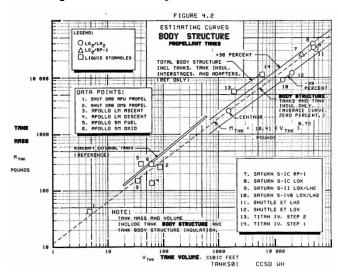
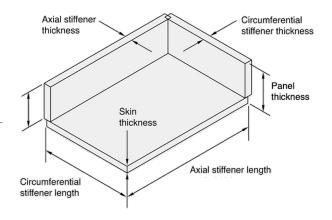
Loads and Sizing for Launch Vehicle Conceptual and Preliminary Design

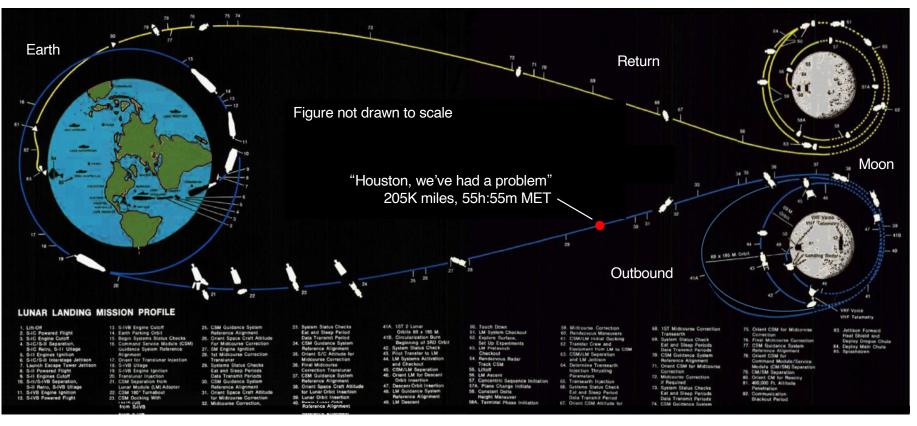
Chauncey Wu
NASA Langley Research Center
Hampton, Virginia
k.c.wu@nasa.gov

CoSEM CDT
University of Bristol
June 3, 2024


Talk Overview

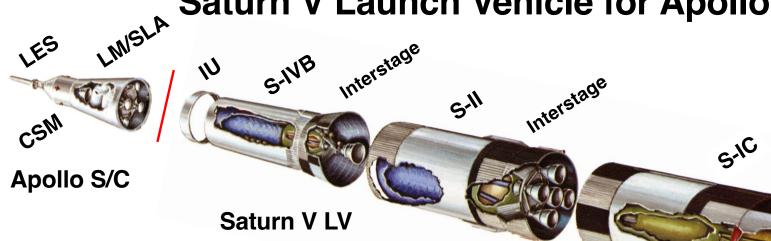

- Mass estimation methods
- Apollo Program
 - LOR mission overview
 - Saturn V launch vehicle description
 - Loads and sizing for selected components
- Space Shuttle and Ares V
 - Launch vehicle overview
 - First stage load paths analysis
 - Loads and sizing for selected components
- Concluding remarks
- References

Mass Estimation Methods

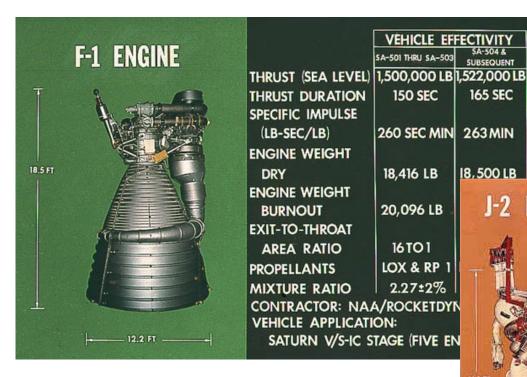

Design levels (continuum across mission phases)

- Conceptual (Phases pre-A/A)
- Preliminary (Phases B/C)
- Detail (Phases C/D)
- "Top-down" systems-level modeling
 - Curve fits to historical data
 - Quick, but low-fidelity
 - Conceptual-level design
- "Bottom-up" component-level modeling
 - Physics-based analysis
 - Takes more time, but high(er)-fidelity
 - Preliminary/detail-level design

Apollo Program LOR Mission Profile



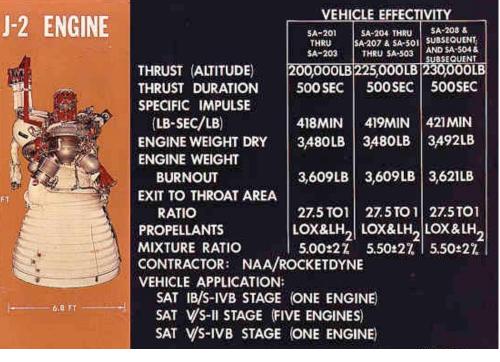
Significant schedule, cost, performance advantages over other proposed modes


