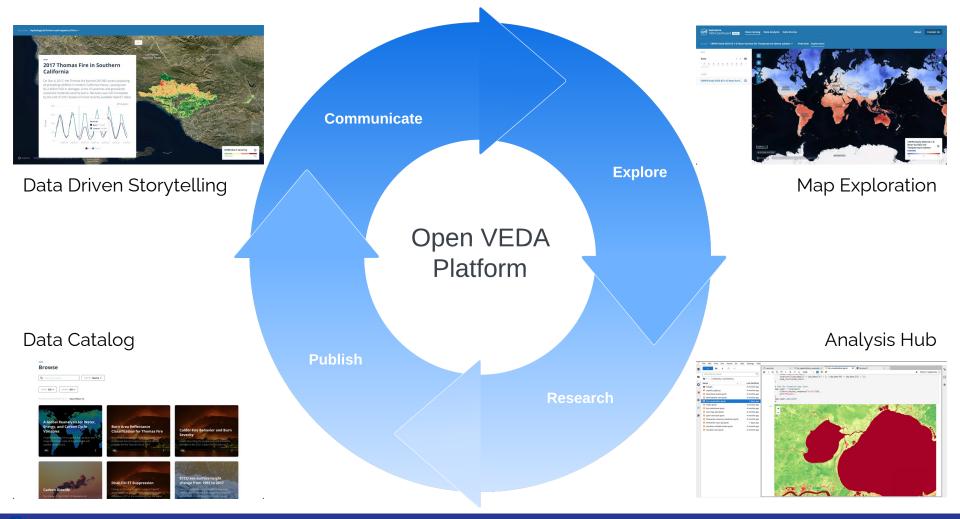
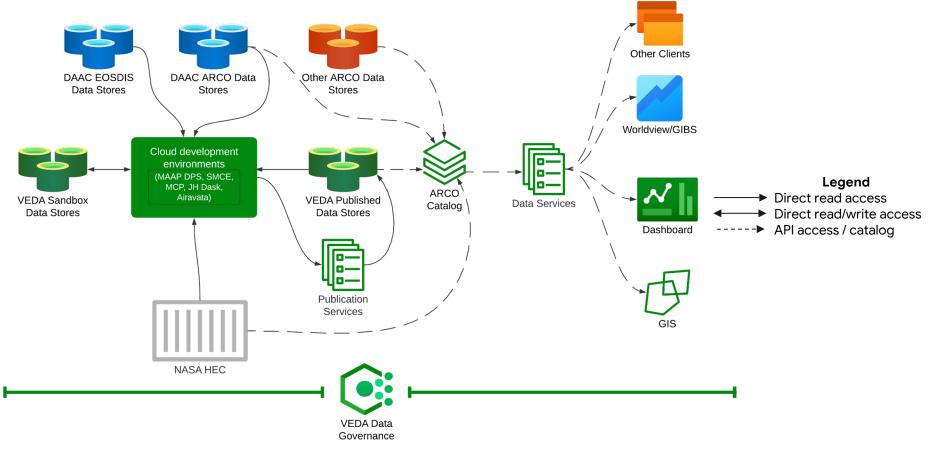


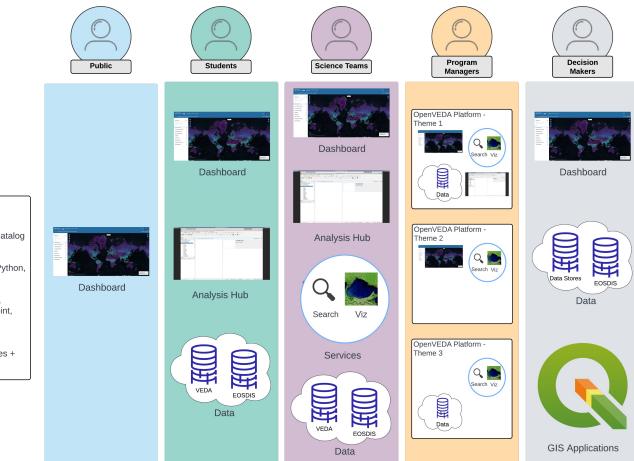
Visualization, Exploration, and Data Analysis Platform


Why?

