance technologies
 - Hazard analysis and requirements
 - Data management
 - ODD
 - Simulation vs real data, model generalization
 - Formal verification of ML components
 - Advanced testing
 - Runtime monitoring
- Testbeds
 - In-house rover-based case studies using ML for vision

One example: Prophecy

- Decompose the complex DNN model into a set of simple rules, amenable to analysis
 - Assume-guarantee type rules are inferred from a trained DNN; $\forall x \sigma(x) \Rightarrow P(F(x))$
 - P is a property of the network function; functional property
 - O σ(X) are formal constraints on neurons at inner layers of the network *(neuron activation patterns)*
 - *Prophecy:* Property Inference for Deep Neural Networks (ASE 2019)

Working through partnerships

- Industry
 - AAM entrants
 - Traditional aviation industry
- Government
 - FAA: collaborating on draft standard for AI/ML
 - DoT: assurance of AI/ML

Main deliverables

- FY'22: Draft evidence and recommendations for the robustness of remote operations as a failover plan and the use of run-time monitoring
- FY'23 :
 - Modular framework to evaluate robustness of ML-enabled systems
 - Autonomy V&V 2045 roadmap
- FY'24: : Preliminary certification process for ML-enabled autonomous aerospace systems
- Beyond FY'24: consult with industry and regulatory bodies to establish new cycle of research

Other ML work in SWS

- Using ML technology to mine aviation incident reports and identify precursor patterns to incidents
- Identified patterns can be used during runtime monitoring
- <u>Convolutional Variational Auto-encoder:</u>
 - Using convolutional layers (instead of recurrent) to speed up the training process.
 - Using multiple filter sizes to capture local and global temporal dependence in the time series.

SWS Wildfire work

In-Time Aviation Safety Management Systems

SWS Project Research Portfolio

Operational Safety (Thrust 5)

Design Safety (Thrust 6)

Safety Demonstrator Scheduled Progression

	FY 23	>> FY 27	angle angle FY 29 $ angle$	>> FY 32
	Wildland Firefighting	Hurricane Relief and Recovery	Emergency Medical	Urban Disaster Relief
!	HIGH Rural and partially evacuated area	 MED Partially evacuated area 	LOW Urban area	LOW Urban area
*	LOW-MODERATE Intensive HMI and lack of commercial flights	MODERATE Numerous agencies coordinating multiple relief efforts	Regularly scheduled commercial flights	HIGH
?	LOW-MODERATE Unknown location of fire; poor visibility	MODERATE-HIGH Unknown state of terrain; poor infrastructure	MODERATE All weather operations	HIGH
	Environment: Low Visibility, Smoke	Environment: Low Visibility, RF/EMF Hazards, Poor Weather	Environment: Urban Airspace, RF/EMF Hazards	Environment: Degraded Infrastructure, RF/EMF Hazards
	Vehicle & Mission: sUAS, mid-size UAS/ Short Range	Vehicle & Mission: sUAS, mid-size UAS, large UAS/ Multiple Days	Vehicle & Mission: sUAS, mid-size UAS, large UAS/ Short to Long Range	Vehicle & Mission: sUAS, mid-size UAS, large UAS/ Multiple Days
	No.			
A	747 747			
	Human Role:	Human Role:	Human Role:	Human Role:
		Medium	Low	Multiple Simultaneous HMI paradigms
risk i dierarice Tr Complexity 7 Uncertainty				

SWS: ODIN-Fire

Online Data Integration (ODIN)-Fire

 Monitor for adverse conditions and enhance situational awareness

Approach

- Configurable dynamic display of multiple data sources
 - Open-source tool
 - Data sources such as fire/smoke detectors on powerlines, satellite heat data, 3D buildings, terrain, air traffic assets
 - Modeling capabilities such as fire spreading models, weather
 - Data age indication on single display
- Uniform architecture many application types, scalable crossplatform
- Extensible component library

Impact

- Developed registry of Wildfire Fighting Data Sources
- SAA with Delphire
- Collaboration with USFS Rocky Mountain Research Station
 - FireLabs WindNinja micro grid wind forecasts

autonomous assessment function (correlate input sources)

- Powerline sensors (Delphire), VIIR Satellite, Sentinel, live ADS-B Data (and other sources) integrated into ODIN
- Integrated weather data into ODIN via collaboration with WindNinja/USFS Firelabs

SWS: MIKA-fmdtools Dashboard

Relevant Dataset Identification

- Identified data sources of interest to operational goals throughout the wildfire management cycle
- Examined wildland firefighting accident and incident databases to assess their comprehensiveness

Approach

- Main data categories include
 - Fuels and ignition sources, climate and weather, detection and tracking, emissions and air quality, infrastructure and ecosystem impacts, object tracking
- MIKA-fmdtools Dashboard
 - Simulation functional model and scenarios
 - Test mitigation strategies
 - Inform modeling with MIKA lessons learned

Impact

- Demonstrated integrated prototype of MIKA-fmdtools Dashboard for end-to-end risk and resiliency analysis in early design
- MIKA approved for open-source release
- fdmtools 2.0 alpha released

MIKA-fmdtools: Manager for Intelligent Knowledge Access - Fault Model Design Tools