Decouples S/C, LV designs

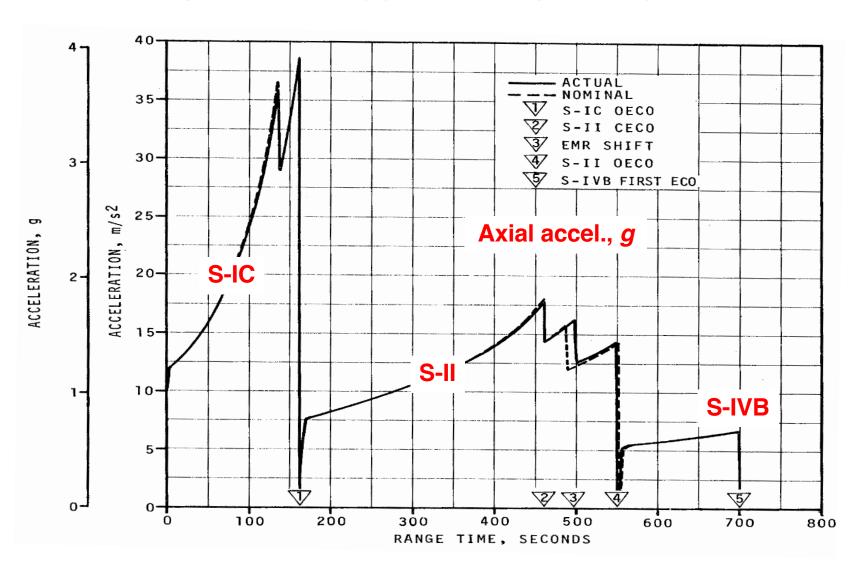
Saturn V Launch Vehicle for Apollo

	(all klbm)	Gross	Prop	Dry		
•	Apollo S/C, IU	118	_	_	Cardo	
•	S-IVB 3rd stage	265	236	29		
	- 1 x J-2 LO2/LH2	? (8 interstage)			Gross Liftoff	
•	S-II 2nd stage	1090	998	92	6530 klbm	
	- 5 x J-2 LO2/LH2	(11 interstage)			Avg Stage SMF, pct.	
•	S-IC 1st stage	5039	4683	355	7.5 (5.9 w/o eng.)	
	- 5 x F-1 LO2/RP-	- 5 x F-1 LO2/RP-1 oxidizer/fuel				

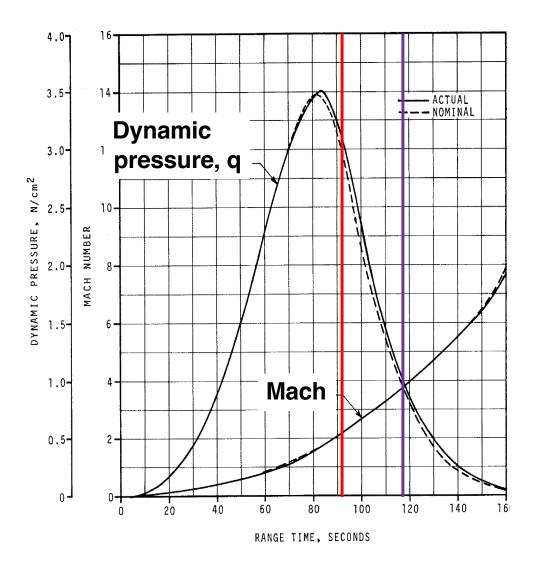
Saturn V Engine Systems



1st stage F-1

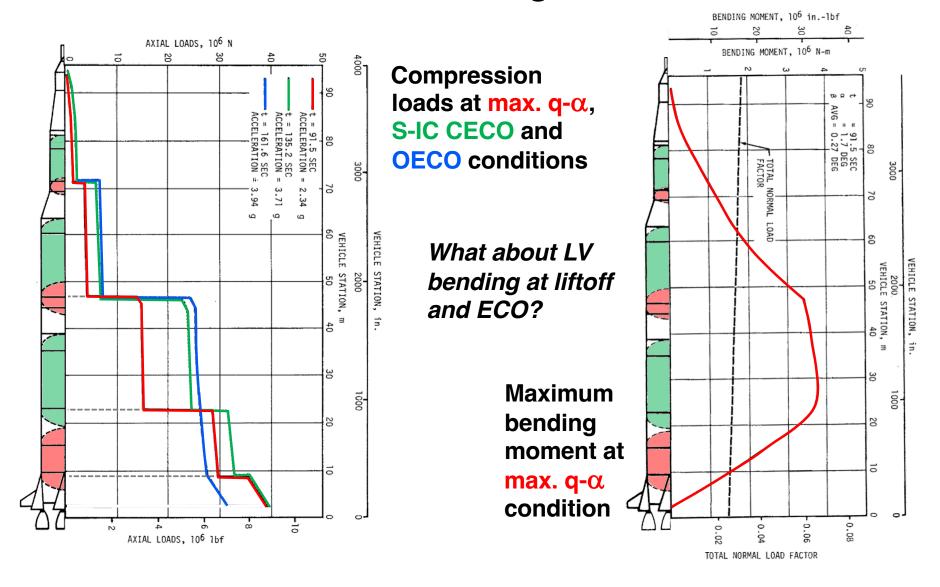

- Low Isp, High thrust
- LO2/RP-1 prop

2nd	&	3rd	stage	J-2
	U	UI U	Stage	


- High Isp, Low thrust
- LO2/LH2 prop

Saturn V Ascent Performance

Saturn V/S-IC Ascent Perf. (cont'd)