- Interdisciplinary science depends on large amount of Earth science data and computational resources
- Working with these datasets is non-trivial
- Big data science requires advanced distributed computing knowledge



What?


VEDA is an open platform that brings key Earth science datasets next to open source tools for data processing, analysis, visualization, and exploration in a NASA-managed and more accessible computing environment

Data Architecture

VEDA User Engagement

Service Components

Dashboard: Map Explore, Dynamic Time-series analysis, Data Insights, Catalog Search Interface

Analytics Hub: Jupyter Notebooks (Python, R, Matlab (?)) and QGIS

Services: Search and Ingestion APIs, Raster APIs including statistics endpoint, and Features API

OpenVEDA Platform: Dashboard + Analytics Hub + Services + Data Stores + Catalog

General Public

Science Enthusiasts, Communicators, Educators, Press

Interaction with VEDA Platform?

Map exploration and data insights

Dashboard

Takeaway?

Knowledge of how NASA data is used to understand the Earth System. Earth science information relevant to their specific location (e.g. total rainfall after a disaster, number of fires within 100 miles, etc.)

Contribution?

None

Students

Dashboard

Who?

Student Researchers working on capstone, thesis, and dissertation work. Workshop participants

Interaction with VEDA Platform?

Map exploration, data insights, dynamic time-series analysis, jupyterhub environment for detailed analysis on cloud-hosted data

Takeaway?

Enhanced scientific understanding of a particular topic or set of topics and modernized workflow leveraging compute in same region where data is hosted

Contribution?

Datasets, data insights, notebook examples

Science Teams

Who?

NASA science teams developing a new algorithm or developing new data products

Interaction with VEDA Platform?

Map exploration, data insights, jupyterhub environment for collaborative compute environment, ingestion APIs, raster APIs, features APIs

Takeaway?

How collaborative compute environments in the cloud can accelerate scientific contributions and enhance mission success

Contribution?

Funding (cloud resources), datasets, data insights, notebook examples

Program Managers

Who?

Program Managers managing Earth science applications

Interaction with VEDA Platform?

Limited map exploration and data insights

Takeaway?

How VEDA capabilities can be leveraged within their program to address user needs, accelerate science, and communicate complex scientific concepts in an interactive, engaging manner

Contribution?

Unknown – Hopefully development teams contributing back to OpenVEDA platform components

Decision Makers

Dashboard

Who?

Decision makers who need to leverage Earth observations to quickly assess rapidly evolving events

Interaction with VEDA Platform?

Map exploration, dynamic time-series analysis, external data catalog (external = non-NASA data *if necessary), GIS applications

Takeaway?

How map exploration can be used to quickly assess a situation

Contribution?

Datasets/Data catalog

Others

Who?

FIRMS, Worldview/GIBS, Application Developers

Interaction with VEDA Platform?

Data services and visualization APIs

Takeaway?

How VEDA APIs can be used to serve data and visualization (as needed) needs for their applications

Contribution?

Improvements to backend services in OpenVEDA platform

VEDA Deployments – U.S. Greenhouse Gas Center (Platform)

Welcome

The U.S. Greenhouse Gas Center opens up access to trusted data on greenhouse gases. This multi-agency effort consolidates greenhouse gas information from observations and models. The goal of the US GHG Center is to provide decision-makers with one location for data

VEDA Deployments – Earth Information Center (Dashboard)

Earth Information Center

Data Catalog Data Analysis Themes

Explore our changing planet

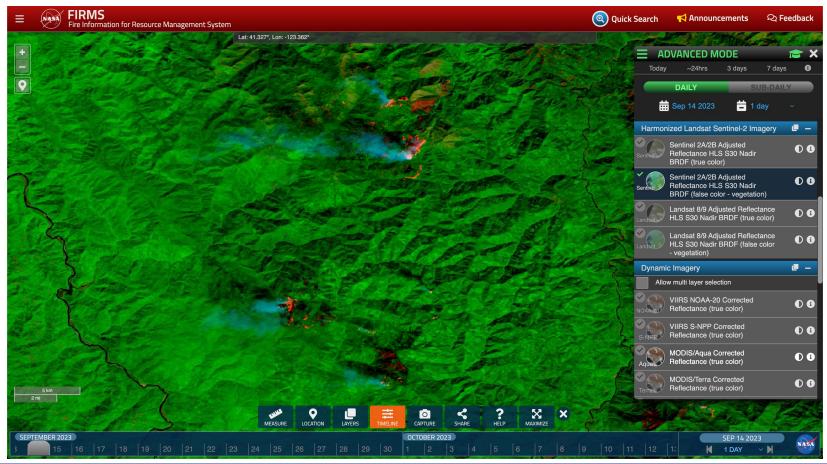
🕲 FEMA 🔍

≥USGS

Visit a Center Teach About

Contact Us

One government working for one planet.


