Space Shuttle Orbiter-External Tank Forward Bipod Loads Analysis

Chauncey Wu NASA Langley Research Center Hampton, Virginia k.c.wu@nasa.gov

> CoSEM CDT University of Bristol June 3, 2024

Space Shuttle OV-ET Forward Bipod Loads Analysis

- Introduction and rationale
- Bipod description and schematic
- Load indicators
- Bipod structural tests
- Limit and ultimate loads envelopes
- Bipod tests to failure and analyses
- Expanded loads envelopes
- Concluding remarks

Forward Bipod Connects Space Shuttle Orbiter (OV) To External Tank (ET)

Application Of Shuttle Forward Bipod To Future Launch Vehicles

- Support planned transition from Shuttle to Constellation Program vehicles
- Interim "Shuttle-derived" launch vehicle
 - + Cargo variant with 3xSSME and side-mount payload pod
 - * Higher mass and ascent loads than Shuttle
- Does existing Forward Bipod have any additional loads capability?
 - + Significant time and cost savings if it does...

Application Of Shuttle Forward Bipod To Future Launch Vehicles (2)

- Support planned transition from Shuttle to Constellation Program vehicles
- Interim Shuttle-derived launch vehicle
 - + Cargo variant with 3xSSME and side-mount payload pod
 - * Higher mass and ascent loads than Shuttle
- Does existing Forward Bipod have any additional loads capability?
 - + Significant time and cost savings if it does...

Space Shuttle OV-ET Forward Bipod Description

- Space Shuttle Orbiter and ET connected 3 places with statically determinate "truss" arrangement
 + Reduces OV-ET interface loads
- Forward Bipod attachment at $X_T = 1130$ in.
 - + Explosive bolt through apex
 - * OV interface/separation at MECO
 - + ET interface allows transverse rotation of Bipod w.r.t. ET
 - * Decouple OV from ET thermal effects during pre-launch fill of cryoprops
- Tests and analyses performed to estimate actual capabilities of Bipod interface

Forward Bipod Schematic

Syst. Def'n. Hdbk, Dec. 1997

Bipod Load Indicators

Limit values that provide rapid certification for FRR loads and DOL loads at max-Q condition

OV-ET	Interface L	oads, klbf
	Tension	Compr.
FTO1	+96.4	-127.8
FTO2	+64.5	-70.9

Bipod Strut Loads ,		klbf
	Tension	Compr.
P1	+74.3	-96.5
P2	+75.3	-97.4

Ref.: Lockheed Martin Report 826-2470, May 2005

Forward Bipod Static Equilibrium

Ref.: Lockheed Martin SLWT Syst. Def'n. Hdbk, Dec. 1997

Limit Envelope From Load Indicators

Forward Bipod Loads Tests

- Tests performed to validate Forward Bipod structural performance for *six cases*:

I - Max FTO2, II - Min FTO1,

III - Max P2T, IV - Min P1T,

V - Min P2C, VI - Min P1C

- Tests performed to limit, ultimate, and selected failure load levels
- Max FTO1, Min FTO2 cases untested
- P1 failure tests suggest significant additional capabilities past test ultimate loads, but how to apply results to P2, FTO1, FTO2?
- Air loads and moments applied in tests, but neglected in this analysis

Ref.: Martin Marietta - Michoud Report 826-2304, June 1985

P2

FTO₂

P1

Tested Limit And Ultimate Envelopes

Comparison Of Loads Envelopes

P1 Strut Failure Tests Performed

P1 strut buckling at
126 percent of ultimate
(P1C, case VI)

- P1 strut apex clevis tensile yield at 125 percent of ultimate (P1T, case IV)

- Conservative; *how much more load before joint fractures?*

Ref.: Martin Marietta - Michoud Report 826-2304, June 1985

Expand Loads Envelope Using Test Failures

Expand Loads Envelope Using Test Failures

Expand Loads Envelope Using Test Failures

Forward Bipod Static Equilibrium (2)

P1T = +177.0 klbf P1C = -220.9 klbf P2T = +177.0 klbf P2C = -168.8 klbf

Ref.: Lockheed Martin SLWT Syst. Def'n. Hdbk, Dec. 1997

Add'l Analyses To Expand Failure Envelope

- Compute Max FTO2, Min FTO1 loads using strut failure loads and Bipod geometry
- Apply measured P1 failure loads, and predicted P2 failure loads
 - + Max FTO2 = +241 klbf
 - * 74 percent > test ultimate
 - + Min FTO1 = -311 klbf
 - * 59 percent > test ultimate
- Compute *untested* Max FTO1, Min FTO2 load cases using P1 and P2 failure loads
 - + Max FTO1 = +282 klbf
 - + Min FTO2 = -209 klbf

Expanded Failure Envelope

Expanded Failure Envelope (2)

Assess Sensitivity To P1T, P2T Failure Loads

Concluding Remarks

- Load indicators used during Shuttle Program to certify Bipod operational performance
- Tests performed to limit, ultimate, and selected failure load levels
- Results of P1 failure tests indicate significant conservatism in Bipod design
- P1, P2 strut failure loads applied to define an expanded, test-anchored failure envelope
- Expanded limit envelopes defined using standard
 1.40 and reduced 1.25 Factors of Safety

Forward Bipod can support significant loads beyond those applied during Shuttle ascent

NASA Kennedy Space Center - April 2010

Space Shuttle Atlantis - STS-132

Space Shuttle Atlantis - STS-132