		PITCH PLA	NE.
PARAMETERS	UNITS	MAGNITUDE	RANGE TIME (SEC)
Attitude Error Angular Rate Average Gimbal Angle	deg deg/s deg	0.83 -0.97 0.23	117.4 69.1 90.6
Angle-of-Attack Angle-of-Attack/ Dynamic Pressure Product	deg deg-N/cm ²	1.82 4.93	117.1 91.4
Normal Acceleration	m/s ²	-0.331	95.5

Max. control params. in S-IC flight

Maximum dynamic pressure

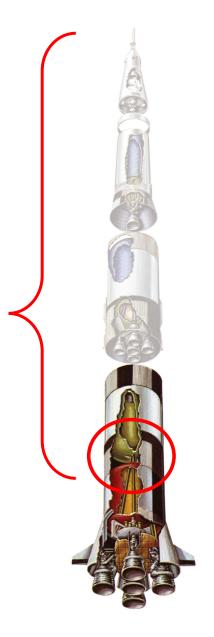
- $3.5 \text{ N/cm}^2 \sim 5.1 \text{ lbf/in}^2$
- Range time ~ 83 sec.
- ~ 8 pct. > q at max. $q-\alpha$

Saturn V/S-IC Flight Loads

S-IC Intertank Mass Estimation

S-IC Intertank

- -L = 22 ft, R = 33 ft/2
- Al 2024; ρ = 0.1 lbm/in³, E = 10.1 Mlbf/in²


Liftoff load case

Vehicle mass above intertank aft ring = (6530 – 1620) = 4910 klbm

Multiply by 1.2g at liftoff = 5892 klbf

Divide by (π *33 ft) for compression line load Nx = 4736 lbf/in = σ x*t

From NASA SP-8007, $\sigma_x = \gamma^* E^* t / R / sqrt(3 - 3\mu^2)$ (cyl. shell buckling) = 0.6* γ *E*t / R for $\mu = 0.3$

S-IC Intertank Mass Estimation (cont'd)

 $\begin{aligned} & \text{Ox} = (\text{Nx} = 4736 \text{ lbf/in})/t, \, \text{R} = 396 \text{ in./2} \\ & \text{Apply FS} = 1.4 \text{ to loads, and assume } \gamma = 1 \\ & 4736 \text{ lbf/in*1.4 FS/t} = 0.6*1*10.1 \text{ Mlbf/in*2*t/198 in.} \\ & t^2 = (4736*1.4*198 \text{ in.})/(0.6*10.1e6) \\ & t = 0.465 \text{ in. for monocoque shell wall} \end{aligned}$

Estimate intertank mass = $2^*\pi^*R^*t^*L^*\rho$ Mass = π^*396 in.*0.465 in.*264 in.*0.1 lbm/in³ = 15.3 klbm

Compare to reported S-IC intertank mass of 13.2 klbm from Whitehead (+2.1 klbm; +16%)

S-IC/S-II Interstage Mass Estimation

S-IC/S-II Interstage

- -L = 18.3 ft, R = 33 ft/2
- Al 2024; ρ = 0.1 lbm/in³, E = 10.1 Mlbf/in²


Liftoff load case

Vehicle mass above interstage aft ring = (6530 – 5040) = 1490 klbm

Multiply by 1.2g at liftoff = 1788 klbf

Divide by (π *33 ft) for compression line load Nx = 1437 lbf/in (~ 1/3 of S-IC intertank load)

1437 lbf/in*1.4 FS/t = 0.6*1*10.1 Mlbf/in²*t/198 in. t = 0.256 in.; est. mass = $2*\pi*R*t*L*\rho$ = 7.0 klbm (reported interstage mass = 9.7 klbm)

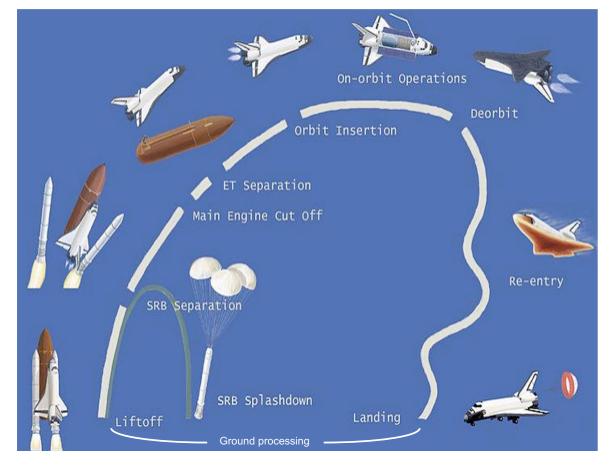
S-II Thrust Structure Mass Estimation

S-II Thrust Structure (conical frustum)

