

Geodetic Reference Instrument Transponder for Small Satellites (GRITSS)

S. M. Merkowitz, M. Hassouneh, W.-C. Huang, H. C. Livingston NASA Goddard Space Flight Center

C. Beaudoin University of Massachusetts Lowell

13th IVS General Meeting, Tsukuba, Japan March 7, 2024

Geodetic Infrastructure is the Foundation for Enabling Many Scientific Applications

ENABLED SCIENTIFIC APPLICATIONS	- Sea level change - Weather/climate - Water cycle - Ecosystems - Geological hazards - Geodynamics	
GEOPHYSICAL OBSERVABLES	 Land and ice deformation and change Sea surface height Atmospheric parameters Land and vegetation topography Mass change Surface and ground water and soil moisture 	The National Academics of SCIENCES - ENCONCEERING - MEDICINE CONSENSUS STUDY REPORT EVOLVING THE ECOLVING THE
EARTH ORBITING MISSIONS	 Time variable gravity Altimetry InSAR and SAR Radio occultation GNSS reflections from space Optical change detection 	TO MEET NEW SCIENTIFIC NEEDS
PRIMARY GEODETIC PRODUCTS	 Precise positions Orbit determination Earth rotation Gravity field Reflection and signal-to-noise ratio Total electron content and tropospheric delay 	
TERRESTRIAL REFERENCE FRAME	- Station coordinates as function of time - Scale - Origin (Earth system center of mass) - Orientation	
GEODETIC INFRASTRUCTURE	- Geodetic techniques (SLR, VLBI, GNSS, DORIS) - Experts - Software - Archives	, ,

National Academies: Evolving the Geodetic Infrastructure to Meet New Scientific Needs

https://doi.org/10.17226/25579

The Geodetic Measurement System

Traditional Local Tie Surveys

- Survey of site ground control network, site reference, optical access points, and supplemental targets to estimate the measurement points of space geodesy instruments.
- The actual instrument measurement point is often not accessible to survey techniques and must be estimated, introducing errors in the local tie.
- Surveys are only performed periodically further introducing the possibility of errors.

Geodetic Colocation In Space

Observations of a common space-based reference has the potential for reducing the uncertainty in the local-ties to the mm level thus improving the ITRF combination.

The GRITSS Dog-Leg

L-band GPS S & X-band

GRITSS upconverts and transponds GPS signals to individual VGOS ground stations.

The GRITSS Observables

- τ_{sv} observable is a clock bias term that is obtained through differencing of space/VLBI GPS clock biases
- Differencing allows direct suppression of common clock terms.
- Fitting τ_{sv} to model given CubeSat Precision Orbit
 Determination yields VLBI position

3/7/2024

- A NASA Earth Science and Technology Office sub-class D technology demonstration mission
- Jointly developed by the University of Massachusetts, Lowell and NASA GSFC
- 12UXL CubeSat, launch, and operations services provided by ISISpace in the Netherlands.
- Nominal operations: 1 year (extendable)
- Orbit: 550km sun synchronous, Nadir pointing
- Only broadcasts GRITSS signals over VGOS stations as spacecraft power permits

Initially targeting US NASA VOGS stations and will invite other VGOS stations to participate after successful first phase

- GPS Receiver Assembly
- Ultra-Stable Oscillator (USO)
- X-band Transmitter and Timing extenSionN (X-TTSN) Module 10.2 GHz
- S-band Transmitter 3.2 GHz
- Antennas (L1/L2 GPS, X-band, and S-band)
- Laser Retroreflector

Completed Technology Readiness Level 5 Development

S-band Transmitter

X-band Transmitter

Wenzel USO

GPS Receiver Assembly

Concept of Operations

6/13/2023

3/7/2024

- ✓ Custom VGOS-GPS receiver developed for Technology Readiness Level 5 testing that can be used instead of VGOS Digital Back End if necessary.
- Tested compatibility of GRITTS-like signals with VGOS signal chain at Westford.
- ✓ Measured VGOS signal-chain electrical delays at GGAO.
- $\checkmark\,$ Demonstrated ability to track satellites by three NASA VGOS antennas.
- ✓ Verified Septentrio PolaRx5TR GNSS receiver meets GRITSS timing requirements.
- Migrate Digital Back End to RFSoC-based architecture and develop GRITSS personality
- Modify the VGOS VDIF and Mark6 recording mode for GRITSS

- ✓ 2022 Demonstrated Technology Readiness Level 5
- ✓ July 2023 Payload Preliminary Design Review
- ✓ Feb 2024 Spacecraft Design Review
- Apr 2024 Payload Final Design Review
- ◆ Aug 2024 Spacecraft Final Design Review
- ◆ July 2025 Instrument-Spacecraft Integration and Test

> Includes measurements of antennas phase patterns in deployed configuration

🜠 Fall 2025 - Launch

- GRITSS will demonstrate a space-tie using the novel approach of transponding the GPS signals to a VGOS antenna.
- GRITSS is on a fast-track for launch and operations in 2025.
- We look forward to working with other international VGOS stations as part of an extended mission!