The Earth Information Center consolidates data and insights on how Earth is changing from across the US federal government. Earth.gov is also the gateway to other interagency cooperative efforts for our planet, like the U.S. Greenhouse Gas Center. Discover how these data are being used to prepare for climate change and mitigate, adapt and respond to environmental challenges across the country.

Earth.gov is also the gateway to other interagency cooperative efforts for our planet, like the U.S. Greenhouse Gas Center []

U.S. Greenhouse Gas Center

VEDA Deployments – NASA FIRMS (Visualization Services)

VEDA Deployments - ESA/NASA MAAP (Data Services)

MAAP STAC API (dev)

Browse Q Search

Description STAC API for the MAAP STAC system.

Additional Resources

- OpenAPI service description
- OpenAPI service documentation

List \downarrow_2^{A} Ascending \uparrow_2^{A} Descending

Filter catalogs by title

AfriSAR UAVSAR Coregistered SLCs Generated Using NISAR Tools

This dataset contains multi-baseline Polarimetric Interferometric Synthetic Aperture Radar SLC (single-look-complex) data collected from multip...

2/25/2016, 12:00:00 AM UTC - 3/8/2016, 12:00:00 AM UTC

AfriSAR UAVSAR Geocoded Covariance Matrix product Generated Using NISAR Tools

The Geocoded Covariance Matrix dataset is the 4x4 Native Covariance Matrix geocoded to a spatial resolution of 25m using cubic interpolatio...

2/25/2016, 12:00:00 AM UTC - 3/8/2016, 11:59:59 PM UTC

AfriSAR UAVSAR Geocoded SLCs https://stac-browser.maap-project.org/collections/SRTMGL1_COD

AFRISAR_DLR

The ESA BIOMASS mission was selected in 2013 as the 7th Earth Explorer mission. BIOMASS will provide estimates of forest biomass and height...

2/3/2016, 12:00:00 AM UTC until present

AFRISAR_DLR2

The ESA BIOMASS mission was selected in 2013 as the 7th Earth Explorer mission. BIOMASS will provide estimates of forest biomass and height...

6/30/2015, 12:00:00 AM UTC until present

Arctic-Boreal Vulnerability Experiment Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric SAR

The Arctic-Boreal Vulnerability Experiment (ABoVE) is a NASA Terrestrial Ecology Program field campaign conducted from June through...

Global Ecosystem Dynamics Investigation (GEDI) Calibration/Validation Airborne Lidar Dataset (Compressed)

The Global Ecosystem Dynamics Investigation (GEDI) Forest Structure and Biomass Database (FSBD) is a collection of field and LiDAR datasets...

1/1/2001, 12:00:00 AM UTC - 12/31/2020, 12:00:00 AM UTC

Global Ecosystem Dynamics Investigation (GEDI) Calibration/Validation Field Survey Dataset

The Global Ecosystem Dynamics Investigation (GEDI) Forest Structure and Biomass Database (FSBD) is a collection of field and LiDAR datasets...

1/23/2003, 12:00:00 AM UTC - 8/27/2019, 11:59:59 PM UTC

Global Forest Change 2000-2017

ICESat2-Boreal Above Ground Biomass T-Index Average

🖙 Source 🛛 🗠 Share 🏳 Language: English 🔻

ICESat2-Boreal Above Ground Biomass T-Index Average

1/1/2019, 12:00:00 AM UTC - 1/1/2021, 12:00:00 AM UTC

Landsat 8 Operational Land Imager (OLI) Surface Reflectance Analysis Ready Data (ARD) V1, Peru and Equatorial Western Africa, April 2013-January 2020

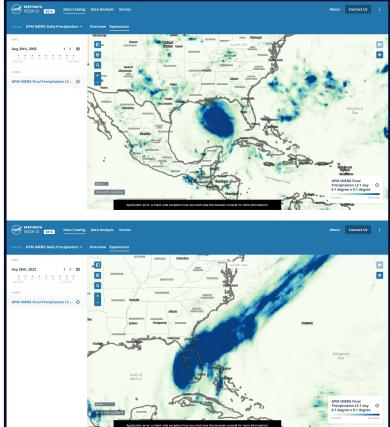
Landsat Analysis Ready Data (ARD) are consistently processed to the highest scientific standards and level of processing required for...