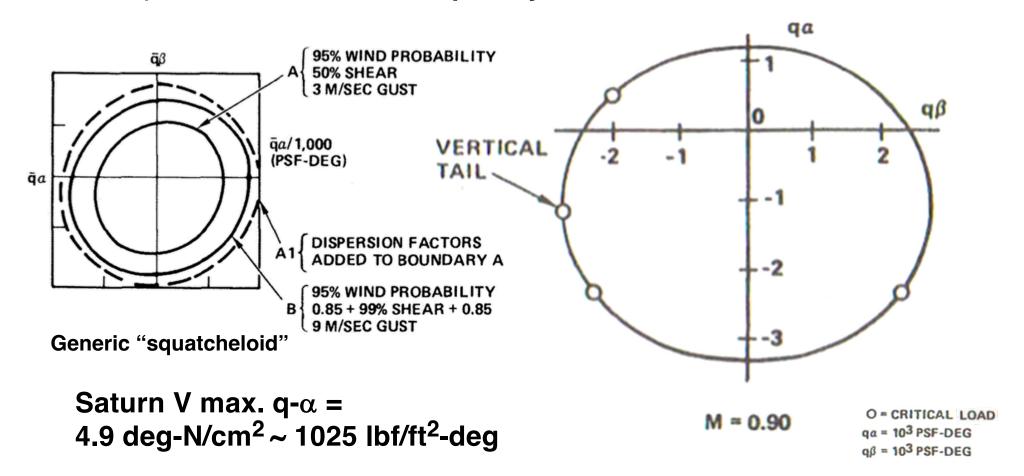
- L = 9.3 ft; R = 33 ft/2 fwd, 17.5 ft/2 aft
- Al 2024; ρ = 0.1 lbm/in³, E = 10.1 Mlbf/in²

S-II stage ignition load case

Vehicle mass = 1490 klbm; engine thrust = 5 x 230 klbf = 1150 klbf => F/mass = 0.77g
Compression line loads Nx = 1743 lbf/in aft, and 924 lbf/in forward


Buckling load from SP-8019,
$$P_{cr} = \gamma \frac{2\pi Et^2 \cos^2 \alpha}{\sqrt{3(1-\mu^2)}}$$
 $t^2 = 1.33^*Pcr/E$; $t = 0.460$ in. Est. mass = $2^*\pi^*Ravg^*t^*L^*\rho/cos\alpha = 6.4$ klbm (reported interstage mass = 7.3 klbm)

Space Transportation System



Space Shuttle composed of Orbiter with 3 LO2/ LH2 reusable engines (SSMEs), External Tank (ET), and 2 Solid Rocket Boosters (SRBs).

Shuttle Flight Loads

For asymmetric vehicles, q- α (normal force) and q- β (transverse force) are critical, vs. max.-q for symmetric LVs

Space Shuttle Main Propulsion

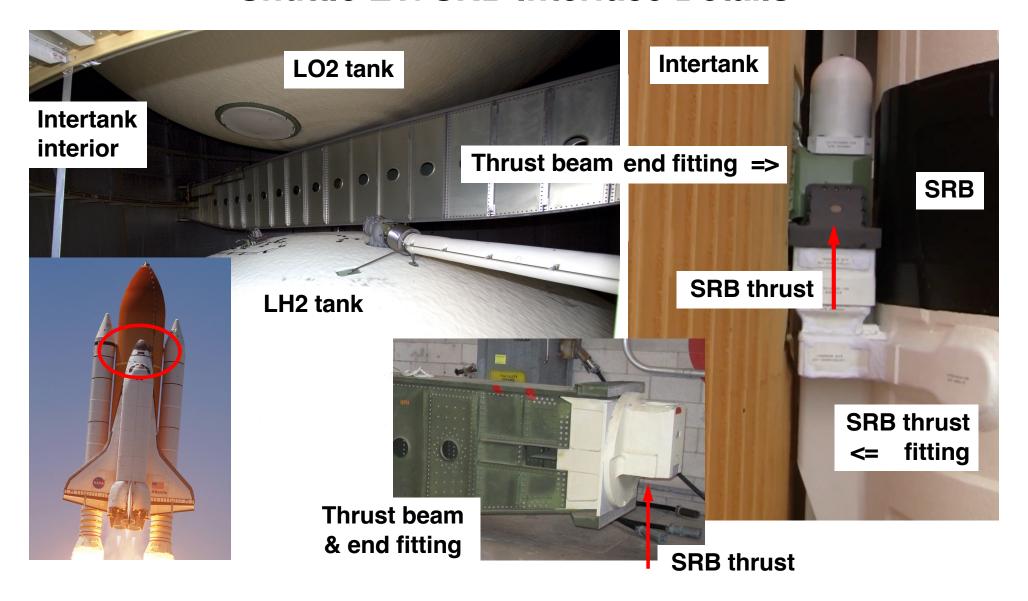
1st stage SRB

- Low Isp, High thrust
- Solid prop

Space Shuttle Main Engine

Propellants LO₂ - LH₂ Power level, klbf SL/vacuum 370.0/470.8 - Rated 100% - Nominal 104.5% 393.8/488.8 - Full 109% 417.3/513.3 Chamber pressure at 109%, **Full power level** 3008 psia Specific impulse, I_{sp}, vacuum 452 seconds Throttle range 67 to 109%

7480 lbm


Engine mass

7.5 ft

1st & 2nd stage SSME

- High Isp, Low thrust
- LO2/LH2 prop

Shuttle ET/SRB Interface Details

Shuttle Has Very Complex Load Paths

Liftoff mass

Orbiter - 232 klbm structure

- 32 klbm payload

ET - 1.373 Mlbm LO2

- 229 klbm LH2

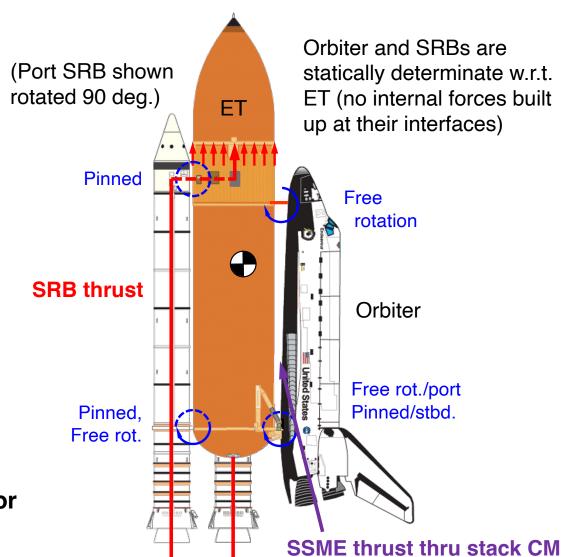
- 59 klbm structure

SRBs - 2@ 1.107 Mlbm prop.

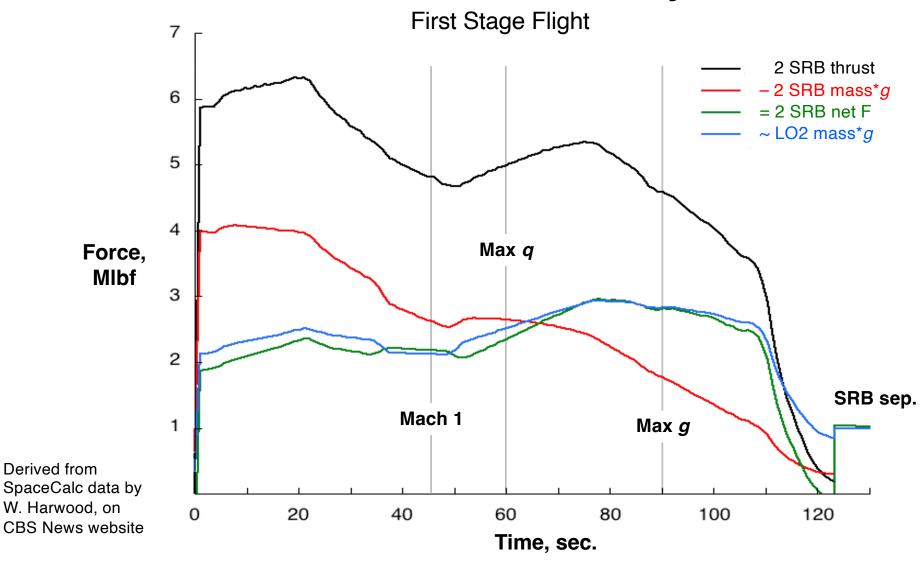
- 2@ 192 klbm structure

Total mass = 4.53 Mlbm

Liftoff thrust


SSMEs - 3@ 370 klbf

SRBs - 2@ 2.9 Mlbf (85 pct. liftoff)


Total thrust = 6.96 Mlbf

=> SRBs push themselves and LO2 mass uphill to staging

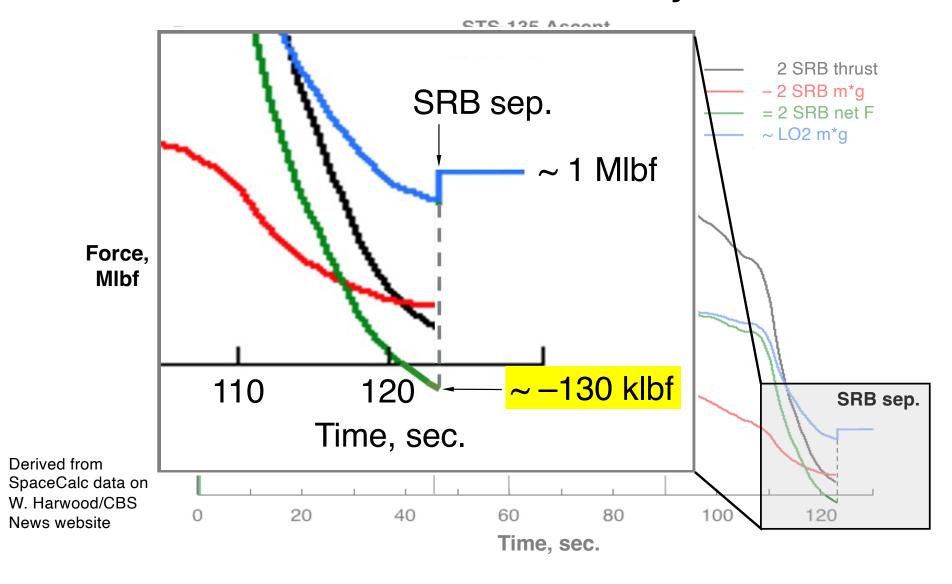
Compare to simple load paths for Saturn V and similar vehicles...