4/12/2013, 9:28:35 AM UTC - 1/29/2020, 12:00:00 AM UTC

NASA Shuttle Radar Topography Mission Global 1

NACA OLIMIA DALLA TARANALIA MIALA (ODTM)

NASA

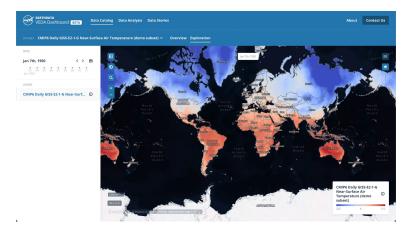

VEDA Moving Forward – NASA Archive Integration

Current

• VEDA data store supports targeted use cases with data transformed to COGs

Future

 Dynamic rendering of NASA data archives for cloud-hosted data in non-cloud-optimized formats without need for intermediate data stores


VEDA Moving Forward – Zarr/Kerchunk/NetCDF Visualization

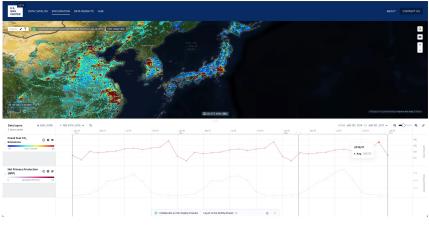
Current

• Data Visualization currently supports COGs only

Future

 Web-based visualization supporting NetCDF (example on previous slide) Zarr, Kerchunk, COPC data formats

Dashboard example with Kerchunk metadata on NetCDF


VEDA Moving Forward – Integrated Explore/Analysis

Current

 Explore and Analysis on separate tabs so users must toggle to see underlying data being used to generate analysis)

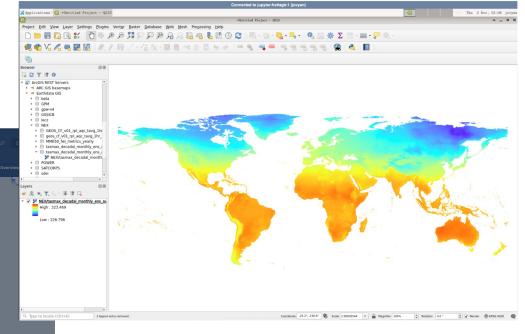
Future

- Fully integrated explore and analysis capabilities with area-weighted statistics
- Capability to compare two datasets spatially and two locations of same dataset with time-series

Current prototype

VEDA Moving Forward – GIS applications

- EGIS Rest API,
- GIS-compatible tile layers in VEDA dashboard

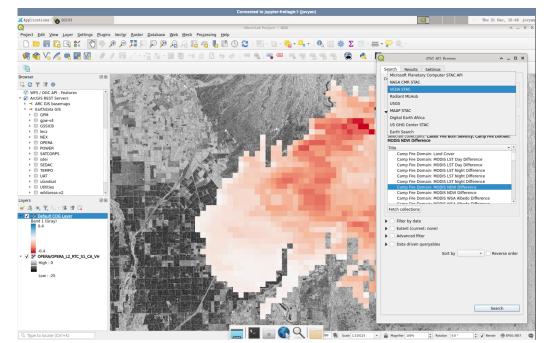

Use this dataset with GIS software

https://ghg.center/api/raster/mosaic/53e9dc2fb4ca:

Ē

XYZ Tile Url

WMTS Tile Url


VEDA Moving Forward – GIS applications

Current

 STAC-based data catalog allows for interoperability with GIS applications and STAC API Browser in GIS allows for searching VEDA data catalog

Future

• Example QGIS/ArcGIS projects linked to the dashboard (similar to current notebook examples in the documentation)