Shuttle Ascent Loads Analysis

When Do The SRBs Separate?

Pc < 50 indicator light at ~ 120 sec.

- SRB chamber pressure Pc < 50 lbf/in²
- Indicates imminent SRB separation


Est. SRB nozzle throat R = 27 in. $\Rightarrow A = 2290$ in²

At liftoff, SRB thrust F = 2.9 Mlbf, Pc = 1000 lbf/in² => Nozzle efficiency e = F/Pc*A = 1.27

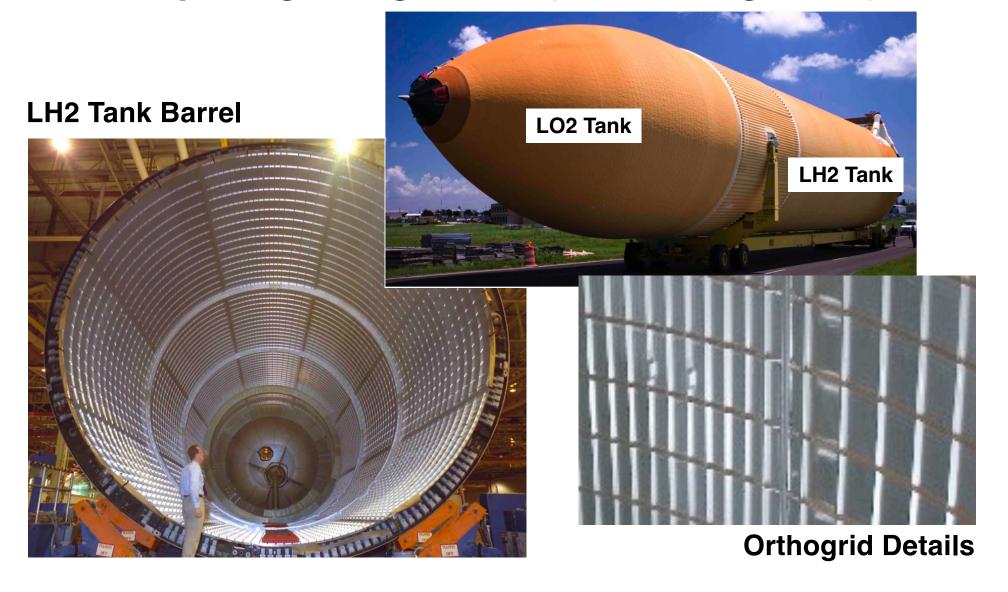
At separation, SRB thrust F = Pc*A*e = 145.4 klbf

- Net axial force = (145.4 klbf SRB mass*1g)
 - => Approx. -50 klbf (drag) per SRB

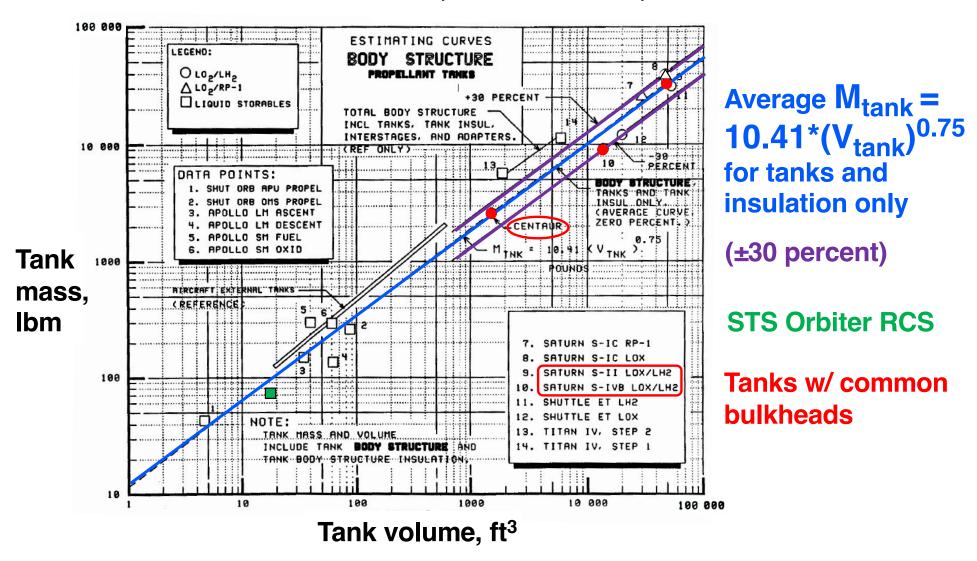
Shuttle Ascent Loads Analysis

Space Shuttle SRB Mass Estimation

Solid Rocket Booster (each)


- Assume cylinder; L = 149 ft, R = 12 ft/2
- D6AC steel; 0.284 lbm/in³, 200 klbf/in² tensile yield
- 1000 lbf/in² peak internal pressure

```
From strength of materials, hoop stress = P*R/t \Rightarrow t = P*R/\sigma
Shell wall thickness t = (1 \text{ klbf/in}^2*1.4 \text{ FS})*(72 \text{ in.})/200 \text{ klbf/in}^2
= 0.504 in.
```


```
Shell mass = 2^*\pi^*R^*t^*L^*\rho
= 2^*\pi^*(72 \text{ in.})^*(0.504 \text{ in.})^*(149 \text{ ft})^*(0.284 \text{ lbm/in}^3)
~ 115,800 lbm
```

Est. SRB mass = shell mass*("systems & growth" factor ~ 1.75) ~ 202,600 lbm (vs. actual SRB mass 192,946 lbm)

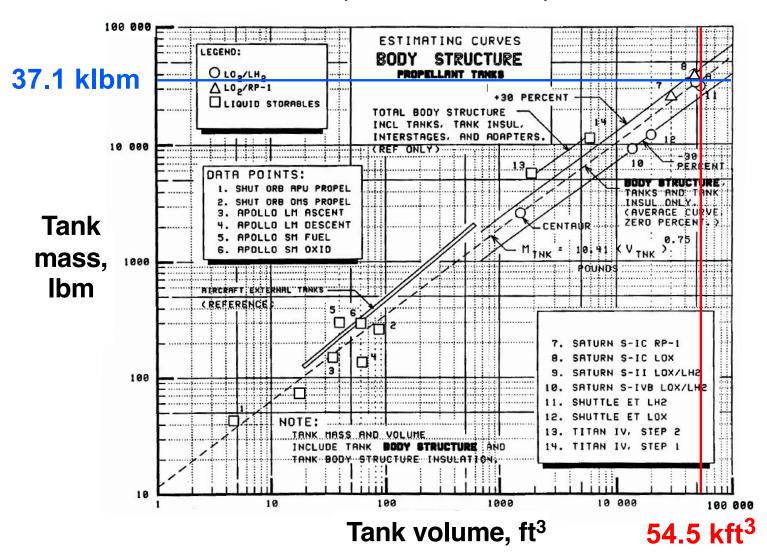
Super-Lightweight Tank (SLWT; 3rd gen. ET)

From Heineman, JSC-26098, Nov. 1994

SLWT Structural Sizing - "Top-down"

SLWT LH2 Tank

- Cylindrical tank, R = 331 in./2
- Barrel L = 928 in.
- Ellipsoidal domes, H = 124 in.


Calculate tank volume = $\pi^*R^{2*}L + 4\pi^*R^{2*}H/3$

- Total tank volume = 54,452 ft³
- Predicted tank struct. mass => 37.1 klbm

Actual tank struct. mass = 23,886 lbm

- (~ 35 pct below predicted)
- => Develop correction factor = 0.65

From Heineman, JSC-26098, Nov. 1994

SLWT Structural Sizing - "Bottom-Up"

SLWT LH2 Tank Barrel

- Cylindrical tank; L = 928 in., R = 331 in./2
- 38.7 lbf/in² proof test pressure
- Al-Li 2195; 72 klbf/in² yield, 0.098 lbm/in³

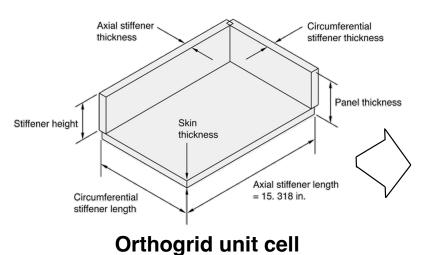
From strength of materials,

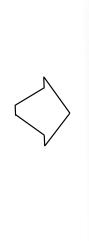
- Barrel skin $t = P*R / \sigma \implies t = 0.089$ in.
- Skin mass = $2^*\pi^*R^*L^*\rho^*t$ = 8417 lbm
- Apply 1.80 average NOF* => 15,151 lbm
- Apply 1.54 acreage NOF => 12,962 lbm

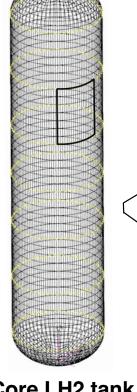
Actual orthogrid barrel mass = 13,477 lbm (60 pct > skin; 11 pct < avg, 4 pct > acreage)

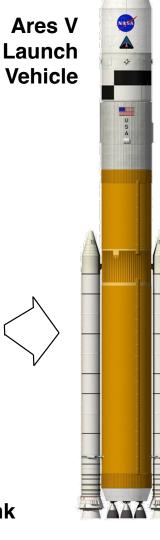
* NOF = empirical non-optimum factor

Ares V Structural Sizing - "Bottom-Up"


Core Stage LH2 Tank Barrel


- Cylindrical tank; L = 1506 in., R = 396 in./2


- 43.4 lbf/in² proof test pressure


- Al-Li 2195; 72 klbf/in² yield,

0.098 lbm/in³

Barrel panel

Core LH2 tank

Ares V Structural Sizing (cont'd)

HyperSizer analyses performed to size integrallymachined panel for flight load cases; 0.160-in. skin thickness

- Proof pressure-sized skin thick. = 0.112 in.; coarse panel wt. = 448 lbm; 689 lbs w/ 1.54 acreage NOF
- Orthogrid areal wt. = 3.54 lbm/ft²; intermediate panel
 wt. = 958 lbm; 1188 lbs w/ 1.24 NOF
- Orthogrid unit cell wt.= 2.25 lbm; refined panel wt.
 = 1100 lbm; 1133 lbs w/ 1.03 NOF

Ares V load paths are *very different* from Shuttle ET => Proof-pressure sizing probably not appropriate...

Concluding Remarks

A brief overview of classical and other selected structural mass estimation methods is presented

Saturn V examples

- S-IC intertank (+2.1 klbm; +16%)
- S-IC / S-II interstage (-2.7 klbm; -28%)
- S-II thrust structure (-0.9 klbm; -12%)

Space Shuttle examples

- Load paths during first-stage flight
- Solid Rocket Booster (+9.7 klbm; +5%)
- SLWT LH2 tank, barrel (+13.2/-2.0 klbm; +55/-14%)

Ares V example

Use these techniques with great care and suspicion!

References

- W. Heineman, Fundamental Techniques of Weight Estimating and Forecasting for Advanced Manned Spacecraft and Space Stations, NASA TN D-6349, May 1971
- W. Heineman, *Design Mass Properties*, JSC-23303, March 1989
- W. Heineman, Design Mass Properties II, JSC-26098, November 1994
- Anon., Saturn V News Reference, NASA MSFC, August 1967
- Anon., Saturn V Flight Manual SA-503, NASA TM-X-72151, November 1968
- Anon., Saturn V Launch Vehicle Flight Evaluation Report SA-506 Apollo 11 Mission, NASA TM-X-62558, September 1969
- J. Whitehead, Mass Breakdown of the Saturn V, AIAA 2000-3141, July 2000
- Anon., Space Shuttle News Reference, NASA TM-82290, January 1981
- Anon., Space Shuttle Super-Lightweight External Tank (SLWT) System Definition Handbook, Lockheed Martin, LMC-ET-SE61-1, December 1997
- R. Legler and F. Bennett, *Space Shuttle Missions Summary*, NASA/TM-2011-216142, September 2011
- K. C. Wu, J. Cerro, and M. Wallace, *Hardware-Based Non-Optimum Factors for Launch Vehicle Structural Design*. SAWE Int'l J. of Weight Eng., Vol. 74, No. 2, Winter 2014-2015

Acronyms

Α	Nozzle throat area, in2	Р	Internal presssure
avg	Average value	Pc	Chamber pressure, lbf/in2
CM	Center of mass	Pcr	Critical buckling load, lbf
CSM	Command/service module	Prop	Propellant
е	Nozzle efficiency factor	q	Dynamic pressure, lbf/in2
E	Material elastic modulus, lbf/in2	R	Radius, in.
ET	External tank	RCS	Reaction control system
FS	Factor of safety	RP-1	Kerosene
F-1	Saturn V 1st-stage engine	sd	Standard deviation
g	Standard gravitational acceleration	S/C	Spacecraft
H	Ellipsoidal dome height, in.	SLA	Spacecraft-LV adapter
Isp	Specific impulse, sec.	SLWT	Super-lightweight tank
IU	Saturn V instrument unit	SMF	Structural mass fraction
J-2	Saturn V 2nd-, 3rd-stage engine	SRB	Solid rocket booster
L	Shell height, in.	SSME	Space shuttle main engine
lbf	Pounds (force)	STS	Space transportation system
lbm	Pounds (mass)	S-IC	Saturn V 1st stage
LES	Launch escape system	S-II	Saturn V 2nd stage
LH2	Liquid hydrogen	S-IVB	Saturn V 3rd stage
LM	Lunar module	t	Shell wall thickness, in.
LOR	Lunar orbit rendezvous	α	Frustum half-angle, deg.
LO2	Liquid oxygen	γ	Correction factor = 1
LV	Launch vehicle	μ	Poisson's ratio
NOF	Non-optimum factor	ρ	Material density, lbm/in3
Nx	Compression line load, lbf/in.	σ	Hoop stress, lbf/in2